第七章 核电站运行
核电站运行

1、核电站运行的特点:A反应堆临界,停堆换料B产生大量放射性物质C堆芯余热:●剩余裂变发热●剩余衰变发热2、核电站与火电厂有何区别?A核电站系统、设备复杂B使用饱和蒸汽,火电厂为过热蒸汽。
饱和蒸汽热焓低,导致核电站使用的蒸汽管道和阀门比火电厂大。
C压水堆核电站运行具有汽轮机快速降负荷功能D压水堆核电载硼运行3、核电站运行工况分类:工况I:正常运行和运行瞬态:在核电站功率运行、换料、维修过程中频繁发生的事件。
典型的事件:(1)稳态和停堆运行:⊙功率运行⊙启动(或热备用)⊙热停堆⊙换料停堆⊙冷停堆(维修冷停堆,正常冷停堆)⊙次临界中间停堆;(2)带有允许偏差运行:⊙某些系统和部件不能工作⊙燃料元件包壳有缺陷⊙冷却剂中放射性活度过高⊙蒸汽发生器有泄漏⊙技术规格书中允许在运行过程中做的试验;(3) 运行试验⊙升温升压试验⊙负荷阶跃变化(<10%FP)⊙负荷线性变化(<5%FP/min)⊙甩负荷工况II:中等频度事件:最坏的情况下,会使反应堆紧急停堆,但能很快恢复运行,不会扩展并引起更严重的事故。
主要包括:⊙引起给水温度下降的给水系统失灵⊙引起给水流量增加的给水系统失灵⊙二回路蒸汽流量过度增加⊙正常给水流量丧失⊙控制棒组件下落⊙功率运行期间安全注射系统的误运行工况III:稀有事件:极少发生,但一旦发生可能造成部分燃料损坏,使电站长期不能恢复运行。
但事件所产生的放射性污染不会危害到隔离半径以外的公用地区,也不会失去冷却剂系统或安全壳的屏蔽功能。
主要包括:⊙蒸汽系统小管道破裂⊙冷却剂强迫流量全部丧失⊙单个棒束控制棒组件在满功率下抽出⊙燃料误装载⊙冷却剂从小破裂管道和大管道裂缝流失⊙废气处理系统破坏⊙放射性废液系统泄漏和破坏工况IV:极限事故:对环境造成污染。
单一极限事故不会相继引起对付事故所需要系统功能的丧失,如应急堆芯冷却系统和安全壳系统的丧失。
⊙蒸汽系统大管道破裂⊙给水系统管道破裂⊙冷却剂泵轴卡住⊙冷却剂泵轴断裂⊙各种控制棒组件弹出堆外⊙一回路压力边界破坏引起失水事故⊙燃料装卸事故⊙乏燃料容器坠落4、核电站的标准运行状态:A换料停堆:允许进行换料操作的停堆。
核电站工作原理

核电站工作原理核电站是利用核能进行发电的设施,其工作原理基于核裂变和核聚变两种核反应方式。
核裂变是指重核的原子核在受到中子轰击后分裂成两个较轻的核,伴有释放大量能量。
核聚变则是指轻核的原子核在高温和高压下融合成较重的核,同样伴有能量释放。
核电站的工作原理主要包括以下几个步骤:1. 核燃料供给:核电站使用浓缩铀或者钚等放射性物质作为燃料。
这些燃料以固体形式装入燃料棒中,然后装入反应堆核心。
2. 反应堆核心:核电站的核反应堆核心是核能发电的关键部份。
核反应堆中的燃料棒罗列成一定的几何形状,中间有冷却剂流过。
冷却剂可以是水、气体或者液态金属等物质,其主要作用是冷却燃料棒并带走产生的热量。
3. 核反应控制:核电站中的核反应需要进行控制,以确保核裂变或者核聚变反应能够持续进行,但不会失控。
控制棒是用于控制反应堆中中子流的装置,通过插入或者抽出控制棒,可以调节中子的数量,从而控制反应的速率。
4. 热量产生:核反应堆中的核裂变或者核聚变反应会释放大量的热能。
这些热能通过冷却剂带走,并转化为蒸汽。
5. 蒸汽发电:核电站利用核反应释放的热能,将冷却剂中的热能转化为蒸汽。
蒸汽驱动涡轮机转动,涡轮机与发机电相连,通过转动发机电产生电能。
6. 蒸汽冷凝:蒸汽在涡轮机转动后会冷却成水,然后被再次循环使用。
在核电站中,通常使用冷却塔或者海水对蒸汽进行冷凝。
7. 辅助系统:核电站还包括一系列辅助系统,如冷却系统、控制系统、安全系统等。
这些系统的作用是确保核反应堆的安全运行,防止事故发生。
总结起来,核电站的工作原理是利用核裂变或者核聚变反应释放的热能,通过蒸汽发电的方式将热能转化为电能。
核反应堆核心、冷却剂、控制棒等是核电站的关键组成部份,辅助系统则保证核电站的安全运行。
核电站作为一种清洁、高效的能源发电方式,对于满足能源需求和减少碳排放具有重要意义。
核电站工作原理

