山东省青岛市北区2014年3月中考一模数学试题及答案(扫描版)
2014年山东省青岛市中考真题数学

2014年山东省青岛市中考真题数学一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)-7的绝对值是( )A.-7B. 7C. -D.解析:|-7|=7,答案:B.2.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.解析:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.答案:D.3.(3分)据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为( )A.6.09×106B.6.09×104C. 609×104D. 60.9×105解析:将6090000用科学记数法表示为:6.09×106.答案:A.4.(3分)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有( )A.2.5万人B.2万人C. 1.5万人D. 1万人解析:该镇看中央电视台早间新闻的约有15×=1.5万,答案:C.5.(3分)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是( )A.内含B.内切C. 相交D. 外切解析:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4-2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.答案:C.6.(3分)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为( )A. -=2B.-=2C.-=2D. -=2解析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,-=2.答案:D.7.(3分)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为( )A. 4B. 3C. 4.5D. 5解析:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,答案:A.8.(3分)函数y=与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是( )A.B.C.D.解析:由解析式y=-kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则-k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则-k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.答案:B.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:= .解析:原式=+=2+1.答案:2+1.10.(3分)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:则这两台分装机中,分装的茶叶质量更稳定的是(填“甲”或“乙”).解析:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.答案:乙.11.(3分)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是.解析:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0). 答案:(1,0).12.(3分)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.解析:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°-∠OCD-∠BDC-∠OBD=70°,∴∠A=∠BOC=35°.答案:35.13.(3分)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为 .解析:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB·tan60°=.答案:2.14.(3分)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.解析:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64-10=54个小立方体,答案:54.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.解析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.答案:如图所示:△ABC即为所求.四、解答题(本题满分74分,共有9道小题)16.(8分)(1)计算:÷;(2)解不等式组:.解析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 答案:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.17.(6分)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是天,众数是天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字). 解析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.答案:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.18.(6分)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?解析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.答案:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)19.(6分)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?解析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.答案:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.20.(8分)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)解析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD-CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.答案:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD-CD,∴x-x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.21.(8分)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=°时,四边形ACED是正方形?请说明理由.解析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.答案:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.22.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)解析:(1)根据“利润=(售价-成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(-5x+550)≤7000,通过解不等式来求x的取值范围.答案:(1)y=(x-50)[50+5(100-x)]=(x-50)(-5x+550)=-5x2+800x-27500.∴y=-5x2+800x-27500(50≤x≤100).(2)y=-5x2+800x-27500=-5(x-80)2+4500∵a=-5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,-5(x-80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(-5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.23.