高一数学函数经典试题
(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。
A .⑴、⑵B .⑵、⑶C .⑷D .⑶、⑸2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或23.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,54.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或 D5.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移12个单位6.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13二、填空题1.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 。
2.函数422--=x x y 的定义域 。
3.若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 。
高一数学试题大全

高一数学试题答案及解析1.函数y=x2-6x+7的值域是()A.{y|y<-2}B.{y|y>-2}C.{y|y≥-2}D.{y|y≤-2}【答案】B【解析】法一,配方法,函数y=x2-6x+7=;法二,图像法,画出函数y=x2-6x+7图像,得到函数值域【考点】本题考查了二次函数值域问题,2.已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为( )A.x-y=0B.x-y+1=0C.x+y+1=0D.x+y=0【答案】B【解析】因为点P(3,2)与点Q(1,4)关于直线l对称,所以直线l是线段PQ的垂直平分线;由线段PQ的中点坐标为(2,3),,由直线方程的点斜式得:即,故选B.【考点】直线的方程.3.的值是()A.B.C.D.【答案】C【解析】.【考点】两角差的余弦公式的运用.4.已知两点A(4,1),B(7,-3),则与向量同向的单位向量是()A.(,-)B.(-,)C.(-,)D.(,-)【答案】A【解析】,,与向量同向的单位向量是.【考点】向量的坐标表示、单位向量.5.下图中的几何体是由哪个平面图形旋转得到的()【答案】A【解析】几何体的上半部分是一个圆锥,下半部分是一个圆台,故选A【考点】简单旋转体的概念6.长方体的三个相邻面的面积分别是,这个长方体的顶点都在同一个球面上,则这个球的表面积为()A.B.C.D.【答案】C【解析】设长方体的一个顶点上的三条棱长分别为,则;所以,于是,而它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的体对角线的长是=,所以球的半径是,这个球的表面积为,故选C.【考点】1.空间几何体的表面积;2.球的内接多面体的问题.7.已知两个变量x,y之间具有线性相关关系,试验测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为()A.y=0.8x+3B.y=-1.2x+7.5C.y=1.6x+0.5D.y=1.3x+1.2【答案】C【解析】设样本中线点为,其中,即样本中心点为,因为回归直线必过样本中心点,将代入四个选项只有B,C成立,画出散点图分析可知两个变量x,y之间正相关,故C正确。
高一数学函数经典习题及答案

函 数 练 习 题(一)班级 姓名一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =01(21)111y x x =+-++-2___________;3、若函数(1)f x+(21)f x -的定义域是;函数1(2)f x+的定义域为。
4、 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+-()x R ∈⑵223y x x =+-[1,2]x ∈⑶311x y x -=+⑷311x y x -=+(5)x ≥ ⑸y =225941x x y x +=-+⑺31y x x=-++⑻2y x x =-⑼y =⑽4y =y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x =。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =_____()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间:⑴223y x x =++⑵y =⑶261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
高一数学函数试题及答案

高一数学函数试题及答案一、选择题1. 设函数f(x) = 2x² - 3x + 4,则f(-1)的值为多少?A. 1B. 5C. -7D. 11答案:C. -72. 已知函数g(x)的图像如下所示,那么在区间[-2, 2]上,g(x)的值域为:A. [-4, 4]B. [-3, 3]C. [-2, 2]D. [-1, 1]答案:A. [-4, 4]3. 若函数h(x) = 3x - 2, 则x = __ 是h(x) = 5的解。
A. -1B. 1C. 2D. 3答案:B. 1二、填空题1. 设函数f(x) = x³ + 2x² + ax + 5,若f(2) = 25,则a的值为 __。
答案:22. 函数y = 2x² - 3x + 1与x轴交点的个数为 __。
答案:23. 若函数f(x) = 2x + 3, g(x) = x² + 1,则(f ∘ g)(2)的值为 __。
答案:23三、解答题1. 设函数f(x) = x³ - 2x² + ax + 1,已知f(1) = 3和f(2) = 9,求a的值。
解:根据已知条件:f(1) = 3,代入函数f(x),得到1 - 2 + a + 1 = 3,化简得:a = 3。
f(2) = 9,代入函数f(x),得到8 - 8 + 2a + 1 = 9,化简得:2a = 8,解得a = 4。
所以,a的值为4。
2. 给定函数f(x) = 2x + 5和g(x) = x² - 3x + 2,请计算(f + g)(x)的表达式。
解: (f + g)(x) = f(x) + g(x)= (2x + 5) + (x² - 3x + 2)= x² - x + 7所以,(f + g)(x)的表达式为x² - x + 7。
四、解析题1. 已知函数f(x) = (x - 2)² + 1, 使用二次函数的知识,简要描述函数f(x)的图像特征。
高一数学必修一函数的最值问题试题(1)

