初一数学实际问题与一元一次方程教案

合集下载

苏版初中数学课标版初一上册第三章实际问题与一元一次方程(第1课时)教案

苏版初中数学课标版初一上册第三章实际问题与一元一次方程(第1课时)教案

苏版初中数学课标版初一上册第三章3一、内容和内容解析1.内容建立方程模型解决配套问题和工程问题.2.内容解析配套问题和工程问题是生活中的常见问题,具有一定的电视性和开发性.生活中的数学问题大多是具有开放性的问题,因此对这类问题的探究是“数学回来生活,服务于生活”的需要.本节课是3.4节“实际问题与一元一次方程”的第一课,所设置的探究内容不仅是具体问题,更是通过问题的解决过程让学生体验“建模解题”的过程,为研究其它实际问题渗透建模思想.建模解题大致分为三个环节:将实际问题转化为数学模型(建立模型)、解决数学模型、利用模型结论说明实际问题,在这三个环节中“建立模型“尤为重要,需要学生具有一定的分析、转换能力.在配套和工程问题中建立模型的关键有两个,一是明白得配套问题和工程问题的差不多常识,二是发觉并利用相等关系确立方程模型.基于以上分析,确定本节课的教学重点:建立配套问题和工程问题的方程模型.二、目标和目标解析1.目标(1)体验建立方程模型解决问题的一样过程.(2)体会转化思想和方程思想,增强应用意识和应用能力.2.目标解析达成目标(1)标志是:经历以下过程:通过查找等量关系将配套问题和工程问题转化为方程问题、解决方程问题、利用方程问题的结论说明配套方案及工程方案.达成目标(2)的标志是:配套的比例是什么;如何依照配套比例查找相等关系;工作总量与工作效率、工作时刻之间的关系是什么?如何借助图表寻求工程问题中的相等关系;相等关系的数学模型—方程的建立对问题整体分析的重要性等等。

