圆心角圆周角与弦切角圆内角与圆外角
弧、弦、圆心角、圆周角--知识讲解(基础)

弧、弦、圆心角、圆周角--知识讲解(基础)【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
【初中数学】初中数学知识点:圆心角,圆周角,弧和弦

【初中数学】初中数学知识点:圆心角,圆周角,弧和弦圆的定义:在同一平面上,到固定点的距离等于固定长度的一组点称为圆。
这个固定点叫做圆心。
圆的长度是圆的周长。
弧:圆上任意两点之间的部分称为弧,简称弧。
弧用符号“⌒”表示以a,b为端点的弧记作“,读“弧AB”或“弧AB”。
优弧:大于半圆的弧(多用三个字母表示);下弧:比半圆小的弧(通常用两个字母表示)圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
圆弧、弦、弦中心距与圆心角的关系定理:在同一圆或等圆中,等中心角的圆弧相等,等中心角的弦相等,等中心角弦的弦中心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
中心角:顶点在圆心的角叫做圆心角。
圆周角:顶点位于圆上且两侧与圆相交的角度称为圆周角。
圆周角的顶点在圆上,它的两边为圆的两条弦。
中心角特征识别:①顶点是圆心;② 两边都与圆周相交。
计算公式:① L(弧长)=n/180XπR(n为圆心角的度数,下同);②s(扇形面积)=n/360xπr二;③ 扇形中心角n=(180L)/(πR)(度)。
④k=2rsin(n/2)k=弦长;n=弦所对的圆心角,以度计。
中心角定理:圆心角的度数等于它所对的弧的度数。
理解:(定义)(1)等弧对等圆心角(2)将圆心顶点的圆周角分成360个部分时,每个部分的中心角为1°(3)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(4)圆的中心角的度数等于它们相对的弧的度数推论:如果每组(2)中的两个和弦具有相同的中心,那么如果每组(2)中的两个和弦具有相同的中心,则其他两个和弦对应于相同的圆与圆周角关系:在同一圆或等圆中,同一圆弧或弦的圆周角等于中心角的一半。
定理证明:分三种情况讨论,始终做直径cod,利用等腰三角形等腰底角相等,外角等于两内角之和来证明。
圆的十八个定理是什么

圆的十八个定理是什么定理是经过受逻辑限制的证明为真的陈述。
一般来说,在数学中,只有重要或有趣的陈述才叫定理。
证明定理是数学的中心活动。
扩展资料圆的十八个定理1、圆心角定理:在同圆或等圆中,相等的圆心角所对弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
推论2 :圆的两条平行弦所夹的弧相等。
4、切线之判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。
5、切线长定理:从圆外一点引圆的两条切线,他们的切线长相等,这一点与圆心的连线平分这两条切线的夹角。
6、公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。
如果他们相交,那么交点一定在两圆的'连心线上。
7、相交弦定理:圆内两条弦相交,被交点分成的两条线段长的乘积相等。
8、切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长的比例中项。
9、割线长定理:从圆外一点向圆引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
10、切线的性质定理:圆的切线垂直于经过切点的半径推论1 :经过圆心且垂直于切线的直线必经过切点。
推论2:经过切点且垂直于切线的直线必经过圆心。
11、弦切角定理:弦切角等于它所夹的弧对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
九年级圆心角、圆周角讲义

