弹性模量、泊松比测试

合集下载

材料弹性常数Eμ的测定——电测法测定弹性模量E和泊松比μ

材料弹性常数Eμ的测定——电测法测定弹性模量E和泊松比μ

材料弹性常数Eμ的测定——电测法测定弹性模量E和泊松比μ材料的弹性常数是描述材料在受力作用下的变形性能的指标,常用的弹性常数有弹性模量E和泊松比μ。

弹性模量E是材料受力后单位应力引起的单位变形量,而泊松比μ是指材料沿一个方向的单位变形引起的另一个方向单位变形的比值。

在实际工程中,需要准确测定材料的弹性常数,以便设计和计算工程结构的变形和应力分布。

其中,弹性模量E的测定是相对简单和常用的,主要有拉伸试验、压缩试验和弯曲试验等方法。

而泊松比μ则需要通过更复杂的测试方法进行测定。

本文主要介绍电测法测定材料的弹性模量E和泊松比μ的原理和应用。

一、电测法测定弹性模量E电测法是通过测量材料受力后的电阻变化来间接计算材料的弹性模量。

根据导体的电阻与其长度、横截面积和电阻率之间的关系,当材料受到力作用后,其长度和横截面积都会发生变化,从而导致电阻发生变化。

由此可以利用电阻与长度和横截面积的关系,计算出材料的弹性模量。

电测法测定弹性模量E的步骤如下:1.制备测量样品:首先制备出符合测量要求的样品,通常为长条形状,并且长度和横截面积要容易测量。

2.安装测量装置:将样品安装在测量装置上,一般采用四点法或截面法进行测量。

在四点法中,两对电极分别用来传输电流和测量电压。

在截面法中,材料上有两组电极,用来传输电流和测量电压。

3.施加载荷:施加拉力或压力载荷到样品上,使其发生变形。

4.记录电阻变化:通过测量电阻的变化,可以得到材料受力后的长度变化。

5.计算弹性模量E:利用导线的电阻与线长、横截面积和电阻率的关系,结合样品的长度变化,可以计算出材料的弹性模量。

电测法测定弹性模量E的优点是测量简便、快速,对试样的要求相对较低,可以测量各种类型的材料。

但是该方法的准确性受到试样的尺寸和形状的限制,并且测量结果受到试样固定约束的影响。

二、电测法测定泊松比μ泊松比μ描述了材料在沿一个方向的拉伸或压缩应力下,垂直于该方向的单位变形的比值。

材料弹性模量和泊松比的测定

材料弹性模量和泊松比的测定

1 国外标准概括国内外耐火行业弹性模量测试方法有DIN EN ISO 12680-1、ASTM C 885、ASTM C 1548-2、ASTM C 1419。

标准中制定的均为耐火材料常温测试方法,还没对其高温弹性模量测试方法做具体说明。

目前国际上已经制定的弹性模量标准均采用动态法。

据有关方透露,静态法测试杨氏模量标准也在准备中。

1.1 动态法动态法测试主要分为脉冲激振法、声频共振法、声速法。

脉冲激振法:结构原理见图1。

通过合适的外力给定试样脉冲激振信号,当激振信号中的某一频率与试样的固有频率相一致时,产生共振,此时振幅最大,延时最长,这个波通过测试探针或测量话筒的传递转换成电讯号送入仪器,测出试样的固有频率,由公式计算得出杨氏模量E。

图1 弹性模量测试结构原理图(脉冲激振法)特点:--- 国际通用的一种常温测试方法,如ISO 12680-1、ASTM C 1548;--- 信号激发、接收结构简单,测试测试准确;--- 信号激发、接收均采用非接触式,便于实现高温测试;--- 频谱分析得试样固有频率,准确、直观。

声频共振法:结构原理见图2。

指有声频发生器发送声频电信号,由换能器转换为振动信号驱动试样,再由换能器接收并转换为电信号,分析此信号与发生器信号在示波器上形成的图形,得出试样的固有频率f,由公式 E=C1?w?f2 得出试样的杨氏模量。

图2 弹性模量测试结构原理图(声频共振法)特点: --- 采用标准ASTM C 885 Standard Test Method for Young’s Modulus of Refractory Shapes by Sonic Resonance--- 声频发生器、放大器等组成激发器;--- 换能器接收信号,示波器显示信号;--- 李萨如图形判断试样固有频率。