三、数学问题诊断分析学生通过之前的学习,把握了一元一次方程的解法,以及解决简单实际问题的方案,而关于在典型问题中应用方程模型,还缺乏结局问题的体会,容易无所适从或片面明白得.学生一样能够发觉“配套问题”和“工程问题”的解决要依靠于寻求等量关系,但缺乏系统有效的构建模型方法,会显现等量确定不准确的问题;同时学生缺乏将实际问题数学化,然后利用数学原理来说明问题的意识.关于本节课的问题,学生不是完全没有基础,知识在思维方式的逻辑性和解决方法的科学性方面有待清晰的梳理和规范,因此本节课针对以上问题,实施以下三个步骤:(1)先由学生依照问题情境独立摸索并表述对问题的认识;(2)通过借鉴其他同学的观点再次摸索、讨论;(3)教师在学生认识的基础上加以点播,引导学生数学化地解决问题,而后学生形成系统认识并解决问题.本节课的教学难点是:由实际问题抽象出数学模型的探究过程.四、数学支持条件分析依照本节课内容的特点,为了更直观、形象地突出“配套问题”和“工程问题”中的等量关系,可借助信息技术工具,将实际问题中的数量关系转化为表格或图形,关心学生确定探究方向,验证探究结论.五、数学过程设计1.创设情境,初步认知例题1 某车间有22名工人,每人每天能够生产1200个螺钉或2021个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?教师提问,学生摸索、回答.教师对学生回答的方向适当给予提示,如先寻求生产螺母人数如何用含x的代数式表达,再去寻求每天能生产多少个螺钉,多少个螺母.设计意图:通过提问和学生回答,了解学生对问题信息的明白得能力,引导学生对问题信息通过表格做初步梳理和简单加工;通过对表格填空,检验学生是够明白得问题信息的含义,并渗透如何寻求等量关系.2. 深入探究,尝试合作师生活动:教师提问,通过填写表格,你对题目中的螺钉和螺母的数量关系有什么认识?学生摸索回答.依照学生的回答,教师适当加以引导,利用“1个螺钉需要配2个螺母”的条件,得出每天螺钉生产数量和螺母生产数量之间的关系,从而列出方程:2×1200x=2021(22-x)注意:教师要关注学生在寻求等量时是否准确,是否显现螺钉数量是螺母数量的两倍或直截了当认为螺钉数量等于螺母数量等配套错误的现象.设计意图:学生通过对表格信息的探究,参考其他同学对问题中数量关系的观点后再次对问题进行认识,其认识过程与结论差不多逐步接近正确而合理的方向,教师在此基础上加以引导和启发,关心学生确定建立模型的研究方式,是学生的学习由“感性认识”逐步过渡到“理性分析”.师生活动:学生解方程,教师巡视,注意收集错例进行展现,由学生分析错误缘故,师生共同梳理规范解方程过程.设计意图:在得出方程模型的结论之后,学生再次认识去括号解一元一次方程的方法,在解答过程中进一步补充不严密、不完善的地点,加深对去括号解方程的认识.例题2 整理一批图书,由一个人做要40h完成,现打算由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?师生活动:教师引导提问,学生讨论交流.(1)人均效率(一个人做1小时完成的工作量)为 .(2)设先安排x 人,则先做4小时,完成的工作量为 . 再增加2人和前一部分人一起做8小时,完成的工作量为 .(3)这项工作分两段完成,两段完成的工作量之和为 .(4)完成下面表格:学生讨论交流,分小组展现成果,比比谁快、准.教师适当加以引导,利用人均效率、工作人数、工作时刻和工作量之间的关系,从而列出方程.注意:教师要关注学生在确定两时期工作量关系时是否准确,同时收集错例展现,并关注去分母解方程的过程是否正确.设计意图:通过活动使学生把握在工程问题中,通常把全部工作量简单表示为1.并得出运算工作量的差不多公式是:工作量=人均效率×人数×时刻. 假如一件工作分几个时期完成,那么“各时期工作量的和=总工作量”.师生活动:教师引导学生讨论归纳用一元一次方程解决实际问题的差不多过程.这一过程一样包括审、设、列、解、验、答等步骤,即审题、设未知数,列方程,解方程,检验所得结果,确定答案.正确分析问题中的相等关系是列方程的基础.设计意图:通过归纳解题的一样过程,使学生得到“方程模型“,初步体会建立模型思想在解决实际问题中的应用.3.巩固新知,应用拓展设未知数、列方程检 验练习1:一套仪器由一个A部件和三个B部件构成. 用13m钢材能够做40个A部件或240个B部件. 现要用6 3m钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?练习2:一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 假如由这两个工程队从两端同时施工,要多少天能够铺好这条管线?设计意图:在完成了对例题的探究和解题一样过程的归纳后,通过练习使学生刚刚猎取的体会得到进一步的巩固和深化,进一步熟悉利用建模思想解决解决问题的方法和过程,从而提高分析和解决问题的能力.4.归纳总结,反思提高教师与学生一起回忆本节课所学要紧内容,并请学生回答以下问题:本节课学习了哪些要紧内容?在探究过程中你有哪些收成?设计意图:在总结了本课知识性问题之后,连续引导学生总结本节课的过程和方法,使学生原先模糊的意识、零散的体会得以梳理,从而初步把握探究同类问题的一样思路,完成建模解题的完整过程.5.布置作业必做:教科书106页习题3.4第3-5题;选做:自己设计一道配套问题或工程问题.六、目标检测设计1.用白铁皮做罐头盒,每张白铁皮可制盒身16个或盒底43个,一个盒身与两个盒底配成一套罐头盒.现有150张白铁皮,可用多少张白铁皮制盒身、多少张白铁皮制盒底能够正好制成整套罐头盒而无余料?2.整理一批图书,假如由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?设计意图:检测学生对“配套”方程解决实际问题的能力.提示:设用x 张白铁皮制盒身,(150-x )张白铁皮制盒底,列方程2×16x=43(150- x ),解得x =86,150-86=64.2.本题要紧考查列一元一次方程解决工程问题的能力.提示:设先安排整理的人员有x 人,列方程130)6(230=++x x ,解得x=6.。