圆心角、圆周角知识要点1.圆心角:顶点在圆心的角弧、弦、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
弧、弦、圆心角关系定理:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们其余各组量也相等。
2.圆周角:顶点在圆上,并且两边都与圆相交的角圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
推理:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
3.圆内接四边形的性质圆的内接四边形定理:圆的内接四边形的对角互补。
(外角等于它的内对角) 4.四点公圆的证明一个四边形若有一组对角是直角,则这个四边形的四个顶点一定在同一个圆上,即这个四边形一定有一个外接圆。
基础知识测试: (一)圆心角1.下列命题正确的是( C )A 相等圆心角所对的弧相等B 等弧对等弦C 在同圆或等圆中,相等的弦所对的弧相等D 相等的圆心角所对的弦相等2.已知弧AB 、弧CD 是同一圆中的两段劣弧,且弧AB =2弧CD ,则弦AB 与CD 的关系是( B ) A AB =2CD B AB <2CD C AB >2CD D 无法判断3.在⊙O 中,P 为直径AB 上一动点,C 、D 为两半圆上的两动点,CD 交AB 于H ,则以下说法:(1)若弧AC =弧AD ,则∠APC =∠APD ;(2)若PC =PD ,则∠APC =∠APD ;(3)若∠APC =∠APD ,则CH =HD 。
其中正确的个数是( D )A 0个B 1个C 2个D 3个4.如图,A 、B 、C 为⊙O 上三点,D 、E 分别为)AB 、)AC 的中点,连接DE 分别交AB 、AC 于F 、G ,求证:AF =AG .证明:连结OD 、OE ,∵D ,E 分别是)AB 、)AC 的中点,∴OD ⊥AB ,OE ⊥AC , ∴∠D +∠DFB =90°,∠E +∠EGC =90°, ∵OD =OE ,∴∠D =∠E ,41.如图,若AB =B C .则图中与∠ADB 相等的圆周角的个数为 3 .2.如图,直线AB 交圆于点A ,B ,点M 在圆上,点P 在圆外,且点M 、P 在AB 的同则,∠AMB =50°,设∠APB =x °.当点P 移动时,3.(1)如图,AB 为⊙O 的直径,C ,D ,E 是⊙O 上的三点,则∠1+∠2的度数= 90° .(2)如图,A ,B ,C ,D ,E 是同一圆上顺次的五点,∠CAD =80°,则∠ABC +∠AED 等于 260° .4. 如图,⊙O 中,若∠AOB =100°,则∠C = 50° ,∠D = 130° .5. (1)圆的弦长恰好等于该圆的半径,则这条弦所对的圆周角是 60或120 度. (2)△ABC 内接于⊙O ,∠AOB =100°, 则∠ACB = 50或130 度.6.如图,PAB 、PCD 是⊙O 的两条割线,PAB 经过圆心O ,若弧AC =弧CD ,∠P =30°,则∠BDC 的度数是 110°.7.如图,A 、B 、C 、D 为⊙O 上四点,AB、DC 交于点AD 、BC 交于E 点,若∠E =40°,∠F =30°, 则∠A 的度数为 55°.B1.如图,在四边形OABC 中,OA =OB =OC ,若∠ACB =35°,则∠AOB 的度数是 70° .2.如图,在矩形ABCD 中,AB =4,AD =6,E 是A 8边的中点,是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△EB ’F ,连接B 'D ,则B 'D3.如图,△ABC ,△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,求线段BM 长的最小值.解:连结AD 、DG ,根据旋转角相等,旋转前后的对应线段相等,容易发现∠ADG =∠FDC ,DA =DG ,DF =DC ,故∠DFC =∠DCF =∠DAG =∠DG A . 