缺点: --- 激发器结构复杂,必要时激发器需要与试样表面耦合,操作不方便;--- 示波器数据处理及显示单一;--- 可能存在多个李萨如图形,易误判;--- 该方法不方便用于高温测试。

弹性模量和泊松比的测定

弹性模量和泊松比的测定

弹性模量和泊松比的测定弹性模量和泊松比的测定目录一、弹性模量和泊松比 (2)二、弹性模量测定方法 (2)三、泊松比测定方法 (4)四、结论 (4)五、参考文献 (4)一、弹性模量和泊松比金属材料的弹性模量E为低于比例极限的应力与相应应变的比值;金属材料的泊松比μ指低于比例极限的轴向应力所产生的横向应变与相应轴向应变的负比值(详见GB/T 10623-2008 金属材料力学性能试验术语)。

二、弹性模量测定方法铝合金材料的弹性模量E是在弹性范围内正应力与相应正应变的比值,其表达式为:E=σ/ε式中E为弹性模量;σ为正应力;ε为相应的正应变。

铝合金材料弹性模量E的测定主要有静态法、动态法和纳米压痕法。

1.静态法1.1测量原理静态法测量铝合金材料的弹性模量主要采用拉伸法,即采用拉伸应力-应变曲线的测试方法。

拉伸法是用拉力拉伸试样来研究其在弹性限度内受到拉力的伸长变形。

由上式有:E=σ/ε=FL/A△L式中各量的单位均为国际单位。

可以看出,弹性模量E是在弹性范围所承受的应力与应变之比,应变是必要的参数。

因此,弹性模量E的测试实质是测试弹性变形的直线段斜率,故其准确度由应力与应变准确度所决定。

应力测量的准确度取决于试验机施加的力值与试样横截面积,此时试验机夹具与试样夹持方法也非常关键,夹具与试样要尽量同轴;应变测量的准确度要求引伸计要真实反映试样受力中心轴线与施力轴线同轴受力时所产生的应变。

由于试样受力同轴是相对的,且在弹性阶段试样的变形很小,所以为获得真实应变,应采用高精度的双向平均应变机械式引伸计。

拉伸法测量弹性模量适用于常温测量,由于拉伸时载荷大,加载速度慢,存在弛豫过程,因此采用此法不能真实的反应材料内部的结构变化。

1.2测量设备1.2.1试验机:试验机应按GB/T 16825.1进行检验,其准确度应为1级或优于1级。

1.2.2引伸计:引伸计应按GB/T 12160进行检验,其准确度应为0.5级或优于0.5级,最好采用双向平均机械引伸计。

弹性模量和泊松比的测定试验

弹性模量和泊松比的测定试验

加载。均匀缓慢加载至初载荷P0 P0, 5、加载。均匀缓慢加载至初载荷P0,记下各点应变的 初始读数;然后分级等增量加载,每增加一级载荷, 初始读数;然后分级等增量加载,每增加一级载荷,依 次记录各点电阻应变片的应变值,直到最终载荷。 次记录各点电阻应变片的应变值,直到最终载荷。实验 至少重复两次。 至少重复两次。 作完实验后,卸掉载荷,关闭电源, 6、作完实验后,卸掉载荷,关闭电源,整理好所用仪 器设备,清理实验现场,将所用仪器设备复原, 器设备,清理实验现场,将所用仪器设备复原,实验资 料交指导教师检查签字。 料交指导教师检查签字。 五、试验仪器 10.加载机构; 10.加载机构; 加载机构 11.手轮 手轮; 11.手轮;12. 拉伸附件; 拉伸附件; 13.拉伸试件 拉伸试件; 13.拉伸试件; 14.可调节底 14.可调节底 盘
=
ε ε
ห้องสมุดไป่ตู้

△ε—纵向应变增量 纵向应变增量
设计好本实验所需的各类数据表格。 1、设计好本实验所需的各类数据表格。 测量试件尺寸。在试件标距范围内, 2、测量试件尺寸。在试件标距范围内,测量试件 三个横截面尺寸, 三个横截面尺寸,取三处横截面面积的平均值作 为试件的横截面面积A0 A0。 为试件的横截面面积A0。 拟订加载方案。先选取适当的初载荷500 500KN 3、拟订加载方案。先选取适当的初载荷500KN 级加载。 分6级加载。 4、按实验要求接好线,调整好仪器,检查整个测试 按实验要求接好线,调整好仪器, 系统是否处于正常工作状态。 系统是否处于正常工作状态。
11
P R1 R2 P R1 R1ˊ R1 R2ˊ R2 h P 拉伸试件及布片图
P
P R R
补偿块
1.弹性模量E 1.弹性模量E的测定 △ε — 弹性模量

试验一---弹性模量和泊松比的测定实验

试验一---弹性模量和泊松比的测定实验

试验一弹性模量和泊松比的测定实验弹性模量和泊松比的测定实验大纲1. 通过材料弹性模量和泊松比的测定实验,使学生掌握测定材料变形的基本方法,学会拟定实验加载方案,验证虎克定律。

2. 电测材料的弹性模量和泊松比,使学生学会用电阻应变计和电阻应变仪测量材料的变形。

主要设备:材料试验机或多功能电测实验装置;主要耗材:低碳钢拉伸弹性模量试样,每次实验1根。

拉伸弹性模量(E)及泊松比(μ)的测定指导书一、实验目的1 、用电测法测量低碳钢的弹性模量 E 和泊松比μ2 、在弹性范围内验证虎克定律二、实验设备1 、电子式万能材料试验机2 、XL 2101C 程控静态电阻应变仪3 、游标卡尺三、实验原理和方法测定材料的弹性模量 E ,通常采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其关系式为:(1-1)由此可得(1-2 )式中: E :弹性模量P :载荷S0 :试样的截面积ε:应变ΔP 和Δε分别为载荷和应变的增量。

由公式(1-2)即可算出弹性模量 E 。

实验方法如图1-1所示,采用矩形截面的拉伸试件,在试件上沿轴向和垂直于轴向的两面各贴两片电阻应变计,可以用半桥或全桥方式进行实验。

1、半桥接法:把试件两面各粘贴的沿轴向(或垂直于轴向)的两片电阻应变计(简称工作片)的两端分别接在应变仪的A、B 接线端上,温度补偿片接到应变仪的B、C 接线端上,然后给试件缓慢加载,通过电阻应变仪即可测出对应载荷下的轴向应变轴r ε值(或横向应变值横r ε)。

再将实际测得的值代入(1-2)式中,即可求得弹性模量 E 之值。

2、全桥接法:把两片轴向(或两片垂直于轴向)的工作片和两片温度补偿片按图1-1中(a)( 或(b)) 的接法接入应变仪的 A 、 B 、 C 、 D 接线柱中,然后给试件缓慢加载,通过电 阻应变仪即可测出对应载荷下的轴向应变值轴r ε(或垂直于轴向横r ε),将所测得的ε值代入(1-2)式中,即可求得弹性模量 E 之值。

弹性模量和泊松比的测定

弹性模量和泊松比的测定
R1 (R3) R2 (R4)
枚应变计接入应变仪。温度补偿片贴在不受力与试件相同的材料
上。 实验时,对前后2枚轴向片和横向片各进行单片测量,并取 其平均值
b h
l
1 3
2
t
2 4
2
作为测量结果,这样消除了加载时试样偏心弯曲引起的测量误差。
实验项目名称:弹性模量和泊松比的测定
A R内
UBD
UAC
半桥接线示意图
k d ( 1 2) k仪
实验项目名称:弹性模量和泊松比的测定
全桥:测量桥路的四臂均接工作应变计
CH01 CH02 CH08 公共补偿
B R1 A R4
全桥
R2 C R3 D UAC UBD
A B B0 C D
A B B0 C D
A B B0 C D
d k ( 1 t ) t k 1 k仪 k仪
实验项目名称:弹性模量和泊松比的测定
双臂工作半桥:在AB、BC端接工作应变计
CH01 CH02 CH08 公共补偿
B R1 R2 C R内 D
半桥
A B B0 C D
A B B0 C D
A B B0 C D
A D W0 W W1
40
45 50
实验项目名称:弹性模量和泊松比的测定 GB/T22315-2008 金属材料弹性模量和泊松比试验方法
实验项目名称:弹性模量和泊松比的测定

实验原理
单向拉伸时材料在线弹性范围内服从胡克定律,应力和应变成正比关系。
E
比例系数E 称为材料的弹性模量。在σ-曲线上,E 是弹性阶段直线的
6位LED 显示力值
4个测力 功能按键

弹性模量E和泊松比

弹性模量E和泊松比

00EA A P==εσε弹性模量E 和泊松比µ的测定拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。

一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。

由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。

因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。

在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。

纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。

横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。

因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。

(一) (一) 试验目的1.1.用电测方法测定低碳钢的弹性模量E 及泊松比µ;2.2.验证虎克定律;3.3.掌握电测方法的组桥原理与应用。

(二) (二) 试验原理1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:0EA PL L ∆=∆ (1)若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。

(2)由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即(3) 所以(2)成为:)(A L PL E ∆∆∆=0)(L L ∆∆=∆ε(4) 式中: ΔP ——载荷增量,kN ;A 0-----试件的横截面面积,cm为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。

弹性模量和泊松比的测定

弹性模量和泊松比的测定

00EA A P==εσε拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。

一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A 0为零件的横截面积。

由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。

因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。

在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。

纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。

横向应变与纵向应变之比值称为泊松比µ,也叫横向变性系数,它是反映材料横向变形的弹性常数。

因此金属材料拉伸时弹性模量E 的测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比µ。

当拉(压)杆内的应力不超过材料的比例极限时,横向线应变ε\'和纵向线应变ε的绝对值之比为一常数,此比值称为横向变形系数或泊松比,常用v 表示。

弹性模量E 和横向变形系数v 都是材料的弹性常数。

与拉(压)杆的变形有关。

低碳钢(这指Q235)、铝合金、砼的v 分别为0.24~0.28、0.33、0.16~0.18泊松效应就是传输介质半径改变所产生的相位延迟——这个在光纤中引起的变化,正式是因为泊松效应引起的:因为光子是一种微粒,似乎被称作光弹,它在光纤的传输,是伴有纵向力的,根据泊松效应,光纤会在横向上(直径)发生变化,从而导致相位延迟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性模量、泊松比测试
测样品的弹性模量通常分动态法和静态法,静态法是在试样上施加一个恒定的拉伸(或压缩)应力,测定其弹性变形量;动态法包括共振和超声波测试。

静态法属于对试样具有破坏性质的一种方法,不具有重复测试的机会。

动态法属于不破坏试样结构和性能的一种无损检测方法,试样可重复测试,因此对于力学性能波动较大的脆性材料,反复多次的无损力学检测显得重要而有意义。

超声波法测弹性模量
1.原理:
在各向同性的固体材料中,根据应力和应变满足的胡克定律,可以求得超声波传播的特征方程:
其中,为势函数,c为超声波传播速度。

当介质中质点振动方向与超声波的传播方向一致时,成为纵波;当质点振动方向与超声波的传播方向垂直时,称为横波,在固体介质内部,超声波可以按纵波和横波两种波形传播,无论是材料中的纵波还是横波,其速度可表示为:
其中,d为声波传播距离,t为声波传播时间。

对于同一种材料,其纵波波速和横波波速的大小一般不一样,但是它们都由弹性介质的密度,杨氏模量,泊松比等弹性参数决定,即影响这些物理常数的因素都对声速有影响,因此,利用超声波方法可以测量材料有关的弹性常数。

固体在外力作用下,其长度的方向产生变形,变形时应力与应变之比定义为杨氏模量,用E表示。

固体在应力作用下,沿纵向有一正应变,沿横向有一负应变,横向纵向应变之比定义为泊松比,用u表示。

在各向同性固体介质中,各种波形的超声波声速为:
纵波声速:
横波声速:
相应的通过测量介质的纵波声速和横波声速,利用以上公式可以计算介质的弹性常数,计算公式如下:
弹性模量:
泊松比:
其中,,为密度
2.测试方法:
使用25DL PLUS型超声波弹性模量测试仪分别测试材料的纵波声速和横波声速,代入上述公式,计算得到弹性模量和泊松比数值。

相关文档
最新文档