核电站工作原理核电站是利用核能转换为电能的设施,其工作原理主要包括核裂变反应、热能转换和发电三个基本过程。
一、核裂变反应核电站主要使用铀-235和钚-239等可裂变核燃料。
在反应堆中,通过控制材料的浓度和反应速率,使得裂变链式反应能够持续进行。
当裂变核燃料被中子轰击时,会发生裂变反应,同时释放出大量的中子和能量。
这些中子会继续轰击其他核燃料,从而形成连锁反应。
二、热能转换核裂变反应释放出的能量主要以热能的形式存在。
这些热能被用来加热反应堆中的冷却剂,通常是水或者重水。
冷却剂在受热后转化为高温高压的蒸汽,然后通过蒸汽轮机驱动发机电转动,产生电能。
在这个过程中,热能被转化为机械能,再转化为电能。
三、发电核电站通过发机电将机械能转化为电能。
蒸汽轮机的转动带动发机电转动,使得导线中的电子流动,产生电流。
这些电流经过变压器的调节和升压,最终输送到电网中,供人们使用。
核电站的运行需要严格的安全措施和监控系统。
例如,核电站中会使用控制棒来调节裂变反应速率,以保持反应的稳定。
同时,核电站还需要防止核燃料泄漏和辐射泄露等事故的发生,因此会配备严密的防护层和安全设备。
此外,核电站还需要进行燃料的处理和废物的处理。
核燃料在使用一段时间后会变得再也不适合继续使用,需要进行更换。
而核废物则需要进行安全的储存和处理,以防止对环境和人类健康造成危害。
总结起来,核电站的工作原理是通过核裂变反应产生热能,然后将热能转化为机械能,最终转化为电能。
核电站的运行需要严格的安全措施和监控系统,同时也需要进行燃料和废物的处理。
通过这种方式,核电站能够为人们提供清洁、高效的电力供应。
核电站工作原理

核电站工作原理
核电站是利用核裂变或核聚变释放出的能量来产生电力的设施。
核电站的工作原理主要包括核反应、热能转换和发电三个步骤。
首先,核电站的核反应是通过控制核裂变或核聚变来释放能量。
在核裂变中,重核素如铀-235被中子轰击后分裂成两个或更多的轻
核素,同时释放出大量的能量和中子。
这些中子又会继续轰击其他
核素,形成连锁反应。
而在核聚变中,轻核素如氘和氚在高温高压
条件下融合成氦和中子,同样释放出大量的能量。
核反应释放的能
量会转化为热能,为发电提供动力。
接着,核电站中的热能转换过程是将核反应释放的热能转化为
蒸汽动能。
核反应释放的热能会使核反应堆中的冷却剂(如水或氦气)受热蒸发,形成高温高压的蒸汽。
这些蒸汽会驱动涡轮机转动,将热能转化为机械能。
而涡轮机连接的发电机则将机械能转化为电能,最终输出到电网中供人们使用。
最后,核电站的发电过程是通过发电机将机械能转化为电能。
发电机是由转子和定子组成,转子受到涡轮机传来的机械能驱动旋转,定子则产生感应电流,通过电磁感应原理将机械能转化为电能。
这些电能经过变压器升压后输送到变电站,再经过配电变压器降压后输入到电网中。
总的来说,核电站的工作原理是通过控制核反应释放的能量,将热能转化为蒸汽动能,再将机械能转化为电能,最终输出到电网中供人们使用。
核电站以其高效、清洁的特点成为现代重要的电力来源,对于人类社会的发展起着重要的作用。
核电站的核反应堆是如何运行的