(10分)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+ ++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1-.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+ ++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1-,两边同除以2,得+++…+=-.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:+++…+=1-,所以,+++…+= -.拓广应用:计算+++…+.解析:探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m-1)即可得解;拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.答案:探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续四等分,…,第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:+++…+,最后的空白部分的面积是,根据第n次分割图可得等式:+++…+=1-,两边同除以3,得+++…+=-;解决问题:+++…+=1-,+++…+=-;故答案为:+++…+=1-,-;拓广应用:+++...+=1-+1-+1-+ (1)=n-(+++…+)=n-(-)=n-+.24.(12分)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB 方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF 停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.解析:(1))由四边形ABCD是菱形,OA=AC,OB=BD.在Rt△AOB中,运用勾股定理求出AB=10.再由△DFQ∽△DCO.得出=.求出DF.由AP=DF.求出t.(2)过点C作CG⊥AB于点G,由S菱形ABCD=AB·CG=AC·BD,求出CG.据S梯形APFD=(AP+DF)·CG.S△EFD=EF·QD.得出y与t之间的函数关系式.(3)过点C作CG⊥AB于点G,由S菱形ABCD=AB·CG,求出CG,由S四边形APFE:S菱形ABCD=17:40,求出t,再由△PBN∽△ABO,求得PN,BN,据线段关系求出EM,PM再由勾股定理求出PE.答案:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC=AC=6,OB=OD=BD=8.在Rt△AOB中,AB==10.∵EF⊥BD,∴∠FQD=∠COD=90°.又∵∠FDQ=∠CDO,∴△DFQ∽△DCO.∴=.即=,∴DF=t.∵四边形APFD是平行四边形,∴AP=DF.即10-t=t,解这个方程,得t=.∴当t=s时,四边形APFD是平行四边形.(2)如图,过点C作CG⊥AB于点G,∵S菱形ABCD=AB·CG=AC·BD,即10·CG=×12×16,∴CG=.∴S梯形APFD=(AP+DF)·CG=(10-t+t)·=t+48.∵△DFQ∽△DCO,∴=.即=,∴QF=t.同理,EQ=t.∴EF=QF+EQ=t.∴S△EFD=EF·QD=×t×t=t2.∴y=(t+48)-t2=-t2+t+48.(3)如图,过点P作PM⊥EF于点M,PN⊥BD于点N,若S四边形APFE:S菱形ABCD=17:40,则-t2+t+48=×96,即5t2-8t-48=0,解这个方程,得t1=4,t2=-(舍去),过点P作PM⊥EF于点M,PN⊥BD于点N,当t=4时,∵△PBN∽△ABO,∴==,即==.∴PN=,BN=.∴EM=EQ-MQ==.PM=BD-BN-DQ==.在Rt△PME中,PE===(cm).。
2014青岛一模数学理

青岛市高三统一质量检测数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合2{|02},{|1}A x x B x x =≤≤=>,则A B = A .{|01}x x ≤≤ B .{|0x x >或1}x <- C .{|12}x x <≤D .{|02}x x <≤2. 已知向量(1,2)a =- ,(3,)b m = ,R m ∈,则“6m =-”是“//()a a b +”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3. 右图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为A .11B .11.5C .12D .12.54. 双曲线22145x y -=的渐近线方程为 A.y x = B.y x = C.y x = D.y x =5. 执行右图所示的程序框图,则输出的结果是 A .5B .7C .9D .116. 函数22cos ()2y x π=+图象的一条对称轴方程可以为A .4x π=B .3x π=C .34x π=D .x π= 7.过点P 作圆221O x y :+=的两条切线, 切点分别为A 和B ,则弦长||AB =AB .2 CD .48. 已知实数y x ,满足约束条件04340x x y y >⎧⎪+≤⎨⎪≥⎩,则1y w x +=的最小值是A .2-B .2C .1-D .1 9. 由曲线1xy =,直线,3y x x ==所围成封闭的平面图形的面积为A .329B .4ln3-C .4ln 3+D .2ln3- 10. 在实数集R 中定义一种运算“*”,对任意,R a b ∈,a b *为唯一确定的实数,且具有性质: (1)对任意R a ∈,0a a *=;(2)对任意,R a b ∈,(0)(0)a b ab a b *=+*+*.关于函数1()()xx f x e e=*的性质,有如下说法:①函数)(x f 的最小值为3;②函数)(x f 为偶函数;③函数)(x f 的单调递增区间为(,0]-∞.其中所有正确说法的个数为 A .0 B .1C .2D .3第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11. 已知2a ib i i+=+(R a b ∈,),其中i 为虚数单位,则a b += ; 12. 已知随机变量ξ服从正态分布(0,1)N ,若(1)P a ξ>=,a 为常数,则(10)P ξ-≤≤= ;13. 二项式621()x x -展开式中的常数项为 ; 14. 如图所示是一个四棱锥的三视图, 则该几何体的体积为 ;15. 已知函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩ ,()|||1|g x x k x =-+-,若对任意的12,R x x ∈,都有12()()f x g x ≤成立,则实数k 的取值范围为 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)在ABC ∆中, c b a ,,分别是角C B A ,,的对边,且2cos cos (tan tan 1)1A C A C -=. (Ⅰ)求B 的大小;(Ⅱ)若2a c +=,b =求ABC ∆的面积.17.(本小题满分12分) 2013年6月“神舟 ”发射成功.这次发射过程共有四个值得关注的环节,即发射、实验、授课、返回.据统计,由于时间关系,某班每位同学收看这四个环节的直播的概率分别为34、13、12、23,并且各个环节的直播收看互不影响. (Ⅰ)现有该班甲、乙、丙三名同学,求这3名同学至少有2名同学收看发射直播的概率; (Ⅱ)若用X 表示该班某一位同学收看的环节数,求X 的分布列与期望.18.(本小题满分12分)如图几何体中,四边形ABCD 为矩形,24AB BC ==,DE AE CF BF ===,2EF =,//EF AB ,CF AF ⊥.(Ⅰ)若G 为FC 的中点,证明://AF 面BDG ; (Ⅱ)求二面角A BF C --的余弦值.19.(本小题满分12分)CABDE FG已知{}n a 是等差数列,首项31=a ,前n 项和为n S .令(1)(N )n n n c S n *=-∈,{}n c 的前20项和20330T =.数列}{n b 是公比为q 的等比数列,前n 项和为n W ,且12b =,39q a =. (Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)证明:1(31)(N )n n n W nW n *++≥∈.20.(本小题满分13分)已知椭圆1C 的中心为原点O ,离心率e =2,其一个焦点在抛物线2:C 22y px =的准线上,若抛物线2C 与直线: 0l x y -+=相切. (Ⅰ)求该椭圆的标准方程;(Ⅱ)当点(,)Q u v 在椭圆1C 上运动时,设动点(,)P v u u v 2-+的运动轨迹为3C .