又根据等腰三角形的“三线合一”可知∠FDG =90°,所以∠DFG +∠DGF =90°,即∠DFC +∠CFG +∠DGF =90°.所以∠AMC =∠MGF +∠CFG =∠AGD +∠DGF +∠CFG =∠DFC +∠DGF +∠CFG =90°. 故点M 始终在以AC 为直径的圆上,作出该圆,设圆心为O ,连结BO 与⊙O 相交于点P ,线段BP 的长即为线段BM 长的最小值.BP =AO -OP 1.4.如图,△ABC 中,BC =4,∠BAC =45°,以为半径,过B ,C 两点作⊙O ,连OA ,则线段OA 的最大值综合、提高、创新:【例1】1.如图,BC是⊙O的直径,»AB=»AF,AD⊥BC于D,BF与AD交于E点(1)求证: AE=BE:(2)求证BF=2AD(3)若点A、F把半圆三等分,BC=12,求AE的长度,解:(1)连AC,如图,∵BC为⊙O的直径,∴∠BAC=90°,又∵AD⊥BC,∴∠BAD=∠ACB,又∵»AB=»AF,∴∠ACB=∠ABF,∴∠ABE=∠BAE,∴AE=BE;(2)∵A,F把半圆三等分,∴∠ACB=∠CBF=∠ABF=30°,∴∠BAD=30°,在Rt△ABC中,BC=12,所以AB=12BC=6,在Rt△ABD中,AB=6,所以BD=12AB=3,Rt△BDE中,∠CBF=30°,BD=3,∴DE=BE=AE=2.如图,△ABC内接于⊙O、AD⊥BC,D为垂足,E是»BC中点,求证:∠EAO=∠EA D.证明:(1)连接OB,则∠AOB=2∠ACB,∠OAB=∠OBA,∵AD⊥BC,∴∠OAB=12(180°-∠AOB)=90°-12∠AOB=90°-∠ACB=∠DAC,∵E是弧BC的中点,∴∠EAB=∠EAC,∴∠EAO=∠EAB-∠OAB=∠EAC-∠DAC=∠EA D.(2)连接OE,∵E是»BC的中点,∴弧BE=弧EC,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OE=OA,∴∠OAE=∠OEA,∴∠OAE=∠EA D.1、如图,AB为直径,CD是弦,AB⊥C D.(1) P是弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB .(2)点P’在劣弧CD上(不与C、D重合)时,∠CP’D与∠COB有什么数量关系?请证明你的结论.(1)证明:连接OD,∵AB是直径,AB⊥CD,∴»BC=»BD∴∠COB=∠DOB=12∠CO D.又∵∠CPD=12∠COD,∴∠CPD=∠CO B.(2)解:∠CP′D+∠COB=180°.理由如下:连接OD,∵∠CPD+∠CP′D=180°,∠COB=∠DOB=12∠COD,又∵∠CPD=12∠COD,∴∠COB=∠CPD,∴∠CP′D+∠COB=180°.2、如图,AB是⊙O的直径,弦CD⊥AB于H,P是AB延长线上一动点,CP交⊙O于Q,DQ交AB于E.试问:当P点在AB延长线上运动时,∠OPC与∠ODQ是否保持某种特定的关系?证明你的结论.∠OPC=∠ODQ,理由简要如下:延长DO交圆O于F,①圆外角∠P=1/2(弧AC-弧BD)②OC=OD,OB⊥CD,∴∠COB=∠DOB=∠AOF,∴弧AF=弧BC,∴弧AC=弧BF,∴弧AC-弧BD=弧BF-弧BD=弧FQ=1/2∠QDF,∴∠OPC=∠ODQ1、如图1,锐角△ABC的三个顶点都在⊙O上,高AD、BE所在直线交⊙O于H,AD所在直线交⊙O于G. (1)求证:DH=DG;(2)将“锐角△ABC”改为“钝角△ABC,∠BAC为钝角”其他条件不变,完成图2,试问(1)中的结论是否仍成立?证明你的结论.图1 图2证明:连接BG∵BE⊥AC,AD⊥BC∴∠BEC=90,∠ADC=90∵∠ACB+∠DHE+∠BEC+∠ADC=360∴∠ACB+∠DHE=180∵∠DHE+∠BHG=180∴∠ACB=∠BHG∵∠ACB、∠AGB所对应圆弧都为劣弧AB∴∠ACB=∠AGB∴∠AGB=∠BHG∵AD⊥BC∴DG=DH(等腰三角形中垂线)证明:连接BG∵BE⊥AC,AD⊥BC∴∠BEA=90,∠ADB=90∵∠EBD+∠EAD+∠BEA+∠ADB=360∴∠EBD+∠EAD=180∵∠EAD+∠GAC=180∴∠EBD=∠GAC∵∠GAC、∠GBC所对应圆弧都为劣弧GC∴∠GAC=∠GBC∴∠GBC=∠EBD∵AD⊥BC,BD=BD,∴△BDG全等于△BDH,∴DG=DH2如图,已知△ABC的三个顶点都在⊙O上,过圈心O作BC的垂线交⊙O于P、Q,交BC于D,QP、CA的延长线交于点E,求证:∠BAO=∠E.