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。

符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。

同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。

为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。

教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。

本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。

教学方法是“引导分类归纳”。

本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)随着时光的流逝,新的一个学期又开始了,为了更好的完成新学期的教育教学工作,使以后的工作有目的、有计划、有组织的顺利的进行,这次帅气的小编为您整理了数学《一元一次方程》教学设计(优秀3篇),希望大家可以喜欢并分享出去。

教学目标:篇一知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。

过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。

情感与态度:增强应用数学的意识,激发学习数学的热情。

教学重点:从实际问题中寻找相等关系。

教学难点:从实际问题中寻找相等关系。

学习路线:篇二1、阅读课本。

2、完成以下学习任务:(1)章前图中的汽车匀速行驶途经王家庄、青山、秀水三地,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。

求王家庄到翠湖的路程?①列算式用算术方法解决这个实际问题:____________________②用方程来解决这个实际问题:先画示意图:再找相等关系来列方程:(小组交流,讨论多种方法)(2)方程的概念:___________________________判断以下式子哪些是方程?是的画3+1=4; ;(3)根据下列问题列方程:①用一根长24cm的铁丝围成一个正方形,设正方形的边长是x cm,则可列方程:________②一台计算机已使用1700小时,预计每月再使用150小时,经过x 月这台计算机的使用时间达到规定的检修时间2450小时,则可列方程:____________________③某校女生占全体学生数的52℅,比男生多80人,设这个学校有x 名学生,则可列方程:___________________④课本的三道练习题:(完成后小组批改)(4)一元一次方程的概念:___________________________注意:是整式方程。

(5)什么叫做解方程:____________________________(6)什么叫做方程的解?__________________________(7)括号里的数( =3,=4,=-4)是方程的解有____________归纳:设未知数列方程实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

人教版数学七年级上册《实际问题与一元一次方程》(第2课时)

人教版数学七年级上册《实际问题与一元一次方程》(第2课时)
《实际问题与一元一次方程》 (第2课时)
人教版数学七年级上册
生动有趣的课程,搭配各个互动环节助理您教学成功
感谢所有辛勤付出的人民教师
前言
学习目标
1.会通过列方程解决 “销售盈亏问题”; 2.掌握列方程解决实际问题的一般步骤; 3.理解销售问题中的有关概念及相关数量关系.
重点难点
重点:建立模型解决实际问题的一般方法。 难点:列方程解决 “销售盈亏问题”
利润=售价-成本=120-128=-8(元)
(1 - 0.25) y = 60 y-0.25y=60 0.75y=60 y=80
亏损
用方程解决实际问题的步骤
审:理解并找出实际问题中的等量关系; 设:用代数式表示实际问题中的基础数据; 列:找到所列代数式中的等量关系,以此为依据列出方程; 解:求解; 验:考虑求出的解是否具有实际意义; 答:实际问题的答案.
若盈利利润率为正,若亏损利润率为负。
如何判断盈亏
盈利 亏损 不盈不亏
售价- 进价> 0 售价- 进价< 0 售价- 进价= 0
情景思考(销售盈亏问题)
一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25% ,另一件亏损25% , 卖这两件衣服总的是盈利还是亏损或是不盈不亏?
分析:
【解题关键】先大体估算盈亏,在通过准确计算.
售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )
A.九折
B.八五折
C.八折
D.七五折
课堂测试
合并同类项法则
系数化为1
等式性质2
不要漏
不要漏
1)移动 不
2)注意 1)
2)字母
解的分子
情景引入

第三章 第10课 一元一次方程与实际问题(4)(盈不足问题)-七年级上册初一数学(人教版)

第三章 第10课 一元一次方程与实际问题(4)(盈不足问题)-七年级上册初一数学(人教版)

第三章第10课一元一次方程与实际问题(4)(盈不足问题)-七年级上册初一数学(人教版)一、问题描述小明在某一天上午卖了80张电影票,下午卖了60张电影票,晚上卖了100张电影票。

假设每张电影票的价格都相同,而且这一天的总销售额为500元。

请问每张电影票的价格是多少?二、问题分析设每张电影票的价格为x元,根据题目描述,可以得到以下等式:上午卖出的电影票金额为:80x元下午卖出的电影票金额为:60x元晚上卖出的电影票金额为:100x元根据题目中的总销售额为500元的条件,可以得到以下等式:80x + 60x + 100x = 500三、解一元一次方程根据上述等式,我们先进行方程的解法:240x = 500x = 500 / 240 = 2.08所以,每张电影票的价格为2.08元。

四、验证答案根据求得的每张电影票的价格为2.08元,我们可以进行验证。

上午卖出的电影票金额为:80 * 2.08 = 166.4元下午卖出的电影票金额为:60 * 2.08 = 124.8元晚上卖出的电影票金额为:100 * 2.08 = 208元总销售额为:166.4 + 124.8 + 208 = 499.2元由于涉及到小数,存在一定的四舍五入误差,因此总销售额接近500元,验证结果相符。

五、问题解释根据解的结果,每张电影票的价格为2.08元。

也就是说,小明上午卖了80张电影票,总共收入166.4元;下午卖了60张电影票,总共收入124.8元;晚上卖了100张电影票,总共收入208元。

将这三个金额相加,得到的总销售额为499.2元。

由于涉及到四舍五入,所以总销售额接近500元。

六、不足之处在解一元一次方程的过程中,我们假设每张电影票的价格为x元,但没有对x 进行进一步的讨论,比如是否合理,是否符合实际情况。

因此,这个解只是一种可能的情况,不能完全代表实际情况。

七、总结通过这个问题的分析和解答,我们学到了一元一次方程与实际问题的应用。

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。

今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。

初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。

在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。

这为过渡到本节的学习起着铺垫作用。

合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。

因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。

其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。

教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

教案竞赛实际问题与一元一次方程教案

教案竞赛实际问题与一元一次方程教案

探究(一)销售中的盈亏大连世纪中学初秀娟教案背景:由于本节问题的背景和表达都比较贴近实际,有必要让学生了解,所以设计了此教案教材分析:本课是3.4节《实际问题与一元一次方程》的第一课时,是在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决设计及问题————————销售中的盈亏。

一、教学目标1、理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间关系。

2、能根据数量关系找出等量关系列出方程,掌握商品盈亏的解法。

3、能利用一元一次方程解决商品销售中的实际问题。

二、重点、难点重点:让学生知道商品销售中盈亏的算法。

难点:弄清商品销售中的“进价”、“标价”、“售价”及“利润”的含义。

三、教学方法:通过创设“商场打折销售”这一问题情境,引导学生认识销售问题中的有关概念及其关系,在此基础上探究销售中的盈亏问题。

在经历“猜想。

计算验证”之后归纳解决问题的一般方法,反思学习过程中值得关注的细节。

四、课时安排:1课时五、教具准备:多媒体课件六、教学过程(一)创设情境,导入新课由一幅商场促销打折图片,(百度图片搜索)创设问题情境提出问题:引出本节课题——销售中的盈亏问题你能根据自己的理解说出它的意思吗?进价:购进商品时的价格(有时也叫成本价)售价:在销售商品时的售出价(有时叫成交价、卖出价)标价:在销售时标出的价(称原价、定价)打折:卖货时,按照标价乘以十分之几或百分之几十。