若点T 满足:OT MN OM ON =+2+uu u r uuu r uuu r uuu r ,其中,M N 是3C 上的点,直线OM 与ON 的斜率之积为1-2,试说明:是否存在两个定点,F F 12,使得TF TF 12+为定值?若存在,求,F F 12的坐标;若不存在,说明理由.21.(本小题满分14分)已知函数()ln f x ax x =+,函数()g x 的导函数()xg x e '=,且(0)(1)g g e '=,其中e 为自然对数的底数. (Ⅰ)求()f x 的极值;(Ⅱ)若(0,)x ∃∈+∞,使得不等式()g x<成立,试求实数m 的取值范围; (Ⅲ) 当0a =时,对于(0,)x ∀∈+∞,求证:()()2f x g x <-.青岛市高三统一质量检测数学(理科)参考答案及评分标准一、选择题:本大题共10小题.每小题5分,共50分. C A C B C D A D B C二、填空题:本大题共5小题,每小题5分,共25分. 11.1 12.12a - 13.15 14.4 15.34k ≤或54k ≥三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)解:(Ⅰ)由2cos cos (tan tan 1)1A C A C -=得:sin sin 2cos cos (1)1cos cos A CA C A C-= ………………………………………………………2分∴2(sin sin cos cos )1A C A C -=∴1cos()2A C +=-,………………………………………………………………………4分∴1cos 2B =,又0B π<<3B π∴= ……………………………………………………………………………………6分(Ⅱ)由余弦定理得:2221cos 22a cb B ac +-== 22()2122a c acb ac +--∴=, ………………………………………………………………8分又a c +=b =27234ac ac ∴--=,54ac = ……………………………10分115sin 224ABC S ac B ∆∴==⨯=………………………………………………12分 17.(本小题满分12分)解: (Ⅰ)设“这3名同学至少有2名同学收看发射直播”为事件A ,则22333333327()()(1)()44432P A C C =⨯-+=. …………………………………………………4分(Ⅱ)由条件可知X 可能取值为0,1,2,3,4.31121(0)(1)(1)(1)(1);432336P X ==-⨯-⨯-⨯-=31123112(1)(1)(1)(1)(1)(1)(1)432343233112311213(1)(1)(1)(1)(1)(1);4323432372P X ==⨯-⨯-⨯-+-⨯⨯-⨯-+-⨯-⨯⨯-+-⨯-⨯-⨯= 311231123112(2)(1)(1)(1)(1)(1)(1)4323432343233112311231127(1)(1)(1)(1)(1)(1);43234323432318P X ==⨯⨯-⨯-+⨯-⨯⨯-+⨯-⨯-⨯+-⨯⨯⨯-+-⨯⨯-⨯+-⨯-⨯⨯= 31123112(3)(1)(1)432343233112311223 (1)(1);4323432372P X ==-⨯⨯⨯+⨯-⨯⨯+⨯⨯-⨯+⨯⨯⨯-=31121(4);432312P X ==⨯⨯⨯=即分X 的期望11372319()0123436721872124E X =⨯+⨯+⨯+⨯+⨯=.………………………12分18.(本小题满分12分)解:(Ⅰ)连接AC 交BD 于O 点,则O 为AC 的中点,连接OG 因为点G 为FC 中点,所以OG 为AFC ∆的中位线,所以//OG AF ………………………………………………………………………2分AF ⊄面BDG ,OG ⊂面BDG ,所以//AF 面BDG ………………4分(Ⅱ)取AD 中点M ,BC 的中点Q ,连接MQ ,则////MQ AB EF , 所以MQFE 共面作FP MQ ⊥于P ,EN MQ ⊥于N ,则//EN FP 且EN FP =AE DE == BF CF =,AD BC = ADE ∴∆和BCF ∆全等,EM FQ ∴=ENM ∴∆和FPQ ∆全等,1MN PQ ∴==BF CF =,Q 为BC 中点,BC FQ ∴⊥又BC MQ ⊥,FQ MQ Q = ,BC ∴⊥面MQFEPF BC ∴⊥,PF ∴⊥面ABCD …………………………………………………………6分以P 为原点,PF 为z 轴建立空间直角坐标系如图所示,则(3,1,0)A ,(1,1,0)B -,(1,1,0)C --,设(0,0,)F h ,则(3,1,)AF h =-- ,(1,1,)CF h =AF CF ⊥ ,203102AF CF h h ∴⋅=⇒--+=⇒=设面ABF 的法向量1111(,,)n x y z =(3,1,2)AF =-- ,(1,1,2)BF =-由111111110320200n AF x y z x y z n BF ⎧⋅=--+=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩,令11110,2z x y =⇒== 1(0,2,1)n ∴=………………………………………………………………………………8分设面CBF 的法向量2222(,,)n x y z =(1,1,2)BF =- ,(0,2,0)BC =-由222222020200n BF x y z y n BC ⎧⋅=-+=⎧⎪⇒⎨⎨-=⋅=⎩⎪⎩ ,令22210,2z y x =⇒==- 2(2,0,1)n ∴=-……………………………………………………………………………10分1212121cos ,5||||n n n n n n ⋅∴<>===⋅设二面角A BF C --的平面角为θ,则12121cos cos(,)cos ,5n n n n θπ=-<>=-<>=- …………………………………12分19.(本小题满分12分)解:(Ⅰ)设等差数列的公差为d ,因为(1)n n n c S =- 所以20123420330T S S S S S =-+-+++= 则24620330a a a a ++++= 则10910(3)23302d d ⨯++⨯= 解得3d =,所以33(1)3n a n n =+-=……………………………………………………4分 所以3927q a ==,3q =所以123n n b -=⋅………………………………………………………………………………6分(Ⅱ)由(Ⅰ)知,2(13)3113n n n W -==--要证1(31)n n n W nW ++≥, 只需证1(31)(31)(31)nn n n ++-≥-即证:321n n ≥+……………………………………………………………………………8分 当1n =时,321n n =+下面用数学归纳法证明:当2n ≥时,321n n >+(1)当2n =时,左边9=,右边5=,左>右,不等式成立 (2)假设(2)n k k =≥,321kk >+则1n k =+时,13333(21)632(k+1)+1k k k k +=⨯>+=+>1n k ∴=+时不等式成立根据(1)(2)可知:当2n ≥时,321nn >+综上可知:321nn ≥+对于N n *∈成立所以1(31)(N )n n n W nW n *++≥∈ ………………………………………………………12分 20.(本小题满分13分)解:(I)由22220-0y pxy py x y ⎧=⎪⇒-+=⎨+=⎪⎩, 抛物线2:C 22y px =与直线: -0l x y =相切,240p p ∴∆=-=⇒= ……………………………………………………2分∴抛物线2C的方程为:2y =,其准线方程为:x =c ∴=离心率e =2,∴,2c e a ==∴2222, 2a b a c ==-=, 故椭圆的标准方程为22 1.42x y +=…………………………………………………………5分 (II )设1122(,),(,)M x y N x y ,(,)P x y '',(,)T x y则2x v u y u v '=-⎧⎨'=+⎩1(2)31()3u y x v x y ⎧''=-⎪⎪⇒⎨⎪''=+⎪⎩当点(,)Q u v 在椭圆1C 上运动时,动点(,)P v u u v 2-+的运动轨迹3C2222111[(2)]2[()]44233u v y x x y ''''∴+=⇒-++= 2 2212x y ''⇒+= 3C ∴的轨迹方程为:22212x y += ………………………………………………………7分 由OT MN OM ON =+2+uu u r uuu r uuu r uuu r 得212111221212(,)(,)2(,)(,)(2,2),x y x x y y x y x y x x y y =--++=++ 12122,2.x x x y y y =+=+设,OM ON k k 分别为直线OM ,ON 的斜率,由题设条件知12121,2OM ON y y k k x x ⋅==-因此121220,x x y y +=…………………………………………9分 因为点,M N 在椭圆22212x y +=上, 所以22221122212,212x y x y +=+=,故222222121212122(44)2(44)x y x x x x y y y y +=+++++2222112212121212(2)4(2)4(2)604(2).x y x y x x y y x x y y =+++++=++所以22260x y +=,从而可知:T 点是椭圆2216030x y +=上的点, ∴存在两个定点,F F 12,且为椭圆2216030x y +=的两个焦点,使得TF TF 12+为定值,其坐标为12(F F . …………………………………………………13分21.