%252525E5%25252592%5252596%252525E5%25252595%252525A1

合集下载

AMD(A卡)速查表

AMD(A卡)速查表

官方“开 核”版, 享受 6970的 性第能三代 UVD,支 持单卡6 屏第输三出代 UVD,支 持单卡4 屏输出
1120 151W 960 127W
960 127W 800 满载
150W 800 108W
800 108W
全铜热 管高效 静音散 VORTE X风扇, 全铜散 热底座 +2根 8VMOMRT热E X风扇, 全铜散 热底座
DVI/HDMI/VGA 128bit DVI/HDMI/VGA 128bit DVI/HDMI/VGA 128bit DVI/HDMI/VGA 128bit DVI/HDMI/VGA 128bit
DVI/HDMI/VGA 128bit
HD5670 >250 512DDR3 极致二 代 512M (640S PH)D5670 极致D31G
DVI/HDMI/VGA 128bit
HD6770 ≥450 1GDDR5 恒金1G
HD6750 ≥450 1GDDR5 恒金 1G
HD6750 恒金D31G HD5750 ≥450 1GDDR5 恒金二 代 1G HD5750 >250 1GDDR3 恒金 512M HD6670 恒金 1G
HD5670 >250 1GDDR3 极致二 代 1G (640S P)
HD5670 >240 1G DD5 恒金D31G
HD5550 ≥240 DDR5 酷能 ++512M
HD5550 >240 1G DD3 恒金 D3 三代 1G
HD5550 等于240 DD3 恒金 D3 512HM
HDG467 >220 DDR3 0 冰钻 D3 512HM
850/4000 775/1334 775/1600 775/4000 650/1000