函数的最值问题(高一)一.填空题:1. ()35,[3,6]f x x x =+∈的最大值是 。
1()f x x =,[]1,3x ∈的最小值是 。
2.函数y =的最小值是 ,最大值是3.函数212810y x x =-+的最大值是 ,此时x =4.函数[]23,3,21x y x x -=∈--+的最小值是 ,最大值是5.函数[]3,2,1y x x x =-∈--的最小值是 ,最大值是6.函数y=2-x -21+x 的最小值是。
y x =-的最大值是7.函数y=|x+1|–|2-x| 的最大值是 最小值是 .8.函数()21f x x =-在[2,6]上的最大值是 最小值是 。
9.函数y =x x213+-(x ≥0)的值域是______________.10.二次函数y=-x 2+4x 的最大值11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。
12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值13.函数f (x )=)1(11x x --的最大值是 222251x x y x x ++=++的最大值是14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为:18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。
二、解答题20.已知二次函数 在 上有最大值4,求实数 a 的值。
高一数学函数经典题目及答案

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例2. 求函数22x 1x x 1y +++=的值域。
例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。
例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。
(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。
例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
高一数学函数的基本性质试题答案及解析

高一数学函数的基本性质试题答案及解析1.下列幂函数中过点(0,0),(1,1)的偶函数是()A.B.C.D.【答案】B【解析】A中函数的定义域是,不关于原点对称,不具有奇偶性;B中函数经验证过这两个点,又定义域为,且;C中函数不过(0,0);D中函数,∵,∴是奇函数,故选B.【考点】幂函数的性质与函数的奇偶性.2.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.3.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.4.函数的单调增区间是_______.【答案】【解析】由,所以此函数的定义域为,根据复合函数的单调性,所以此函数的单调增区间为.5.(本小题满分12分)已知函数 (为常数)在上的最小值为,试将用表示出来,并求出的最大值.【答案】【解析】(1)因为抛物线y=x2-2ax+1的对称轴方程是,本题属于轴动区间定的问题,然后分轴在区间左侧,在区间内,在区间右侧三种情况分别得到其最小值,得到最小值h(a),然后再求出h(a)的最大值.∵y=(x-a)2+1-a2,∴抛物线y=x2-2ax+1的对称轴方程是.(1)当时,,当时,该函数取最小值;(2) 当时, , 当时,该函数取最小值;(3) 当a>1时, , 当时,该函数取最小值综上,函数的最小值为6.证明:函数是偶函数,且在上是减少的。
(本小题满分12分)【答案】见解析。
【解析】本试题主要是考查了函数的奇偶性的定义以及单调性的性质。
高一数学必修一函数的最值问题试题

函数的最值问题(高一)一.填空题:1. ()35,[3,6]f x x x =+∈的最大值是 。
1()f x x=,[]1,3x ∈的最小值是 。
2.函数y =的最小值是 ,最大值是3.函数212810y x x =-+的最大值是 ,此时x = 4.函数[]23,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3,2,1y x x x=-∈--的最小值是 ,最大值是 6.函数y=2-x -21+x 的最小值是。
y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 .8.函数()21f x x =-在[2,6]上的最大值是 最小值是 。
9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。
12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值13.函数f (x )=)1(11x x --的最大值是 222251x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为:18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。
二、解答题20.已知二次函数 在 上有最大值4,求实数 a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学函数测试题
一、选择题:
1.
函数y ) A )43,21(- B ]43,21[- C ),43[]21,(+∞⋃-∞ D ),0()0,21(+∞⋃-
2.下列对应关系f 中,不是从集合A 到集合B 的映射的是( ) A A=}{是锐角x x ,B=(0,1)
,f :求正弦; B A=R ,B=R ,f :取绝对值 C A=+R ,B=R ,f :求平方; D A=R ,B=R ,f :取倒数
3二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( )
A 7-
B 1
C 17
D 25
4.已知⎩⎨⎧<+≥-=)
6()2()6(5)(x x f x x x f ,则f(3)为( ) A 2 B 3 C 4 D 5
5.二次函数2y ax bx c =++中,0a c ⋅<,则函数的零点个数是( )
A 0个
B 1个
C 2个
D 无法确定
6.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是
A 3-≤a
B 3-≥a
C 5≤a
D 5≥a
7.若13
2log <a ,则a 的取值范围是( ) A )1,3
2( B ),32(+∞ C ),1()32,0(+∞ D ),32()32,0(+∞ 8.向高为H 的水瓶中注水,注满为止。
如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )
(A) (B) (C) (D
)
二、填空题:(本题共4小题,每小题
4分,共16分,请把答案填写在答题纸上)
9.
函数1-=
x e y 的定义域为 ;
10.若2log 2,log 3,m n a a m n a +=== ;
11.方程22+=x x 的实数解的个数是 个;
12.函数]1,1[)20(32-<<++=在a ax x y 上的最大值是 ,最小值是 .
三、解答题:(解答应写出文字说明,证明过程或演算步骤.)
13对于二次函数2483y x x =-+-,(8分)
(1)指出图像的开口方向、对称轴方程、顶点坐标;
(3)求函数的最大值或最小值;
(4)分析函数的单调性。
14.一台机器的价值是25万元,如果每年的折旧率是 4.5%(就是每年减少它的价值的4.5%),那么约经过几年,它的价值降为10万元 (结果保留两个有效数字;参考数据:lg9.550.9800,lg0.9550.0200,lg0.40.3979==-=-)?(8分)
15.求证:函数x x x f 1)(+
=在(0,1)上是减函数。
(8分)
16.已知函数)10(11log )(≠>-+=a a x
x x f a 且(8分) (1)求f(x)的定义域;
(2)判断f(x)的奇偶性并证明;
17(10分)(1)已知m x f x +-=1
32)(是奇函数,求常数m 的值; (2)画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|13-x |=k 无
解?有一解?有两解?
18.(10分)某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是
20,025,,100,2530,.
t t t N p t t t N +<<∈⎧=⎨-+≤≤∈⎩该商品的日销售量Q (件)与时间t (天)的函数关系是40+-=t Q ),300(N t t ∈≤<,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?
高中数学函数测试题参考答案
一、选择题:BDDA CACA
二、填空题:9.),0(+∞ 10 12 11. 2 12.4-a ,2
34
a -
三、解答题: 13.解:(1)开口向下;对称轴为1x =;顶点坐标为(1,1);(2)函数的最大值为1;无最小值;(3)函数在(,1)-∞上是增加的,在(1,)+∞上是减少的。
14.解:设经过x 年后,它的价值降为10万元,则有
答:约经过19年后,该机器的价值降为10万元。
16.解:原函数的定义域是(-1,1)
17.解: (1)常数m =1
(2)当k <0时,直线y =k 与函数|13|-=x y 的图象无
交点,即方程无解;
当k =0或k ≥1时, 直线y =k 与函数
|13|-=x y 的图象有唯一的交点,所以方程有一解; 当0<k <1时, 直线y =k 与函数|13|-=x y 的图象有两个不同交点,所以方程有两解。
18.解:设日销售金额为y (元),则y =p ⋅Q .
2220800,1404000,t t y t t ⎧-++⎪∴=⎨-+⎪⎩
025,,2530,.t t N t t N <<∈≤≤∈ 22(10)900,(70)900,
t t ⎧--+⎪=⎨--⎪⎩ 025,,2530,.t t N t t N <<∈≤≤∈ 当N t t ∈<<,250,t =10时,900max =y (元);
当N t t ∈≤≤,3025,t=25时,1125max =y (元).
由1125>900,知y max =1125(元),且第25天,日销售额最大.。