(本小题满分14分)解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,1()f x a x'=+(0)x >. 当0a ≥时,()0f x '>,()f x ∴在(0,)+∞上为增函数,()f x 没有极值;……………1分当0a <时,1()()a x a f x x+'=,若1(0,)x a∈-时,()0f x '>;若1(,)x a∈-+∞时,()0f x '< ()f x ∴存在极大值,且当1x a =-时,11()()ln()1f x f a a=-=--极大综上可知:当0a ≥时,()f x 没有极值;当0a <时,()f x 存在极大值,且当1x a=-时,11()()ln()1f x f a a=-=--极大 …………………………………………………………4分(Ⅱ) 函数()g x 的导函数()xg x e '=,()xg x e c ∴=+(0)(1)g g e '=,(1)c e e ∴+=0c ⇒=,()x g x e =……………………………………5分 (0,)x ∃∈+∞,使得不等式()g x<成立,∴(0,)x ∃∈+∞,使得3m x e <-成立,令()3h x x e=-,则问题可转化为:max ()m h x <对于()3h x x e =-,(0,)x ∈+∞,由于()1x h x e '=-,当(0,)x ∈+∞时, 1xe >≥=1x e ∴>,()0h x '∴<,从而()h x 在(0,)+∞上为减函数,()(0)3h x h ∴<=3m ∴<………………………………………………………………………………………9分(Ⅲ)当0a =时,()ln f x x =,令()()()2x g x f x ϕ=--,则()ln 2xx e x ϕ=--,∴1()xx e xϕ'=-,且()x ϕ'在(0,)+∞上为增函数 设()0x ϕ'=的根为x t =,则1te t=,即t t e -=当(0,)x t ∈时,()0x ϕ'<,()x ϕ在(0,)t 上为减函数;当(,)x t ∈+∞时,()0x ϕ'>,()x ϕ在(,)t +∞上为增函数,min ()()ln 2ln 22t t t t x t e t e e e t ϕϕ-∴==--=--=+-(1)10e ϕ'=->,1()202ϕ'=<,1(,1)2t ∴∈由于()2tt e t ϕ=+-在1(,1)2t ∈上为增函数,12min 11()()222022tx t e t e ϕϕ∴==+->+->-=()()2f x g x ∴<- …………………………………………………………………………14分。
山东省青岛市2014年中考数学真题试题(解析版)

山东省青岛市2014年中考数学真题试题一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(2014•青岛)﹣7的绝对值是()2.(3分)(2014•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是().C3.(3分)(2014•青岛)据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()4.(3分)(2014•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()15×=1.55.(3分)(2014•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()6.(3分)(2014•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为().﹣=2 B﹣=2.﹣=2 D﹣=2 由题意得,﹣7.(3分)(2014•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()8.(3分)(2014•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是().C二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(2014•青岛)计算:= 2+1 .+=2210.(3分)(2014•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).解:∵=16.23=5.84∴>,11.(3分)(2014•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是(1,0).12.(3分)(2014•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35 °.∴∠A=∠BOC=35°.13.(3分)(2014•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.的最小值=AB•tan60°=14.(3分)(2014•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54 个小立方块.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(2014•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.四、解答题(本题满分74分,共有9道小题)16.(8分)(2014•青岛)(1)计算:÷;(2)解不等式组:.;.所以原不等式组的解集是<17.(6分)(2014•青岛)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是14 天,众数是13 天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).=60°.18.(6分)(2014•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?=.,===∴19.(6分)(2014•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?20.(8分)(2014•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈),代入数值求出∵∠ADB=90°,tan31°=,∴BD=≈=∵∠ADC=90°,tan39°=,≈=∴﹣sin39°=,∴AC==21.(8分)(2014•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△E OC;(2)连接AC,DE,当∠B=∠AEB=45 °时,四边形ACED是正方形?请说明理由.,22.(10分)(2014•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.(10分)(2014•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:+++…+=1﹣,所以,+++…+= ﹣.拓广应用:计算+++…+.其中阴影部分的面积为阴影部分的面积之和为所有阴影部分的面积之和为:++…+,最后的空白部分的面积是,次分割图可得等式:++…+=1,+++…+=﹣解决问题:++…+=1﹣+++…+=﹣故答案为:++…+=1,﹣拓广应用:++…++1+1+ (1)+++…+﹣+24.(12分)(2014•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E 两点间的距离;若不存在,请说明理由.AC OB=△DFQ∽△DCO.得出.求出=AB•CG=AC•BD,求出(=OA=OC=AC=6OB=OD==10∴.即,∴DF=tt.s=AB•CG=×12×16,∴CG=.(t=t+48∴.即,∴QF=tt∴EF=QF+EQ=EF•QD=×t×t=t ∴y=(t+48)﹣t+则﹣t+t+48=×96,∴=,即==∴PN=,.MQ=..PE==(。
【2014青岛市一模】山东省青岛市2014届高三3月统一质量.