笔记本常用芯片大全

笔记本常用芯片大全

线性稳压块:2951、LP2951、m5236、2950开机芯片:东芝TM87XX、IBM:TB6805F、TB6806F、TB6808F、TB62501F、TMP48UI/O芯片:PC97338、PC87391、PC87392、pc87393、 SMSC系列:FDC7N869、FDC37N958、L PC47N227、LPC47N267系统供电芯片:MAX1632、MAX1631、MAX1904、MAX1634、MAX785、MAX786、SB3052、SC140 2、LTC1628CPU供电芯片:MAX1711、MAX1714、MAX1717、MAX1718、MAX1897供电芯片搭配使用:ADP3203/ADP3415、ADP3410/ADP3421、ADP3410/ADP3422充电芯片:MAX1645、MAX745、MAX1772、MAX1773、ADP3806、TC490/591、MB3887、MB3878、MAX1908 ,LT1505GCPU温度控制芯片:MAX1617、MAX1020A、AD1030A、CM8500 MAX1989显卡品牌:ATI、NVIDIA、S3、NEOMAGIC、TRIDENT、SMI、INTEL、FW82807和CH7001A搭配使用网卡芯片:RTL8100、RTL8139、Intel DA82562、RC82540、3COM、BCM440网卡隔离:LF8423、LF-H80P、H-0023、H0024、H0019、ATPL-119声卡芯片:ESS1921、ESS1980S、STAC9704、AU8810、4299-JQ、TPA0202、4297-JQ、8552T S、8542TS、CS4239-KQ、BA7786、AD1981B、AN12942PC卡芯片:R5C551、R5C552、R5C476、R54472PC卡供电芯片:TPS2205、TPS2206、TPS2216、TPS2211、PU2211、M2562A、M2563A、M2564 ACOM口芯片:MAX3243、MAX213、ADM213、HIN213、SP3243、MC145583键盘芯片:H8C/2471、H8/3434、H8/3431、PC87570、PC87591键盘芯片:具有开机功能:H8/3434、H8/3437、H8/2147、H8/2149、H8/2161、H8/2168、P C87570、PC87591、H8S/XXX M38857、M38867、M38869笔记本IO芯片大全PC87591S(VPCQ01)/PC 87591L(VPC01)/PC 97317IBW/PC 87393 VGJ笔记本IO芯片大全TB 62501F/TB62506F/TB6808F/KB910QF/KB910QB4/KB910LQF/KB910L QFA1笔记本IO芯片大全KB3910QB0/KB910SFC1/KB3910SF/PC87591E-VLB/IT8510E/PS5130笔记本IO芯片大全PC87591E (-VPCI01),(VPCQ01)/PC 97551-VPC/PC 87570-ICC/VPC笔记本IO芯片大全PC87391VGJ/TB6807F/W83L950D/LPC47N249-AQQ/PCI4510/PC8394T 笔记本IO芯片大全PC87392/PC87541L/PC87541V/LPC47N253-AQQ/PC87591E-VLB笔记本IO芯片大全LPC47N250-SD/LPC47N252-SG/LPC47N254-AQQ笔记本主板常见芯片作者:孤影清风 2008-01-18 16:11:26标签:i