利润:在销售过程中的纯收入。

利润=售价 - 进价利润率:在销售过程中,利润占进价的百分比。

利润率=利润÷进价×100%引例:1、一件衣服500元打9折是______元。

2、某商品的每件销售价是172元,进价120元,则利润是_______元。

3、某商品进价是100元,利润是25元,那么利润率是_________。

4.某商品的进价是200元,利润率是20%,则利润是________元,售价是_______元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习
由学生自主探索解决。
某手机店同时卖出两部手机,每部售价为960元。其中一部盈利20%,另一部亏损20%。卖这两部手机手机店是盈利还是亏损,或是不盈不亏?
巩固本课中商品销售问题及销售盈亏的问题的求法,再次使学生感受到数学的应用价值。
当堂检测
1、完成问题情境中的题目
2、某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况如何?()
⑤、某商品按定价的八折出售,售价是14.8元,则原定售价是元.
教师解释相关数量的含义
提问:这些量之间有何关系?
学生交流得答案,师投影展示各量之间的关系。
学生对进价、标价、售价、打折等商品销售中的一些概念的含义已有一定的知识积累,通过引例,使学生在已有的知识经验基础上引入新课。
提出ቤተ መጻሕፍቲ ባይዱ题
探究新知
问题(教科书103页探究1):某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25﹪,另一件亏损25﹪,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
A、盈利8元B、亏损8元
C、不盈不亏D、无法比较
检查学生对本节知识的掌握程度
课堂小结
由学生谈谈本节课学到了哪些知识?
由学生概括本课中学到的知识,体现学生是学习的主人。
布置作业
教科书108页第4题;
思考题:
①某商品的进价是1000元,售价为1500元,由于情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店可降多少元出售此商品;
2、出示题目,了解销售中的数学术语。
①、商品标价200元,九折出售,售价是元.
②、商品进价是150元,售价是180元,则利润
是元.利润率是__________
③、某商品每件进价是a元,现在要使每件盈利10%,则每件售价是元.
④、某服装店为了清仓,某件成本为90元的衣服亏损了10%,则卖这件衣服亏了__元
本节课的教学模式:问题情境---探究新知---合作交流---自主探究—当堂检测反馈
2010年“区级高效课堂展示课活动”教学设计
课题:《实际问题与一元一次方程》
单位:白官屯镇第三中学
学科:七年级数学
授课人:季艳华
②我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨价30%后,2007降价70%至a元,则这种药品在2005年涨价前价格为多少元?
在巩固本节知识的基础上,灵活运用销售中的各种量之间的关系解决相关的问题。
附板书设计:
3.4实际问题与一元一次方程
——销售中的盈亏
引例探究1:练习
3.4
教学目标
1、使学生能根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法,;
2、培养学生分析问题,解决实际问题的能力;
3、让学生在实际生活问题中,感受到数学的价值。
教学难点
让学生熟练解决商品销售中的盈亏的问题。
教学重点
弄清商品销售中的“进价”“标价”“售价”及“利润”的含义。
教学过程(师生活动)
设计理念
引言
前面我们结合实际问题,讨论了如何分析数量关系,利用相等关系列方程以及如何解方程。本节开始,我们将进一步探究如何用一元一次方程解决生活中的一些实际问题。
利用一元一次方程解决实际问题前面已有所讨论,本节承上启下,进一步探究用一元一次方程解决生活中的实际问题。
问题情境
1、师投影出示几幅图片,揭示课题
通过实际生活中的实例,用问题的形式来探究新课内容,使学生感受数学来源于生活,生活中需要数学。
讨论交流解决问题
(1)先由学生估算结果
(2)教师提出问题,学生讨论解决;
商品销售中的盈亏如何计算?
(3)通过列方程得出正确结论后,将结论与学生先前的估算进行比较;
(4)教师归纳解决问题的大致过程并投影出示。
先由学生估算(培养学生敏感意识)然后通过合作交流,得出结论,让学生品尝成功的喜悦。同时教育学生做任何事都不能只凭想象,更要付诸行动,才能知道正确结果
相关文档
最新文档