青岛市高三统一质量检测理科综合物理本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 15页。
满分 300分。
考试时间 150分钟。
答题前考生务必用 0.5毫米黑色签字将自己的姓名、座号、考生号、县区和科类填写在试卷和答题卡规定的位置。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 (必做,共 107分注意事项:1.第Ⅰ卷共 20小题,共 107分。
2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不涂在答题卡上,只答在试卷上无效。
二、选择题(共 7小题,在每小题所给出的四个选项中,有的只有一项选项正确,有的有多0分。
14C .着陆器着陆时的速度大约是 3.6m/sD .着陆器着陆后,对月面的压力是 2×104 N15.如图所示,截面为三角形的钢坯 A 、 B 叠放在汽车的水平底板上, 汽车底板和钢坯表面均粗糙, 以下说法正确的是A .汽车、钢坯都静止时,汽车底板对钢坯 A 有向左的静摩擦力B .汽车、钢坯都静止时,钢坯 A 对 B 无摩擦力作用C .汽车向左加速时,汽车与钢坯相对静止,钢坯 A 受到汽车底板对它的静摩擦力D .汽车向左启动前后,汽车与钢坯相对静止,钢坯 A 对 B 的弹力不变16.两个固定的等量异种点电荷所形成电场的等势面如图中虚线所示,一带电粒子以某一速度从图中 a 点进入电场,其运动轨迹为图中实线所示,若粒子只受静电力作用,则下列关于带电粒子的判断正确的是A .带正电B .速度先变大后变小C .电势能先变大后变小D .经过 b 点和 d 点时的速度大小相同17.如图所示为某住宅区的应急供电系统,由交流发电机和副线圈匝数可调的理想降压变压器组成.发电机中矩形线圈所围的面积为 S ,匝数为 N ,电阻不计,它可绕水平轴OO ′ 在磁感应强度为 B 的水平匀强磁场中以角速度ω匀速转动.矩形线圈通过滑环连接降压变压器,滑动触头 P 上下移动时可改变输出电压, R 0表示输电线的电阻.以线圈平面与磁场平行时为计时起点,下列判断正确的是A .若发电机线圈某时刻处于图示位置,变压器原线圈的电流瞬时值为零B .发电机线圈感应电动势的瞬时值表达式为e = NBSω sin ωtC .当用电量增加时,为使用户电压保持不变,滑动触头 P 应向上滑动D .当滑动触头 P 向下移动时,变压器原线圈两端的电压将升高18. 2013年 6月 13日 13时 18分, “神舟 10号”载人飞船成功与“天宫一号”目标飞行器交会对接. 如图所示, “天宫一号” 对接前从圆轨道Ⅰ变至圆轨道Ⅱ, 已知地球半径为 R , 轨道Ⅰ距地面高度 h 1,轨道Ⅱ距地面高度 h 2,则关于“天宫一号”的判断正确的是 A .调整前后线速度大小的比值为 21h R h R ++ B .调整前后周期的比值为 3231 ( (h R h R ++ C .调整前后向心加速度大小的比值为 (2221h R h R ++ D .需加速才能从轨道Ⅰ变至轨道Ⅱ 19.物体静止在水平地面上,在竖直向上的拉力 F 作用下向上运动.不计空气阻力,物体的机械能 E 与上升高度 h 的大小关系如图所示, 其中曲线上点 A 处的切线斜率最大, h 2 ~ h 3的图线为平行于横轴的直线.则下列判断正确的是123A .在 h 1 处物体所受的拉力最大B .在 h 2 处物体的速度最大C . h 2 ~ h 3过程中拉力的功率为零D . 0~ h2过程中物体的加速度先增大后减小20.如图,光滑斜面 PMNQ 的倾角为θ,斜面上放置一矩形导体线框 abcd ,其中 ab 边长为l 1, bc 边长为 l 2,线框质量为 m 、电阻为 R ,有界匀强磁场的磁感应强度为 B ,方向垂直于斜面向上, e f为磁场的边界,且 e f∥ MN .线框在恒力 F 作用下从静止开始运动,其 ab 边始终保持与底边 MN 平行, F 沿斜面向上且与斜面平行. 已知线框刚进入磁场时做匀速运动,则下列判断正确的是A .线框进入磁场前的加速度为 mm g F θsin - B .线框进入磁场时的速度为 212 sin (l B Rmg F θ-C .线框进入磁场时有a → b → c → d 方向的感应电流D .线框进入磁场的过程中产生的热量为(F − mg sin θ l 1第Ⅱ卷 (必做 157 分+选做 36分,共 193分注意事项:1.第Ⅱ卷共 18大题。
2014市中一模数学试题

数学试题2014、4
本试题分第1卷(选择题)和第Ⅱ卷(非选择题)两部分,第1卷共2页,满分为45分;第1I卷共6页,满分为75分.本试题共8页,满分为120分.考试时间为120分钟,答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器,
16.3a(x+y)(x-y)17. 1518.OD=OB(或∠A=∠C或∠D=∠B)
19.atan40°20. 9 21.
22.(1) (2)
23.(1)证明:∵ED⊥AB
∴∠EDB=900...............1分
在Rt△ECB和Rt△EDB中
∴Rt△ECB≌Rt△EDB(HL)……2分
∵S△EOM ,S△AON ……………8分
∴S△EOM=S△AON,
∵AN和ME边上的高相等,
∴AN=ME……………………………………………9分
27.解:(1)PN= PM
证明:略…………………………3分
(2)解:①如图2,PN=PM…………4分
如图2:在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F
质地完全相同且充分洗匀),那么员工小胡抽到去以地的概率是多少?
(3)若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有1,2,3,4的正四面体骰子的方法来确定,具体规则是;“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”,试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?