tAAT3200低压差稳压器AAI3680笔记本电脑充电控制芯片AAT4280端口限流保护芯片AD1885主板声卡芯片ADl888主板声卡芯片ADl981主板声卡芯片ADP3160/ADP3167笔记本电脑供电控制芯片ADP3166主板CPU供电控制芯片ADP3168笔记本电脑供电控制芯片ADP3170主板CPU供电控制芯片ADP3180主板CPU供电控制芯片ADP3181笔记本电脑CPU供电芯片ADP3203笔记本电脑CPU供电芯片ADP3421笔记本电脑CPU供电芯片ADP3806笔记本电脑电池充/放电控制芯片AIC1567主板CPU供电控制芯片ALC200主板声卡芯片ALC201A主板声卡芯片ALC655主板声卡芯片AMS1505低压差稳压器APA2020/TPA0202小功率音频功率放大芯片APW7060主板供电控制芯片BQ2040笔记本电脑电池电量检测芯片BQ2060笔记本电脑电池电量检测芯片BQ24700笔记本电脑充电控制芯片BQ2470l笔记本电脑充电控制芯片BQ24702/BQ24703笔记本电脑充电控制芯片CM8501/CM8501A主板内存供电控制芯片CM8562主板内存供电控制芯片CMl9738主板声卡芯片CS5322主板CPU供电控制芯片CS950502主板时钟芯片CY28404C主板时钟芯片DS1620笔记本电脑数字温度控制芯片DS2770笔记本电脑充电控制芯片FAN5056主板CPU供电控制芯片FAN7601笔记本电脑电源适配器控制芯片IPM6220A笔记本电脑电源管理芯片ISL6223笔记本电脑CPU供电控制芯片ISL6224笔记本电脑内存供电控制芯片ISL6225笔记本电脑内存供电控制芯片LM4861小功率音频功率放大芯片LM4863小功率音频功率放大芯片LM4880几M4881小功率音频功率放大芯片LM4911小功率音频功率放大芯片LTl505笔记本电脑充电控制芯片LTCl628笔记本电脑系统供电电路ITC1709笔记本电脑CPU供电控制芯片LTC3728L笔记本电脑系统供电控制芯片LTC4008笔记本电脑充电控制芯片M51995A笔记本电脑电源适配器控制芯片M61040FP笔记本电脑电池管理控制芯片MAXl522/MAXl523/MAXl524笔记本电脑LCD背光电源控制芯片MAXl540/MAXl541笔记本电脑供电控制芯片MAX1631笔记本电脑主电源控制芯片MAXl644笔记本电脑供电控制芯片MAXl645B笔记本电脑电池充电管理芯片MAX1710/MAX1711/MAXl712笔记本电脑CPU内核供电芯片MAX1714笔记本电脑CPU外核供电控制芯片MAX1715笔记本电脑CPU供电芯片MAX1717笔记本电脑CPU供电控制芯片MAX1718笔记本电脑CPU供电控制芯片MAX1736笔记本电脑充电控制芯片MAX1772笔记本电脑充电控制芯片MAX1773笔记本电脑充电控制芯片MAX1830/MAXl831笔记本电脑CPU供电控制芯片MAX1845笔记本电脑CPU内核供电控制芯片MAX1873笔记本电脑充电控制芯片MAX1902笔记本电脑系统供电控制芯片MAX1908笔记本电脑充电控制芯片MAX1909笔记本电脑充电控制芯片MAX1992/MAXl993笔记本电脑供电控制芯片MAX1999笔记本电脑系统供电控制芯片MAX745笔记本电脑充电控制器MAX785/MAX786笔记本电脑系统供电控制芯片MAX8794笔记本电脑DDR内存供电控制芯片MB3878笔记本电脑充电控制芯片MIC2545端口限流保护芯片MIC5205低压差稳压器NCPl205笔记本电脑电源适配器控制芯片NCP1207笔记本电脑电源适配器控制芯片NCP5201主板DDR2内存供电控制芯片NCP5314主板CPU供电控制芯片OZ960笔记本电脑液晶屏高压驱动控制芯片SC1470笔记本电脑供电控制芯片SC1486/SCl486A笔记本电脑内存供电芯片SC2422主板CPU供电控制芯片SC2616主板DDR2内存供电控制芯片TPS51020笔记本电脑DDR内存供电控制芯片TPS54672笔记本电脑内存供电控制芯片。