证明:作直径AM,连接BM,∵∠C和∠M都对弧AB,∴∠C=∠M,∵OQ⊥BC,∴∠EQC=90°,∴∠C+∠E=90°,【例4】如图,在直角坐标系中,M为x轴上一点,⊙M交x轴于A、B,交y轴于C、D,P为»BC上的一个动点,CQ平分∠PCD,交AP于点Q,A(-1,0),M(1,0).(1)求C点的坐标;(2)当P点运动时,线段AO的长度是否会改变?若不变,请证明并求其值:若改变,请说明理由解:(1)由勾股定理易得C(0;(2)当P点运动时,线段AO的长度不会改变,由垂径定理知,»»,AC AD=∴∠P=∠ACD,∵CQ平分∠PCD,∴∠P+∠PCQ=∠ACD+∠DCQ,即∠ACQ=∠AQC,∴AQ=A C.在Rt△OCA中,OC OA=1,∴AC=2∴线段AO的长度不会改变,为2.【例5】在⊙O中,AB为直径,点C为圆上一点,将劣弧»AC沿弦AC翻折AB点于点D,连接C D. (1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O重合,∠BAC=25°,请直接写出∠DCA的度数.解答:(1)如图:过O作OE⊥AC于E,则AE=11,2AC=∴OE=1,2r在Rt△AOE中,OE=1,2r,AE=1,得r(2)连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=25°,∴∠B=65°,根据翻折性质,»AC所对的圆周角为∠B,¼ABC所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∴∠B=∠CDB=65°,∴∠DCA=∠CDB-∠A=40°【例6】在⊙O 中,AB 为直径,弦CD ⊥AB 于E ,E 是AO 的中点, P 是»BC上的动点,求PC PD PA+ 的值。
12圆心角与圆周角、切线判定

第二节:圆心角与圆周角、切线判定知识点1:圆心角【笔记】1 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等. 推论:在同圆或等圆中,如果两个圆心角以及这两个角所对的弧、多对的弦、所对弦的弦心距中,有一组量相等,那么其余各组量都分别相等.简记为:圆心角相等→弧相等→弦相等→弦心距相等2 圆周角、圆心角定理:定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.推论2:半径或直径所对的圆周角是直角;90︒的圆周角所对的弦是直径. 几何语言:① ∵AB 是直径 ∴ ② ∵90ACB ∠=︒ ∴ 如下三个图,分别证明圆周角定理:推论:半圆(或直径)所对的圆周角是 , 所对的 是直径。
【例题】【例1】如图,AD 是⊙O 的直径,且6AD =,点,B C 在⊙O 上,弧AmB 和弧AnC 相等,120AOB ∠=︒,点E 是线段CD 的中点,则OE =( )A .1B .C .3D .【例2】如图,已知,,A B C 三点在⊙O 上,AC BD ⊥于点D ,55B ∠=︒,则BOC ∠的度数是【例3】已知ABC ∆的外接圆O 的半径为3,4AC =,则sin B =( )A.13 B.34 C.45 D.23【例4】如图,AB 是⊙O 的弦,OH AB ⊥于点H ,点P 是优弧上一点,若AB =1OH =,则APB ∠的度数是【练习】1.<1分钟>如图,AB 是⊙O 的直径,弧BC =弧CD =弧DE ,34COD ∠=︒,则AEO ∠的度数是( )A .51︒B .56︒C .68︒D .78︒2.<1分钟>如图,BD 是⊙O 的直径,30CBD ∠=︒,则A ∠的度数为( )A .30︒B .45︒C .60︒D .75︒3.<2分钟>如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,B 是y 轴右侧⊙A 优弧4.<2分钟>如图,已知⊙O 的半径为1,锐角ABC ∆内接于⊙O ,BD AC ⊥于点D ,OM AB ⊥于点M ,则sin CBD ∠的值等于( )A .OM 的长B .2OM 的长C .CD 的长 D .2CD 的长【补救练习】1.如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,若4BC CD D A c m ===,则⊙O的周长为( )A .5πcmB .6πcmC .9πcmD .8πcm2.如图,⊙O 的弦CD 与直径AB 相交,若35ACD ∠=︒,则BAD ∠=( )A .55︒B .40︒C .35︒D .30︒3.如图,ABC ∆内接于⊙O ,45C ∠=︒,2AB =,则⊙O 的半径为( )A.1B. 22C.2 24.如图,ABC ∆内接于⊙O ,OD BC ⊥于D ,50A ∠=︒,则OCD ∠的度数是 .知识点2:圆内接四边形 【笔记】定理:圆的内接四边形的对角互补,且任何一个外角等于它的内对角.【例题】【例1】如图,两圆相交于,A B 两点,小圆经过大圆的圆心O ,点,C D 分别在两圆上,若100ADB ∠=︒,则ACB ∠的度数为( )A. 35︒ B .40︒ C .50︒ D .80︒【例2】如图,点,,,A B C D 在⊙O 上,O 点在D ∠的内部,四边形OABC 为平行四边形,则OAD OCD ∠+∠=_______________°.【例3】如图,在ABC ∆中,以BC 为直径的圆分别交边,AC AB 于,D E 两点,连.若BD 平分ABC ∠,则下列结论不一定成立的是( )A .BD AC ⊥B .22AC AB AE =∙ C .ADE ∆是等腰三角形D .2BC AD =【练习】1.<2分钟>如图,四边形ABCD 内接于⊙O ,若它的一个外角70DCE ∠=︒,则ÐBOD =( )A .35︒ B.70︒ C .110︒ D.140︒2.<2分钟>如图,⊙O 中,ABCD 是圆内接四边形,110BOC ∠=︒,则BDC ∠的度数是( )A. 110︒B.70︒C.55︒D .125︒3.<2分钟>如图,四边形ABCD 内接于⊙O ,并且AD 是⊙O 的直径,C 是弧BD 的中点,AB 和DC 的延长线交⊙O 外一点E .求证:BC EC =.【补救练习】1.如图,⊙C 过原点,且与两坐标轴分别交于点A ,点B ,点A 的坐标为(0,3),M 是第三象限内弧上一点,120BMO ∠=︒,则⊙C 的半径为( )A .6B .5C .3D .22.如图,点,,,A B C D 在⊙O 上,O 点在D ∠的内部,四边形OABC 为平行四边形,求OAD OCD ∠+∠的度数.3.如图,已知,,,A B C D 是⊙O 上的四点,延长,DC AB 相交于点E ,若DA DE =,求证:BCE ∆是等腰三角形.知识点3:切线的判定和性质【笔记】1.切线判定:经过半径外端点并且垂直于这条半径的直线是圆的切线.2.切线性质:圆的切线垂直于经过切点的半径.3.切线长定理:从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.=为圆的两条切线,根据切线长定理,写出两个结如图所示,P为⊙O外一点,PA PB论:,4.切线的判定方法:(1),这条直线是圆的切线;(利用切线的定义)(2),这条直线是圆的切线;(利用r与d的关系)(3),这条直线是圆的切线;(利用切线定理)5.拓展:圆外切四边形两组对边的和相等.E F G H分别为切点,则有如图所示,⊙O是四边形A B C D的内切圆,点,,,+=+.AB CD AC BD【例1】如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为D ,CD 与AB 的延长线交于点C ,30A ∠=︒,给出下面3个结论:①AD CD =;②BD BC =;③2AB BC =,其中正确结论的个数是( )【例2】已知:如图,ABC ∆中,以AB 为直径的⊙O 交AC 于点D ,且D 为AC 的中点,过D 作DE CB ⊥,垂足为E .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)已知4CD =,3CE =,求⊙O 的半径.1.如图,P 为⊙O 的直径BA 延长线上的一点,PC 与⊙O 相切,切点为C ,点D 是⊙上一点,连接PD .已知PC PD BC ==.下列结论:(1)PD 与⊙O 相切;(2)四边形PCBD 是菱形;(3)PO AB =;(4)120PDB ∠=︒. 其中正确的个数为( )A . 4个B .3个 C . 2个 D . 1个2.如图,ABC ∆内接于⊙O ,AB 是⊙O 的直径,延长AB 到D ,连接CD .请你结合图形,编写一道题.要求:再补充两个已知条件,并写出在所有已知条件下得出的一个结论.例如:“补充已知:OB BD =,CD 切⊙O 于点C ,求证:A D ∠=∠“补充已知: .求证: .”【补救练习】1.如图3,,PA PB 切⊙O 于点,A B ,点C 是⊙O 上的一点,且65ACB ∠=︒,则P ∠=____________2.如图,在Rt ABC ∆中,90ACB ∠=︒,点O 在AB 上,⊙O 经过点A ,且与BC 相切于点D(1)求证:AD 平分BAC ∠;(2)若5BD =,3CD =,求AD 的长.。
圆心角,圆周角,圆内角,圆外角的定义及计算方法

圆心角,圆周角,圆内角,圆外角的定义及计算方法圆心角是指以圆心为顶点的角,其大小等于其所对弧所对应的圆周角的两倍。
圆心角是圆内角的一种特殊情况。
圆周角是指以圆上两点为端点的弧所对应的角。
圆周角的大小由所对应的弧所占的圆周长来确定。
根据圆周角的范围,可以分为两类:小于半圆的圆周角称为锐圆周角,大于半圆的圆周角称为钝圆周角。
圆内角是指以圆的弧上两点为端点的角,其顶点在圆内部。
圆内角的大小由所对应的弧所占的圆周长来确定。
圆外角是指以圆的弧上两点为端点的角,其顶点在圆的外部。
圆外角的大小等于其所对应的圆内角的补角。
计算圆心角的方法:1.如果知道圆心角所对应的弧的长度,可以利用圆心角公式求得圆心角的大小。
圆心角的度数等于所对应弧的长度除以圆周长再乘以360度。
弧所对应的圆心角度数=弧长/圆周长× 360度2.如果知道圆心角所对应的弧所占的圆周角度数,可以利用圆心角公式求得圆心角的大小。
圆心角的度数等于所对应圆周角的度数的一半。
圆心角的度数=圆周角的度数/ 2计算圆周角的方法:1.如果知道圆周角所对应的弧的长度和圆的半径,可以利用圆周角公式求得圆周角的大小。
圆周角的度数等于所对应弧的长度除以圆的半径。
圆周角的度数=弧长/圆的半径2.如果知道圆周角所对应的弧所占的圆周角度数,可以直接读取圆周角的度数。
计算圆内角的方法:1.如果知道圆内角所对应的弧的长度和圆的半径,可以利用圆内角公式求得圆内角的大小。
圆内角的度数等于所对应弧的长度除以圆的半径。
圆内角的度数=弧长/圆的半径2.如果知道圆内角所对应的圆周角度数,可以利用圆周角公式求得所对应弧的长度,再根据弧的长度求得圆内角的大小。
计算圆外角的方法:1.如果知道圆外角所对应的圆周角度数,可以利用圆周角公式求得所对应弧的长度,再根据弧的长度求得圆内角的大小。
最后利用圆内角的补角关系求得圆外角的大小。
圆外角度数= 180度-圆内角度数2.如果知道圆外角所对应的弧的长度和圆的半径,可以利用圆外角公式求得圆外角的大小。
圆的概念 弧、圆心角、圆周角、弦 知识点+例题+练习(分类全面)

例题
1:圆的性质应用
例 1 如图,CD 是⊙O 的直径,BE 是⊙O 的弦,DC、EB 的延长线相交于点 A.若∠A=25°, AB=OC,求∠EOD 的度数.
2:利用圆的性质进行证明
例1如图,⊙O 的半径OA、OB 分别交弦C D 于点E、F,且CE=DF.试说明∠OEF 与∠OFE 的关系.
例 2 如图,O为AB所在圆的圆心,已知OA⊥OB,M为弦AB的中点,且MC∥OB交AB于点C.求AC的度数.60
延长CM交OA于E,OE=1/2 OA=1/2 OC
3:圆的性质和矩形性质综合
例 1 如图,点 A、D、G、M 在半圆 O 上,四边形 ABOC、DEOF、HMNO 为矩形,设 BC=a,EF=b,NH=c.则下列各式正确的是( )
A.a>b>c B.a=b=c C.c>a>b D.b>c>a
4:点与圆的位置关系中分类讨论思想
例1若⊙O 所在平面上的一点P到⊙O 上的点的最大距离是10,最小距离是2,则此圆的半径为
5:利用圆的定义与直角三角形的性质综合进行证明
例1、已知:如图,BD、CE 是△ABC 的高,M 为B C 的中点,试说明点B、C、D、E 在以点M为圆心的同一个圆上.
例2、如图,在□ABCD 中,∠BAD 为钝角,且A E⊥BC,AF⊥CD. (1)求证:A、E、C、F 四点共圆;
(2)设线段B D 与(1)中的圆交于点M、N.求证:BM=ND.。
圆中有关的角

年 级 初三 学 科 数学 编稿老师 田一鹏 课程标题 圆中有关的角一校 张琦锋二校林卉审核孙永涛一、考点突破1. 掌握和圆有关的角:圆心角、圆周角、圆内角、圆外角、弦切角的定义及其度量。
2. 掌握圆内接四边形的性质定理。
3. 了解弧、弦、圆心角、圆周角之间的关系,并能运用这些关系解决有关问题。
二、重难点提示重点:弧、弦、圆心角、圆周角之间的关系。
难点:圆周角定理的应用和分类讨论的思想在解题中的应用。
一、圆中有关的角⎧⎪⎪⎪⎨⎪⎪⎪⎩圆心角圆周角圆中有关的角圆内角圆外角弦切角1. 圆心角:顶点在圆心的角叫做圆心角。
OCB把整个圆周等分成360份,每一等份弧是1°的弧,圆心角的度数和它所对的弧的度数相等。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们相对应的其余各组量都相等。
2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
OBCA一条弧所对的圆周角等于它所对的圆心角的一半,同弧或等弧所对的圆周角相等;反之也成立。
直径所对的圆周角是直角。
BCAO3. 圆内角:顶点在圆内(两边自然和圆相交)的角叫圆内角。
P OBA圆内角的度数等于它所对的弧的度数与它的对顶角所对的弧的度数的和的一半。
DPB COA4. 圆外角:顶点在圆外,并且两边都和圆相交(或相切)的角叫圆外角。
DPBCAO圆外角的度数等于它所夹的两弧度数的差(较大弧的度数减去较小弧的度数)的一半。
5. 弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
弦切角等于它所夹的弧对的圆周角。
推论①弦切角等于它所夹的弧所对的圆心角的一半。
推论②如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
二、圆的内接四边形如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圓心角、圓周角與、弦切角、圓內角與圓外角壹、教學活動設計
一、教學年級:九年級上學期
二、教學者:彰化縣芬園國中蔡肇哲老師
三、教學目標:認識圓心角、圓周角與、弦切角、圓內角與圓外角的各種性質(角度、弧度、弧長)。
四、活動目標:
1.複習之前學過的幾何量:弧、弦、扇形;介紹圓心角及弧的度數並引入弧長與扇形面積計算的公式。
2. 透過命名活動對圓與各種直線所形成角之間的關係進行了解,並討論分類各種狀況(圓心角、圓周角與、弦切角、圓內角與圓外角)。
3.介紹圓心角、圓周角與、弦切角、圓內角與圓外角與所對弧度數關係。
4.能證明圓心角、圓周角與、弦切角、圓內角與圓外角與所對弧度數關係。
5.能上台作圓心角、圓周角與、弦切角、圓內角與圓外角等圖並寫出與所對弧度的關係。
五、教學概要說明:
本單元主要仍以問答法為主,學生上台發表作圖說明為輔,配合學習單並使
用翰林出版社所提供圓心角單元教學,讓學生清楚所學習的內容及進度;教
師將學生分組以兼顧檢驗大部分同學之思考方式和及時的個別指導。
課程的設計及安排如下:
學習單
班級:座號:姓名:
一、畫出各種符合「角的兩邊與圓有都有交點」的角。
盡可能的變
化不同類型。