核电站的核反应堆是如何运行的核电站的核反应堆是通过利用核裂变反应来产生能量的一种设备。
核裂变反应是指将重原子核分裂成两个或更多的碎片,同时释放出大量能量的过程。
下面将详细介绍核电站的核反应堆是如何运行的。
一、核电站的基本构成核电站一般由核反应堆、冷却系统、控制系统、辐射屏蔽和发电机组成。
核反应堆是核电站的核心部件,主要用于产生热能。
冷却系统负责将核反应堆中产生的热能带走,并将其转化为蒸汽。
控制系统用于控制核反应堆的运行状态。
辐射屏蔽用于防止辐射泄露。
发电机则通过蒸汽驱动发电。
二、核反应堆的工作原理核反应堆的工作原理基于核裂变反应。
核裂变反应是通过轰击一定速度与精确能量的中子来撞击核燃料,使得核燃料发生裂变反应,从而产生大量的热能。
核反应堆中的核燃料通常采用铀或钚等放射性元素。
核反应堆中的燃料棒是核反应的关键部件。
燃料棒是由包裹着放射性燃料的金属或陶瓷制成的柱状物体。
在核反应堆中,多个燃料棒被排列在一起形成燃料组件。
燃料组件中的燃料棒在裂变反应中会产生大量的热能和中子。
为了控制核反应堆的反应过程,需要使用控制棒。
控制棒由吸中子材料制成,其主要作用是吸收中子,减缓核反应堆中的裂变反应速度。
通过调整控制棒的深入程度,可以控制反应堆的输出功率和稳定工作状态。
核反应堆的核裂变反应产生的热能会通过冷却剂带走。
冷却剂一般是水或重水,它与燃料棒之间通过热交换的方式实现热能传递。
冷却剂在核反应堆中发生沸腾,产生的蒸汽经过再热和高压后进入蒸汽涡轮发电机组,最终产生电能。
三、核反应堆的安全措施核反应堆的运行需要严格的安全措施。
主要包括以下几个方面:1. 核反应堆的设计:核反应堆的设计需要充分考虑安全性,并采取措施确保核反应堆的稳定性及避免事故发生。
2. 辐射屏蔽:核反应堆周围会设置辐射屏蔽,以防止辐射泄露,保护工作人员和环境的安全。
3. 控制棒:控制棒的调控非常重要,它可以调整核反应堆的输出功率和稳定性,及时响应异常情况。
第七章 压水堆核电站的二回路系统及设备

压力为 198 bar .a 。氮气的膨胀力使隔离阀关闭。为开启阀门,设有一套汽动油压泵液压系 统,产生名义压力为 329 bar .a 液压油进入液压油缸活塞的下部,克服氮气的压力和开启阻
①在汽水分离再热器后、低压缸前的进汽管道上装设快速截止阀; ②提高分压缸压力,减少管道尺寸,将汽水分离器和蒸汽再热器做成一体;
131
③完善汽轮机和管道的疏水系统,减少水膜厚度和积水。
7.2.2 大亚湾核电站的汽轮机
大亚湾核电站的汽轮机是由英国 GEC 公司制造的双分流、中间再热、四缸六排汽、冲
图 7.6 大亚湾核电站汽轮机热力系统图 动纯凝式汽轮机,共有四十个压力级和七级非调整抽汽,其热力系统如图 7.6所示。四个转 子各自的轴承支承,相互通过刚性联轴器连为一体,并且#3 低压转子有刚性联轴器与发电 机转子相连,组成汽轮机发电机组轴系。高压转子的前端接有一短轴,其上装有主油泵和超 速危急保安器(或称危急遮断器)。推力轴承位于高压缸与#1 低压缸间的轴承座内。电动盘车 装置位于机组轴系尾部的励磁机后。
力使阀门开启,见图 7.2。快速关阀是由快速排泄液压油缸活塞下部的油液实现的。 控制分配器用于关闭主蒸汽隔离阀。它们由电磁阀操纵。当电磁阀通电时,分配器开启,
将液压油缸活塞下部的液体通过常开隔离阀排出,主蒸汽隔离阀在氮气压力作用下迅速关 闭。两条排油管线是冗余的,单独一条管线就足以使阀门在 5 秒内关闭。
横向阻尼器。主蒸汽隔离阀上游的管道上装有 7 只安全阀,一个大气排放系统接头和一个向 辅助给水泵汽轮机供汽的接头。大气排放系统接头和辅助给水泵汽轮机供汽接头之所以要接 在主隔离阀的上游,是考虑到当二回路故障蒸汽隔离阀关闭时大气排放系统和辅助给水系统 还能工作。
核电站的原理和工作流程