AMD 速龙64 X2系列CPU

AMD 速龙64 X2系列CPU
支持
MMX+, 3DNow!+, SSE, SSE2, SSE3, X86-64
AMD 速龙64 X2 4800+ AM2(65纳米/散) 1MB -
AMD 速龙64 X2 4800+ AM2(65纳米/散) 不支持 AMD VT 65W 1.35V 55-72℃
2008年11月 AMD 速龙双核
4850e(盒) AMD Athlon X2 DualCore 4850e 2.5GHz
Brisbane(双核心) Socket AM2 双核 940Pin 65纳米 AMD 速龙双核 4850e(盒) 2.5GHz 1000MHz 12.5 200MHz
最高支持双通道的 DDR2 800
MMX(+), 3DNOW!(+), SSE, SSE2, SSE3,
x86-64 AMD 速龙双核
4850e(盒) 128KB 128KB 1MB -
AMD 速龙双核 4850e(盒) 不支持 AMD VT 45W < 78℃
AMD 速龙 X2 5000+(45nm/盒)
AMD 速龙64 X2 5400+(盒)
AMD 速龙64 X2 5600+(盒)
AMD 速龙64 X2 6000+ AM2(散)
Socket AM2 双核 940Pin 65纳米
AMD 速龙64 X2 5400+(盒) 2.8GHz 1000MHz 14 200MHz
2007年8月 AMD 速龙64 X2
5600+(盒) Athlon 64 X2 5600+
2.8GHz Windsor Socket AM2
双核 940Pin 90纳米 AMD 速龙64 X2 5600+(盒) 2.8GHz 1000MHz 1000MHz

设备及逻辑组态

设备及逻辑组态

SCS DI
NO
DC1_12:W2.B8 ALM1_12 ALM1_12:B1.B3
SCS DI
NO
DC1_12:W2.BA ALM1_12:B1.B3
SCS DI
NO
DC1_12:W2.BB ALM1_12:B1.B3
SCS DI
NO
DC1_12:W2.BC ALM1_12:B1.B3
SCS DI
NO
DC1_12:W2.BD ALM1_12:B1.B3
SCS DI
NO
DC1_12:W2.BE ALM1_12:B1.B3
SCS DI
DC1_12:W2.BF ALM1_12:B1.B3
SCS DI
NO
DC1_12:W3.B0 ALM1_12:B1.B4
SCS DI
NO
DC1_12:W3.B1 ALM1_12:B1.B4
电动机润滑油压低 备用 备用 备用 备用 备用
信号类别 种类 单位 信号类型 上限 下限 连接模块
报警模块
MCS DI
NO
DC1_12:W1.B0 ALM1_12:B1.B0
MCS DI
NO
DC1_12:W1.B1 ALM1_12:B1.B0
MCS DI
NO
MCS DI
NO
DC1_12:W1.B2 ALM1_12:B1.B0 DC1_12:W1.B3 ALM1_12:B1.B0
强关信号连到模块的w09顺关信号连到模块的w010允关信号连到模块的w08模块号actionname开脉冲时间关脉冲时间全行程时间已开信号连到模块的w04已关信号连到模块的w012故障信号连到模块的w11开命令从模块的w03连出关命令从模块的w011连出强开信号连到模块的w01顺开信号连到模块的w02允开信号连到模块的w00电动机的电流一般组态时不连从逻辑图上可以看出

G.984.2-200602 Amd1

G.984.2-200602 Amd1

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T G.984.2TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Amendment 1(02/2006)SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKSDigital sections and digital line system – Optical line systems for local and access networksGigabit-capable Passive Optical Networks(G-PON): Physical Media Dependent (PMD) layer specificationAmendment 1: New Appendix III – Industry best practice for 2.488 Gbit/s downstream,1.244 Gbit/s upstream G-PONITU-T Recommendation G.984.2 (2003) – Amendment 1ITU-T G-SERIES RECOMMENDATIONSTRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKSFor further details, please refer to the list of ITU-T Recommendations.ITU-T Recommendation G.984.2Gigabit-capable Passive Optical Networks (G-PON):Physical Media Dependent (PMD) layer specificationAmendment 1New Appendix III – Industry best practice for 2.488 Gbit/s downstream,1.244 Gbit/s upstream G-PONSummaryThis amendment adds a new appendix to ITU-T Rec. G.984.2 that establishes the industry best practice optical budgets for the G-PON system operating at 2.488 Gbit/s downstream, 1.244 Gbit/s upstream.SourceAmendment 1 to ITU-T Recommendation G.984.2 (2003) was agreed on 17 February 2006 by ITU-T Study Group 15 (2005-2008).KeywordsG-PON, optical.ITU-T Rec. G.984.2 (2003)/Amd.1 (02/2006) iFOREWORDThe International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.NOTEIn this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.INTELLECTUAL PROPERTY RIGHTSITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.© ITU 2006All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.ii ITU-T Rec. G.984.2 (2003)/Amd.1 (02/2006)CONTENTSPage New Appendix III – Industry best practice for 2.488 Gbit/s downstream,1.244 Gbit/s upstream G-PON (1)III.1 Introduction (1)III.2 System applications (1)III.3 Optical specifications (1)III.4 Link budget (2)ITU-T Rec. G.984.2 (2003)/Amd.1 (02/2006) iiiIntroductionThis amendment describes the recommended practical power budgets for systems described in the G.984 series that operate at the downstream rate of 2.488 Gbit/s and upstream rate of 1.244 Gbit/s. These budgets are optional extensions of the Recommendation, and reflect the observed practical optimum values for this particular system.iv ITU-T Rec. G.984.2 (2003)/Amd.1 (02/2006)ITU-T Recommendation G.984.2Gigabit-capable Passive Optical Networks (G-PON):Physical Media Dependent (PMD) layer specificationAmendment 1New Appendix III – Industry best practice for 2.488 Gbit/s downstream,1.244 Gbit/s upstream G-PONIII.1 IntroductionThe widespread interest in the 2.4 Gbit/s downstream, 1.2 Gbit/s upstream G-PON system has provided increased visibility into the feasibility of loss budgets for this system. This appendix captures the industry best practices for this rate combination.The notable variations from the loss budgets found elsewhere in this Recommendation include: •overall loss budgets midway between class B and class C;•different value of optical path penalties;•the OLT must support FEC in the downstream.These variations can provide increased capabilities for operation of G-PON systems. Therefore, the budgets contained in this appendix are recommended over and above all others in this Recommendation for the 2.4/1.2 Gbit/s rate PON.III.2 System applicationsThere are currently two major applications for the G-PON system. The first is a full-service system with a video overlay. The second is a digital-only system without a video overlay. These two applications are diagrammed in Figure III.1.Figure III.1/G.984.2 – G-PON applicationsIII.3 Optical specificationsThe optical specifications for the OLT and ONU optics are given in Table III.1. This table refers to power levels measured at the interface points shown in Figure III.1, i.e., both types a (Video overlay) and b (Digital-only) systems. Specifically, any WDM filters external to the OLT or ONU equipment are considered part of the ODN. These specifications are meant to augment similarITU-T Rec. G.984.2 (2003)/Amd.1 (02/2006) 1specifications found in Table 2 in the main body of the Recommendation. All other specifications found elsewhere in the table still apply.The ONU sensitivity can be achieved either using an APD without FEC, or a PIN with FEC. The choice is a matter of ONU implementation. The APD solution is seen as an immediately available option, while the PIN with FEC solution is a longer-term option that depends on the introduction of higher performance receiver circuitry. The OLT must support FEC in the downstream by having the capability of calculating and transmitting the FEC parity bytes in the downstream signal. The OLT equipment must also have the ability to activate or deactivate the downstream FEC feature by operations system command. The ONU can optionally support FEC decoding in the downstream, and in any specific instance the ONU can use the FEC parity at its own discretion.The optical penalty does not include any Raman impairment in the downstream wavelength. Any penalty due to this effect must be accounted for out of the link budget. However, in any system with appreciable Raman effect will also have a significant length of fibre. Because of the loss differential between 1490 nm and 1310 nm, it is anticipated that the Raman impairment will be compensated by the lower fibre loss at 1490 nm.Table III.1/G.984.2 – Optical power levels for the 2.4 Gbit/s downstream,1.2 Gbit/s upstream systemIII.4 Link budgetThe link budget is given in Table III.2. This budget covers all optical components between the OLT and ONU, including non-integrated WDM filters for the multiplex of video overlays and other enhancement band services, and must include any Raman impairment from the overlay signal.Table III.2/G.984.2 – Loss budgets for the G-PON system2ITU-T Rec. G.984.2 (2003)/Amd.1 (02/2006)In comparison, the B-PON class B+ budgets recommended in ITU-T Rec. G.983.3/Amd.2 are shown in Table III.3. The G-PON budget is similar to the Video Overlay system in that it supports a 13-dB minimum loss, and it is similar to the digital-only budget in that it is symmetric and it supports a 28-dB maximum loss. It is theoretically possible that a PON that complies with the B-PON B+ budgets might not comply with the G-PON budget; however, such cases should be very rare in the actual deployed base of PONs. Therefore, the G-PON budget should be compatible with practically all deployed PONs.Table III.3/G.984.2 – Loss budgets for the B-PON G.983.3/Amd.2 systemsITU-T Rec. G.984.2 (2003)/Amd.1 (02/2006) 3Printed in SwitzerlandGeneva, 2006。

主板芯片组的后缀说明

主板芯片组的后缀说明

主板芯片组的后缀说明从845系列到915系列以前PE是主流版本,无集成显卡,支持当时主流的FSB和内存,支持AGP插槽。

E并非简化版本,而应该是进化版本,比较特殊的是,带E后缀的只有845E这一款,其相对于845D是增加了533MHz FSB支持,而相对于845G之类则是增加了对ECC内存的支持,所以845E常用于入门级服务器。

G是主流的集成显卡的芯片组,而且支持AGP插槽,其余参数与PE类似。

GV和GL则是集成显卡的简化版芯片组,并不支持AGP插槽,其余参数GV则与G相同,GL则有所缩水。

GE相对于G则是集成显卡的进化版芯片组,同样支持AGP插槽。

P有两种情况,一种是增强版,例如875P;另一种则是简化版,例如865P915系列及之后P是主流版本,无集成显卡,支持当时主流的FSB和内存,支持PCI-E X16插槽。

PL相对于P则是简化版本,在支持的FSB和内存上有所缩水,无集成显卡,但同样支持PCI-E X16。

G是主流的集成显卡芯片组,而且支持PCI-E X16插槽,其余参数与P类似。

GV和GL则是集成显卡的简化版芯片组,并不支持PCI-E X16插槽,其余参数GV 则与G相同,GL则有所缩水。

X和XE相对于P则是增强版本,无集成显卡,支持PCI-E X16插槽。

总的说来,Intel芯片组的命名方式没有什么严格的规则,但大致上就是上述情况。

另外,Intel芯片组的命名方式可能发生变化,取消后缀,而采用前缀方式,例如P965和Q965等等。

965系列之后从965系列芯片组开始,Intel改变了芯片组的命名方法,将代表芯片组功能的字母从后缀改为前缀,并且针对不同的用户群体进行了细分,例如P965、G965、Q965和Q963等等。

P是面向个人用户的主流芯片组版本,无集成显卡,支持当时主流的FSB和内存,支持PCI-E X16插槽。

G是面向个人用户的主流的集成显卡芯片组,而且支持PCI-E X16插槽,其余参数与P类似。

R525 g3

R525 g3

联想万全R525 G3支持多大的存储容量?优良的存储扩展性是联想R525 G3的一大特点,从前面板能够看到,R525 G3可以安装两个硬盘模组,具有独立的背板和供电系统,最大可以支持16块2.5寸热插拔硬盘。

同时,联想R525 G3还提供了3.5寸热插拔硬盘的选择,最大可以支持8块,为用户提供了灵活的存储选择。

联想万全R525 G3服务器有哪些设计特性呢?联想万全R525 G3是新一代的2U机架旗舰产品,其特点并不仅限于集成了多项节能技术,还具有不少有特点的设计。

这款服务器主要面向大中企业的关键任务应用,采用了全冗余设计,具备独立的背板和供电系统的双硬盘模组,最大可支持16块2.5寸热插拔硬盘;采用6+2冗余风扇、双I/O扩展卡,提供了足够的冗余保护。

另外配置了1+1冗余电源,提供了充足的动力保障。

另外在管理方面,联想R525 G3增加了DIT(Doctor Inside Technology)开机故障自动诊断技术,通过前面板的指示灯,可以迅速确定CPU、内存、风扇、电源等硬件故障,降低服务器修复时间。

这样的设计在国内产品中并不多见,是一个非常实用的故障定位功能。

联想R525 G3还附带了最新的慧眼V服务器管理系统,具备丰富的图形化远程监控功能,可以获取服务器硬件健康信息和事件;无论操作系统状态如何,都可对服务器进行批量开关机、重启、远程激活ID灯等;支持资产配置、资源使用、性能信息、进程信息的远程管理,可对关键部件设置阈值进行预警,支持邮件、颜色变化、告警弹出等报警方式。

联想万全R525 G3最多提供几个PCI-E插槽扩展?6个全高的I/O扩展插槽,可以灵活扩展I/O设备。

联想万全慧眼第五代管理专业版和高级版区别?联想万全慧眼V专业版服务器系统监控软件,符合IPMI 2.0规范,结合BMC芯片,支持带外管理,无论OS状态和服务器开关机状态,都可以获得服务器硬件健康信息和事件,还可以实现对服务器的电源控制,进行远程开机、关机、重启,点亮ID等操作。

AMD六核CPU

AMD六核CPU

AMD发布六核心伊斯坦布尔。

2009-07-13 22:30:22 分类:AMD超威 | 技术 | 评论(2) | 浏览(211)AMD今天发布了五款新的六核心“伊斯坦布尔”服务器处理器,包括三款55W低功耗的Opteron 2400 HE系列,以及两款105W高性能的Opteron 8400 SE系列。

AMD六月初发布的首批伊斯坦布尔也有五款,不过都是平均功耗75W的标准型号,主频从2.2GHz到2.6GHz 不等。

55W的六核心Opteron HE现有两款面向双路领域的Opteron 2423/2425 HE和一款面向四路/八路市场的Opteron 8425 HE,规格方面45nm SOI工艺制造,Socket F接口,主频2.0/2.1/2.1GHz,二级缓存6×512KB,三级缓存6MB,HT总线频率4.8GHz,核心电压1.3V,最高温度55-76℃。

105W的Opteron 2439/8439 SE主频均达到了2.8GHz,除了最高温度55-71℃之外其他规格均相同。

AMD宣称,相比于75W标准型号,上述55W低功耗处理器可将系统级功耗降低最多18%,同时相比上代“上海”四核心,可带来最多18%的性能每瓦特提升。

以上处理器的产品编号分别为OS2423PDS6DGN、OS2425PDS6DGN、OS8425PDS6DGN、OS2439YDS6DGN、OS8439YDS6DGN,官方标价455美元、523美元、1514美元、1019美元、2649美元。

戴尔表示将立即采纳新款低功耗和高性能伊斯坦布尔处理器,用于在下个月升级三款刀片服务器PowerEdge M605/M805/M905和三款机架服务器PowerEdge 2970/R805/R905,适合云计算、Web服务应用领域,以及数据库、CRM等关键任务应用。

惠普的ProLiant G6系列刀片服务器、IBM的双路/四路刀片服务器BladeCenter LS42和三路机架服务器System x3755等系统也会迅速跟进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热摩卡咖啡Mocha Coffee
原料:浓缩咖啡巧克力酱热牛奶搅打奶油
口味特点:巧克力与浓缩咖啡巧妙的搭配口味香浓。

做法:1,选好杯子。

2,在杯子中放入适当的巧克力酱。

3,加热需要用的牛奶。

(牛奶温度在65到70度之间)
4,把浓缩咖啡和咖啡杯中的巧克力酱搅和均匀,然后倒入加热好的牛奶,7分满最后上面加上搅打
奶油即可。

热卡布奇诺咖啡Cappuccino Coffee
原料:牛奶浓缩咖啡
口味特点:丰富细腻的奶沫口感细腻奶香浓郁。

做法:1,选好咖啡杯。

2,加热需要用的牛奶(牛奶温度在65到70度之间)
3,把牛奶倒入杯中1/2满,奶沫倒至7分满然后加入浓缩咖啡即可。

热拿铁咖啡Latte Coffee
原料:牛奶浓缩咖啡
口味特点:香浓的纯牛奶与浓缩咖啡混合后的美妙口感,是很多客人选择他的原因。

做法:1,选好咖啡杯。

2,加热需要用的牛奶(牛奶温度在65到70度之间)
3,把牛奶倒入杯中7分满,奶沫倒至8分满然后加入浓缩咖啡即可。

热浓缩咖啡Espresso Coffee
原料:浓缩咖啡
口味特点:浓缩咖啡高压萃取的高浓缩咖啡,口味厚重,意大利人的最爱。

做法:浓缩咖啡直接用杯子接就可以了。

热美式咖啡American Coffee
原料:浓缩咖啡
口味特点:口味偏苦,味道重。

做法:把咖啡机的出咖啡量调整到所选择的杯子一致即可。

冰摩卡咖啡Mocha Ice Coffee
原料:浓缩咖啡巧克力酱冰牛奶搅打奶油冰块
做法:1,选好杯子。

2,在杯子中放入适当的巧克力酱。

3,把浓缩咖啡和咖啡杯中的巧克力酱搅和均匀,然后倒入加的牛奶,7分满最后上面加上搅打奶油
即可。

冰拿铁咖啡Latte Ice Coffee
原料:牛奶浓缩咖啡冰块
口味特点:香浓的纯牛奶与浓缩咖啡混合后的美妙口感,是很多客人选择他的原因。

做法:1,选好咖啡杯。

2,把牛奶和冰块倒入杯子里面7分满然后加入咖啡杯子中即可。

浓缩冰咖啡Espresso Ice Coffee
原料:冰块浓缩咖啡
做法:浓缩咖啡加冰块即可。

冰美式咖啡American Ice Coffee
原料:冰块浓缩咖啡
做法:黑咖啡加冰即可。

相关文档
最新文档