其中正确的是( )
A.①②B.①②④C.③④D.①②③④
山东省青岛市中考数学试卷含答案解析

2014年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(2014?青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.2.(3分)(2014?青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(2014?青岛)据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.×106 B.×104C.609×104 D.×1054.(3分)(2014?青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()A.万人B.2万人C.万人D.1万人5.(3分)(2014?青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切6.(3分)(2014?青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=27.(3分)(2014?青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.D.58.(3分)(2014?青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(2014?青岛)计算:=__________.10.(3分)(2014?青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200乙分装机200则这两台分装机中,分装的茶叶质量更稳定的是(填“甲”或“乙”).11.(3分)(2014?青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/坐标是.12.(3分)(2014?青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.13.(3分)(2014?青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为.14.(3分)(2014?青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(2014?青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.四、解答题(本题满分74分,共有9道小题)16.(8分)(2014?青岛)(1)计算:÷;(2)解不等式组:.17.(6分)(2014?青岛)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是_________天,众数是_________天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).18.(6分)(2014?青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19.(6分)(2014?青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?20.(8分)(2014?青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)21.(8分)(2014?青岛)已知:如图,?ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________°时,四边形ACED是正方形?请说明理由.22.(10分)(2014?青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23.(10分)(2014?青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:_________,所以,+++…+=_________.拓广应用:计算+++…+.24.(12分)(2014?青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t (s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.2014年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(2014?青岛)﹣7的绝对值是()A.﹣7 B.7 C.﹣D.考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(2014?青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(2014?青岛)据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.×106 B.×104 C.609×104 D.×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014?青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()A.万人B.2万人C.万人D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看中央电视台早间新闻的约有15×=万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(2014?青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(2014?青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(2014?青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4 B.3C.D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF 中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(2014?青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(2014?青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(2014?青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200乙分装机200则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=,=,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(2014?青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC 绕C点按逆时针方向旋转90°,那么点B的对应点B/的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(2014?青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(2014?青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB?tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(2014?青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(2014?青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(2014?青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(2014?青岛)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(2014?青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(2014?青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(2014?青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈(m).答:索道AC长约为米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(2014?青岛)已知:如图,?ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴?ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(2014?青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.。
2014年山东省青岛市中考数学试卷含答案解析

8.( 3分)(2014?青岛)函数y 与y= - kx +k ( k 工0在同一直角坐标系中的图象可能是 ()2014年山东省青岛市中考数学试卷、选择题(本题满分 24分,共有8道小题,每小题 3分)下列每小题都给出标号为 A 、 B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标 号超过一个的不得分. 1. ( 3分)(2014?青岛)-7的绝对值是( A . - 7 B . 7 C .- _ 7 2. A .D . (3 分)(2014?青 岛)3. ( 3分)(2014?青岛)据统计,我国 2013年全年完成造林面积约 用科学记数法可表示为( ) 6 4 4 5A . 6.09 >10B . 6.09 10C . 609 XI0D . 60.9 K 0 6090000 公顷.6090000 4. ( 3分)(2014?青岛)在一个有15万人的小镇,随机调查了 3000人,其中有300人看中 央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有( ) A . 2.5万人 B . 2万人 C . 1.5万人 D . 1万人 位置关系是( A .内含) B .内切 C .相交 D .外切 5. (3分)(2014?青岛)已知O 01与。
2的半径分别是2和4,。
1。
2=5,则O 01与。
2的 6. ( 3分)(2014?青岛)某工程队准备修建一条长 实际每天修建道路的速度比原计划快 : 道路xm ,则根据题意可列方程为( A 1200 0 =2 .'1 -'/ :. C 1200 ^00=2 .:. '1 - '-= 7. ( 3分)(2014?青岛)如图,将矩形 C'上.若 AB=6 , BC=9,贝U BF 的长为 1200m 的道路,由于采用新的施工方式, 20%,结果提前2天完成任务.若设原计划每天修建 ) B 1200 ^0 0 =2 D 1200 1200 =2 ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点( ) C . 4.518分,共有6道小题,每小题3 分)9. (3分)(2014?青岛)计算:匹逅= .V510. (3分)(2014?青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机20016.23乙分装机200 5.84(填甲”或乙”.11. (3分)(2014?青岛)如图,△ ABC的顶点都在方格线的交点(格点)上,如果将△ ABC/绕C点按逆时针方向旋转90°那么点B的对应点B坐标是________________12. (3分)(2014?青岛)如图,AB是O O的直径,BD , CD分别是过O O上点B , C的切线,且/ BDC=110 .连接AC,则/ A的度数是13. (3分)(2014?青岛)如图,在等腰梯形ABCD中,AD=2,/ BCD=60°,对角线AC平分/ BCD , E, F分别是底边AD , BC的中点,连接EF.点P是EF上的任意一点,连接B.14. (3分)(2014?青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何 体的基础上(不改变原几何体中小立方块的位置) ,继续添加相同的小立方块,以搭成一个4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15. (4 分)(2014?青岛)已知:线段 a , / a 求作:△ ABC ,使 AB=AC=a , / B= / a16. ( 8 分)(2014?青岛)(1)计算:(2)解不等式组:17. (6分)(2014?青岛)空气质量状况已引起全社会的广泛关注,某市统计了 2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2叽3年毎月空气麽更良妤以上天鼓统计图 某市2013^每月空气履愛良好以上天敢分布统计图根据以上信息解答下列问题:(1) 该市2013年每月空气质量达到良好以上天数的中位数是 ________________ 天,众数是— _________ 天;(2) 求扇形统计图中扇形 A 的圆心角的度数;(3 )根据以上统计图提供的信息, 请你简要分析该市的空气质量状况(字数不超过30字).18. (6分)(2014?青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘 被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会•如 果转盘停止后,指针正好对准红色、 黄色、绿色区域,那么顾客就可以分别获得 200元、100 元、50元的购物券,凭购物券可以在该商场继续购物•如果顾客不愿意转转盘,那么可以 直接获得购物券30元.三、作图题(本题满分 大正方体,至少还需要a74分,共有9道小题)a —I —I —I —I —I —L _J —I —J —1 -------------- 1—I ----- u 1 2 3 4 5 6 7 S 5 10份(1 )求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?19. (6分)(2014?青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑•图中丨1和12分别表示甲、乙两人跑步的路程y (m)与甲跑步的时间x (s)之间的函数关系,其中11的关系式为y仁8x,问甲追上乙用了多长时间?20. (8分)(2014?青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角/ B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角/ ACE=39 .(1 )求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31 °A sin31 ° 丄,tan39。
2014山东青岛市中考数学试题

青岛市二○一四年初中学生学业考试数 学 试 题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第Ⅰ卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.(2014山东省青岛市,1,3分)7-的绝对值是( ).A .7-B .7C .17-D .17【答案】B 2.(2014山东省青岛市,2,3分)下列四个图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .【答案】D3.(2014山东省青岛市,3,3分)据统计,我国2013年全年完成造林面积约6090000公顷.6090000用科学记数法可表示为( ).A .66.0910⨯B .46.0910⨯C .460910⨯D .560.910⨯【答案】A4.(2014山东省青岛市,4,3分)在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有( ).A .2.5万人B .2万人C .1.5万人D .1万人【答案】C5.(2014山东省青岛市,5,3分)已知⊙O 1与⊙O 2的半径分别是2和4,O 1O 2=5,则⊙O 1与⊙O 2的位置关系是( ). A .内含 B .内切 C .相交 D .外切【答案】C6.(2014山东省青岛市,6,3分)某工程队准备修建一条长1200m 的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路x m ,则根据题意可列方程为( ).A .120012002(120%)x x -=-B .120012002(120%)x x -=+C .120012002(120%)x x-=- D .120012002(120%)x x-=+ 【答案】D7.(2014山东省青岛市,7,3分)如图,将矩形ABCD 沿EF折叠,使顶点C 恰好落在AB边的 中点C ′上,若AB =6,BC =9,则BF 的长为( ).A .4B .C .4.5D .5【答案】A8.(2014山东省青岛市,8,3分)函数ky x=与2=-+y kx k (0k ≠)在同一直角坐标系中 ).A .B .C .D .【答案】BA BFE CD D ′ (第7题)C ′第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分) 9.(2014山东省青岛市,9,3分)= .【答案】10.(2014山东省青岛市,10,3分)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g ).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,则这两台分装机中,分装的茶叶质量更稳定的是 (填“甲”或“乙”). 【答案】乙11.(2014山东省青岛市,11,3分)如图,△ABC 的顶点都在方格线的交点(格点)上,如果将△ABC 绕C 点按逆时针方向旋转90°,那么点B 的对应点B ′的坐标是 . 【答案】(1,0)12.(2014山东省青岛市,12,3分)如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是 °. 【答案】3513.(2014山东省青岛市,13,3分)如图,在等腰梯形ABCD 中,AD =2,∠BCD =60°,对角线AC 平分∠BCD , E ,F 分别是底边AD ,BC 的中点,连接EF .点P 是EF 上的任意一点,连接PA ,PB ,则PA +PB 的最小值为 .(第13题)(第12题)(第11题)【答案】14.(2014山东省青岛市,14,3分)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要 个小立方块.主视图 左视图 俯视图【答案】54三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.(2014山东省青岛市,15,4分)已知:线段a ,∠α.求作:△ABC ,使AB =AC =a ,∠B =∠α.【答案】解:正确作图;······························ 3分正确写出结论.······························ 4分四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(2014山东省青岛市,16,4分)(1)计算:2211x x y y-+÷; 【答案】(1)解:原式=2211x yy x -⋅+=2(1)(1)1x x y y x +-⋅+=1x y- .(2014山东省青岛市,16,4分)(2)解不等式组:35021x x ->⎧⎨->-⎩a α, ①. ②【答案】解:解不等式①,得x >53.解不等式②,得x <3. 所以,原不等式组的解集是53<x <3. ······························· 4分17.(本小题满分6分)(2014山东省青岛市,17,6分)空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2013年每月空气质量良好以上天数统计图 某市2013年每月空气质量良好以上天数分布统计图根据以上信息解答下列问题: (1)该市2013年每月空气质量达到良好以上天数的中位数是_____天,众数是_____天;(2)求扇形统计图中扇形A 的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).【答案】解:(1)14,13.·····································(2)360°×212=60°, 答:扇形A 的圆心角的度数是60°. ······························· 4分 (3)合理即可.······························· 6分18.(本小题满分6分)(2014山东省青岛市,18,6分)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客 更合算?【答案】解:(1)P (转动一次转盘获得购物券)=1020=12. ····································· 2分(2)1362001005040202020⨯+⨯+⨯=(元) ∵40元>30元,∴选择转转盘对顾客更合算.······························· 6分19.(本小题满分6分)(2014山东省青岛市,19,6分)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l 1和l 2分别表示甲、乙两人跑步的路程y (m)与甲跑步的时间x (s)之间的函数关系,其中l 1的关系式为y 1=8x ,问甲追上乙用了多长时间?【答案】解:设y 2=kx +b (k ≠0),根据题意,可得方程组解这个方程组,得 所以y 2=6x +10. 当y 1=y 2时,8x =6x +10, 解这个方程,得x =5.(第18题) y (第19题)10=22=2+bk b ⎧⎨⎩610k b =⎧⎨=⎩答:甲追上乙用了5s . ······························· 6分20.(本小题满分8分)(2014山东省青岛市,20,8分)如图,小明想测山高和索道的长度.他在B 处仰望山顶A ,测得仰角∠B =31°,再往山的方向(水平方向)前进80m 至索道口C 处,沿索道方向仰望山顶,测得仰角∠ACE =39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC 的长(结果精确到0.1m ).(参考数据:tan31° ≈35,sin31° ≈12,tan39° ≈911,sin39° ≈711)【答案】解:(1)过点A 作A D ⊥BE 于D , 设山AD 的高度为x m ,在Rt △ABD 中,∠ADB =90°, tan31°=ADBD, ∴5=3tan3135AD x BD x =≈º.在Rt △ACD 中,∠ADC =90°, tan39°=ADCD, ∴11=9tan39911AD x CD x =≈º.∵BC BD CD =- ∴ 5118039x x -=,A(第20题)解这个方程,得180x =.即山的高度为180米. ······························ 6分(2)在Rt △ACD 中,∠ADC =90°,sin39°=ADAC, ∴180282.97sin3911AD AC =≈≈º(米). 答:索道AC 长约为282.9米. .······························ 8分21.(本小题满分8分)(2014山东省青岛市,21,8分)已知:如图,□ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E .(1)求证:△AOD ≌△EOC ;(2)连接AC ,DE ,当∠B =∠AEB = °时,四边形ACED 是正方形?请说明理由.【答案】证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠D =∠OCE ,∠DAO =∠E . 又∵OC =OD , ∴△AOD ≌△EOC .······························ 4分(2)当∠B =∠AEB =45°时,四边形ACED 是正方形.∵△AOD ≌△EOC , ∴OA =OE . 又∵OC =OD ,∴四边形ACED 是平行四边形. ∵∠B =∠AEB =45°, ∴AB =AE ,∠BAE =90°. ∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD . ∴∠COE =∠BAE =90°. ∴□ACED 是菱形.(第21题)(第21题)∵AB =AE ,AB =CD , ∴AE =CD .∴菱形ACED 是正方形.······························ 8分22.(本小题满分10分)(2014山东省青岛市,22,10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)【答案】解:(1)y =(x -50)[50+5(100-x )]=(x -50)(-5x +550)=-5x 2+800x -27500 ∴y =-5x 2+800x -27500.······························ 4分(2)y =-5x 2+800x -27500=-5(x -80)2+4500 ∵a =-5<0, ∴抛物线开口向下.∵50≤x ≤100,对称轴是直线x =80, ∴当x =80时,y 最大值=4500.······························· 6分(3)当y =4000时,-5(x -80)2+4500=4000,解这个方程,得x 1=70,x 2=90.∴当70≤x ≤90时,每天的销售利润不低于4000元. 由每天的总成本不超过7000元,得50(-5x +550)≤7000, 解这个不等式,得x ≥82.∴82≤x ≤90,∵50≤x ≤100,∴销售单价应该控制在82元至90元之间. ··························· 10分 23.(本小题满分10分)(2014山东省青岛市,23,10分) 数学问题:计算231111n m m m m++++ (其中m ,n 都是正整数,且m ≥2,n ≥1). 探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算2311112222n ++++ . 第1次分割,把正方形的面积二等分,其中阴影部分的面积为12; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为21122+;第3次分割,把上次分割图中空白部分的面积继续二等分,……;……第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为2311112222n ++++ ,最后空白部分的面积是12n .根据第n 次分割图可得等式:2311112222n ++++ =112n -.探究二:计算2311113333n++++ . 第1次分割,把正方形的面积三等分,其中阴影部分的面积为23; 第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为22233+;第3次分割,把上次分割图中空白部分的面积继续三等分,……; ……第n 次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为2322223333n ++++,最后空白部分的面积是13n.2n2n…第1次分割第2次分割第3次分割第n 次分割…第1次分割第2次分割第3次分割第n 次分割根据第n 次分割图可得等式:2322223333n ++++ =113n -, 两边同除以2, 得2311113333n ++++ =11223n-⨯.探究三:计算2311114444n ++++ . (仿照上述方法,只画出第n 次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算231111n m m m m++++ . (只需画出第n 次分割图,在图上标注阴影部分面积,并完成以下填空) 根据第n 次分割图可得等式: , 所以,231111n m m m m++++ = .拓广应用:计算 2323515151515555n n ----++++ .【答案】 解:探究三:第n 次分割第n 次分割第n 次分割第1次分割,把正方形的面积四等分,其中阴影部分的面积为34; 第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为23344+; 第3次分割,把上次分割图中空白部分的面积继续四等分,……;……第n 次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为2333334444n ++++ ,最后的空白部分的面积是14n, 根据第n 次分割图可得等式:2333334444n ++++ =114n -,两边同除以3, 得2311114444n ++++ =11334n-⨯.······························ 4分解决问题: 231111n m m m m m m m m ----++++ =11n m -,111(1)nm m m ---⨯.······························ 8分拓广应用:原式24.(本小题满分12分)(2014山东省青岛市,24,12分)已知:如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC =12cm ,BD =16cm .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,直线EF 从点D 出发,沿DB 方向匀速运动,速度为1cm/s ,EF ⊥BD ,且与AD ,BD ,CD 分别交于点E ,Q ,F ;当直线EF 停止第n 次分割nmnm2323111111115555111155551144511411()445445nn n n nn n n n =-+-+-++-⎛⎫=-++++ ⎪⎝⎭⎛⎫=-- ⎪⨯⎝⎭-=-++⨯⨯ 或运动时,点P 也停止运动.连接PF ,设运动时间为t (s)(0<t <8).解答下列问题: (1)当t 为何值时,四边形APFD 是平行四边形?(2)设四边形APFE 的面积为y (cm 2),求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使S 四边形APFE∶S菱形ABCD=17∶40?若存在,求出t 的值,并求出此时P ,E 两点间的距离;若不存在,请说明理由.【答案】解:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,OA =OC =12AC =6,OB在Rt △AOB 中,AB=10. ∵EF ⊥BD ,∴∠FQD =∠COD =90°. 又∵∠FDQ =∠CDO , ∴△DFQ ∽△DCO . ∴DF DC =QDOD . 即10DF =8t, ∴DF =54t . ∵四边形APFD 是平行四边形, ∴AP =DF . 即10-t =54t , 解这个方程,得t =409. 答:当t =409s 时,四边形APFD 是平行四边形. ······························ 4分(2)过点C 作C G ⊥AB 于点G ,∵S 菱形ABCD =AB ·CG =12AC ·BD ,DD(第24题)即10·CG =12×12×16, ∴CG =485. ∴S 梯形APFD =12(AP +DF )·CG =12(10-t +54t )·485=65t +48. ∵△DFQ ∽△DCO , ∴QD OD =QFOC. 即8t =6QF , ∴QF =34t . 同理,EQ =34t . ∴EF =QF +EQ =32t . ∴S △EFD =12EF ·QD = 12×32t ×t =34t 2. ∴y =(65t +48)-34t 2=-34t 2+65t +48.······························ 8分(3)若S 四边形APFE ∶S 菱形ABCD =17∶40,则-34t 2+65t +48=1740×96,即5t 2-8t -48=0,解这个方程,得t 1=4,t 2=-125(舍去)过点P 作PM ⊥EF 于点M ,PN ⊥BD 于点N , 当t =4时, ∵△PBN ∽△ABO , ∴PN AO =PB AB =BN BO ,即6PN =410=8BN. ∴PN =125,BN =165. ∴EM =EQ -MQ =1235=35.D(第24题)PM=BD-BN-DQ=161645--=445.在Rt△PME中,PE. ·····························12分。