核电站的原理和工作流程核电站是利用核裂变或核聚变来产生能量的设施,是一种清洁、高效的能源发电方式。
核电站的工作原理涉及复杂的反应过程和工程系统,下面将详细介绍核电站的原理和工作流程。
核电站的原理核电站利用放射性核素的核裂变反应释放出的能量来驱动发电机产生电能。
核电站主要采用核裂变反应,将核燃料(如铀或钚)置于反应堆内,通过控制裂变反应引发链式反应。
在核裂变反应中,原子核被撞击分裂成两个或多个较小的核子,伴随释放出大量的能量和中子。
核裂变反应释放的能量被吸收并转化为热能,通过冷却剂(如水)将核燃料的热能传递给发电机,使其旋转产生电能。
核电站还通过控制杆、冷却剂等系统来控制核裂变反应的速率,确保反应过程稳定和安全。
核电站的工作流程核电站的工作流程主要包括以下几个步骤:1.核燃料供给:核电站将铀或钚等核燃料装入反应堆,开始核裂变反应。
2.核裂变反应:在反应堆内,核燃料经过控制杆的调节,产生核裂变反应释放能量。
3.热能转化:核裂变反应释放的能量被吸收,转化为热能。
冷却剂循环流经反应堆,将核燃料的热能传递给发电机系统。
4.发电:通过受热的冷却剂驱动蒸汽涡轮机旋转,产生机械能,最终驱动发电机产生电能。
5.电能输出:发电机产生的电能通过变压器升压后送入电网,供应给用户使用。
6.废物处理:在核裂变反应中会产生放射性废物,核电站需要安全处理和处置这些废物,以防造成环境污染和辐射泄漏。
以上就是核电站的基本工作流程,通过合理设计和运行,核电站可以稳定、高效地产生清洁能源,为社会和经济发展提供可靠的电力支持。
核电站不仅为能源领域的发展做出贡献,同时也需要高度重视安全措施,确保人员和环境的安全。
核电站工作原理

核电站工作原理
核电站是利用核反应堆中的核裂变反应产生的热能来发电的一
种发电电站。
它的基本原理是将原子核从一种元素变为另一种元素,从而释放热能,利用这些热能发电。
核电站的工作过程可分为以下几个步骤。
首先,在核电站的核反应堆中,把富含放射性元素的燃料块放入,这些燃料块中含有足够的能量进行核裂变。
在核反应堆中,燃料块被加热,冷却剂将热量从燃料块中取出来。
然后,由反应堆内的控制杆控制燃料块的进程,以确保核裂变过程的安全进行。
第二步,当核反应堆的温度足够高,核裂变就会开始发生。
放射性元素质子和中子将释放出来,碰撞碰撞碰撞,产生新的原子,释放大量的热量。
这些热量被冷却剂循环利用,转换成高温、高压水蒸汽,送入涡轮机发动机,推动涡轮机转动,从而产生电能。
第三步,涡轮机发电机就会以一定的频率转动,产生交流电。
最后,这些电能通过电缆输送到负荷中心,由负荷中心控制,最终将电能输送到用户的电路中,以满足用户的需求。
以上就是核电站的基本工作原理。
核电站具有节能、环保等优点,但也存在核污染和核废料等问题,因此未来发展也需要慎重考虑。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 第一节 核电站运行特点 • 第二节 核电站启动和停堆过程
第一节 核电站运行特点 一、发电能量来源于核裂变
二、反应堆产生放射性物质 核反应堆在裂变过程中会产生放射性裂变碎 片和中子。核燃料、核燃料的包壳、一回路 系统设备及其管路(称为一回路压力边界) 和反应堆的安全壳是防止放射性泄漏的四道 安全屏障,不会造成放射性危害。
100%Pn时一回路状态
四、核电站停堆过程
停堆时首先按照一定的速率降负荷,当 负荷低到一定程度时(约5MW)汽轮机跳 闸,同时发电机解列。随后继续硼化或 者插入G棒,降低功率到2%Pn以下,使 机组处于热备用状态。
三、堆芯剩余热量
核电站停堆后,反应堆内部还会继续产生热量,称 这部分热量为剩余热量或剩余功率。 剩余功率是由裂变产物的β 和γ 衰变产生的热量, 所以在停堆后必须不断地冷却反应堆堆芯,因此核 电站中设置余热排出系统。
四、核电站系统和操作复杂
五、采用微过热蒸汽
受到传热温差的限制,大多数核电站采用微 过热蒸汽或者饱和蒸汽。
第二节 核电站启动和停堆过程
一、反应堆标准运行方式
对于压水堆核电站,反应堆的标准运行方式包括 以下几种: (1)冷停堆 (2)中间停堆 (3)热停堆 (4)热备用 (5)功率运行
二、反应堆逼近临界时的操作原则
(1)温度:必须避免引起一回路平均温度变化的任何操 作; (2)反应性变化:在逼近临界的过程中,在任何时间 内,只允许使用一种方法来控制反应性的 变化,即改变硼浓度或者控制棒棒位不允 许同时进行; (3)反应性控制:逼近临界时,中子通量 倍增时间必须大于18秒。
三、反应堆启动过程 ★ 一回路充水排气
★ 一回路升温、稳压器建立汽腔
★ 继续升温至热停
堆
一回路热停堆状态
★ 反应堆达到临界
★ 提升功率到2%Pn(Pn为
核电站的额定功率)
2%Pn状态下一回路温度、压力和流量
★ 汽轮机冲转和发电机 并网 ★ 升负荷至100%Pn
100%Pn时控制棒位置: