第三章 钻井液的流变性

合集下载

泥浆工艺原理复习资料

泥浆工艺原理复习资料

《泥浆工艺原理》复习资料第一章——钻井液概论1.钻井液:指油气钻井过程中以其多种功能满足钻井工作需要的各种循环流体的总称。

钻井液功用:(1)携带和悬浮岩屑(2)稳定井壁和平衡地层压力(3)冷却和润滑钻头、钻具(4)传递水动力。

2.密度(1)低密度活性固相(粘土):2.2g cm-3 2.3g cm-3(2)低密度惰性固相(钻屑):2.5 g cm-3 2.7 g cm-3(平均:=2.6g cm-3)(3)钻井液密度低密度:g cm-3中高密度:1.8 g cm-3 2.5g cm-3高密度:2.5g cm-3 3.0 g cm-3超高密度: 3.0 g cm-3(4)加重材料API重晶石:=4.2 g cm-3石灰石粉:2.7g cm-3 2.9 g cm-3铁矿粉:4.9 g cm-3 5.3 g cm-3钛铁矿粉:4.5 g cm-3 5.1 g cm-3方铅矿:7.4 g cm-37.7 g cm-3(5)无机处理剂纯碱:2.5 g cm-3烧碱:2.0—2.2 g cm-33.钻井液密度作用(1)稳定井壁,防井塌。

(2)实现近平衡钻井技术,减少压持效应,提高机械钻速。

(3)平衡地层压力,防止井喷、井漏和钻井液受地层流体污染。

(4)钻开油气层,合理选择钻井液密度,减少钻井液对产层的伤害。

4.实际应用中,大多数钻井液pH控制在8—11之间,维持一个较弱的碱性环境。

酚酞变色点:pH=8.3左右;甲基橙变色点:pH=4.3左右。

常温下:10%Na2CO3(aq) pH=11.1;Ca(OH)2(饱和aq) pH=12.1 ;10%NaOH(aq) pH=12.9;5. 钻井液组成①分散介质+分散相+化学处理剂②连续相+不连续相③液相+固相+化学处理剂6.钻井液含砂量:钻井液中不能通过200目筛的砂粒体积占钻井液体积的百分数。

一般砂含.【即粒径74的砂粒占钻井液总体积的百分数】第二章——粘土矿物和粘土胶体化学基础1.相:物质物理化学性质完全相同的均匀部分。

钻井与完井工程教材第三章钻井液

钻井与完井工程教材第三章钻井液

第三章钻井液一口油气井钻井成功在很大程度上取决于钻井液的性质和性能。

钻井液始终是为钻井工程服务的,它的发展与钻井工程的发展紧密相关。

由于初期的钻井液是由最简单的泥土和水组成,“泥浆”就成为钻井液沿用至今的代名词。

实际上,这种称呼既不正确更不准确。

钻井液的定义是指具有各种各样功能以满足钻井工程需要的循环流体。

第一节钻井液的功能、组成和类型一、钻井液的功能油气钻井的基本功能是打开找油、找气和采油、采气的通道,是实现油气勘探开发的重要工程手段。

为油气钻井、完井服务是钻井液的目的,钻井、完井的需要是钻井液发展的动力。

因此,钻井液的功能就体现在油气井钻井、完井的两个方面,即在整个钻进过程中,要保持安全优质快速低成本钻井;在进入油气层时,要具有保护储层的作用。

所以,钻井液的功用也就是钻井、完井对钻井液的基本要求。

在钻井方面,钻井液的主要功能有①清洗井底,携带岩屑。

②冷却、润滑钻头和钻柱。

③形成泥饼,保护井壁。

④控制和平衡地层压力。

⑤悬浮岩屑和加重材料。

⑥提供所钻地层的地质资料。

⑦传递水功率。

⑧防止钻具腐蚀。

在保护油气储集层方面,钻井液(此时称完井液)的主要功用是保护油气层的渗透性,尽量降低对原始油气层物化性质的损害。

主要表现在以下两方面:①控制固相粒子含量及级配,防止固相粒子对油气层的损害。

②保持液相与地层的相容性。

二、钻井液的组成和类型钻井液属于复杂的多相多级胶体-悬浮体分散体系。

它既可以是固体分散在液体中,或者是液体分散在另一种液体中,也可以是气体分散在液体中,或者是液体分散在气体中所形成的分散体系。

钻井液的基本成分由分散相+分散介质+化学处理剂组成。

各相具体成分可以是:处理剂(各种维护分散体系稳定和调整分散体系性能的化学添加剂)。

在以水为连续相的水基钻井液中,通常用重量体积百分含量表示钻井液配方中各组分,不考虑处理剂本身的体积。

例如,某种水基钻井液组分为:1000ml水+ 50g膨润土+ 20g 处理剂。

第三章 钻井液性能及其控制

第三章  钻井液性能及其控制

4、碳酸氢钠(NaHCO3)Fra bibliotek本节完
第三节
钻井液含砂量及其测定
一、钻井液含砂量 钻井液含砂量是指钻井液中不能通过200目筛网,即 粒径大于74μm的砂粒占钻井液总体积的百分数。
二、钻井要求:
钻井液含砂量越小越好,一般要求控制在0.5%以下。
含砂量过大会对钻井过程造成以下危害: (1)使钻井液密度增大,对提高钻速不利.
(2)形成的泥饼松软,滤失量大,不利于井壁稳定,影响
固井质量; (3)泥饼中粗砂粒含量过高会使泥饼的摩擦系数增大,容 易造成压差卡钻; (4)增加对钻头和钻具的磨损,缩短使用寿命。
三、含砂量控制方法
充分利用震动筛和除砂器等固控设备。
四、含砂量测量
1、测量仪器 钻井液含砂量用一种专门设计的含砂量测定仪进行测定。 该仪器由一个带刻度的类似于离心试管的玻璃容器和一个 带漏斗的筛网筒组成,所用筛网为200目。
m (V2 V1 )
(204.255 200) 4.2 1000
17871 kg
(2)最终体积有限制,V2=200m3
2 V1 V2 1
4.2 1.38 200 4.2 1.32
195.8m3
m (V2 V1 )
(200 195.8) 4.2 1000
原因如下:
可以使有机处理剂充分发挥其效能 对钻具腐蚀性低 可抑制钙、镁盐在体系中的溶解
(3)PH值法缺点 钻井液维持碱性的无机离子除了OH-外,还可能有 HCO3-和CO32-等离子,PH值不能反映钻井液中这些离子 的种类和类型。
2、碱度表示法
(1)碱度:指用0.02N的标准硫酸中和1ml样品至酸碱指示剂

第三章 钻井液的流变性

第三章 钻井液的流变性
用于钻井液流变性的研究中。 ③卡森模式不但在低剪切区和中剪切区有较好的精确度,还
可以利用低、中剪切区的测定结果预测高剪切速率下的流 变 特性。
第二节 基本流型及其特点
1、流变曲线 τ1/2
γ1/2
第二节 基本流型及其特点
2、卡森模式
τ 1/2 = τc1/2+ η ∞1/2γ1/2 式中: τc -------卡森动切力(卡森屈服值),Pa;
1、塑性流体流变参数计算
p
600
300
600
300
0.511( 600 ) 300
1022 511
( 600 ) 300 10-3
600
300
Pa·S mPa·S
第三节 流变参数测量与计算
0 p
600
η ∞ -----极限高剪切粘度(水眼粘度),mPa·s (1)卡森动切力τc
物理意义:反映钻井液网架结构的强弱
影响因素与调整:同τ0 (1)极限高剪切粘度η ∞
物理意义:反映钻井液内摩擦力的强弱
影响因素与调整:同η p
第二节 基本流型及其特点
四、流型判断 1、作图法
(1)多点测试( τ, γ) (2) 分别以τ和 γ为坐标轴绘图
线
第四节 钻井液流变性与钻井的关系
层流携岩特点 1、对井壁冲刷作用小,
有利于井壁稳定 2、存在“转动靠壁”现象,
携岩效率低
F3 F4
F1 F2
第四节 钻井液流变性与钻井的关系
2、紊流及其携岩特点
紊流特点
流体质点作无规则运动 流速大、速梯小 速度剖面扁平
层流携岩特点 1、无“转动靠壁”现象,携岩效率 高 2、对井壁冲刷作用大

钻井液工艺原理3-钻井液流变性

钻井液工艺原理3-钻井液流变性

1
16
卡森流体
流变模型:τ1/2 = τc1/2 + η1/2 γ1/2
r1/2
流变曲线:
• γ1/2-τ1/2 作图,为一条直线。
• γ -τ作图,为直线与曲线之和。
模式讨论 τ1/2 = τc1/2 + η1/2 γ1/2
0
τ
1/2 c
τ 1/2
γ 0, τ τc 能够反映多数钻井液具有 r
国际:Pa.s、mPa.s 模式讨论 τ- τ0 = ηp γ 或者 η= ηp + τ0/ γ
γ 0, τ τ0 能够反映多数钻井液具有内部结构情况。 γ ,η 能够反映多数钻井液的剪切稀释性。 γ, η ηp 能够反映出钻井液的极限粘度。
低剪切速率下: τ实> τ宾 表明模型拟合实际曲线有较大偏差.
• 作用:衡量钻井液的宏观流动性。
• 测量方法:用旋转粘度仪。
• 现场习惯用600转数据的1/2值表示, AV=φ600/2。
1
33
宾汉体的塑性粘度ηp
定义:层流流动时,流体内部网状结构的破坏与 恢复处于动态平衡时,以下三部分内摩擦力 的微观统计结果: 固 -固颗粒间内摩擦阻力; 固 -液相分子间内摩擦阻力; 液 -液分子间内摩擦阻力;
体系受剪切稀释明显。 显然:只要能形成结构的钻井液,均有剪切稀释性。
1
19
作用:
(1)判断携屑能力:强者—好,有利低速带砂。
(2)估计钻头水眼处的粘度大小:强者—小,有利 水力喷射钻井。
即 环形空间:γ低,ηa大,有利于携带钻屑 钻头水眼:γ大,ηa小,有利于水力破岩
一般要求钻井液的剪切稀释能力强。
1Pa = 10dyn/cm2

钻井液完井液化学3、4章详解

钻井液完井液化学3、4章详解

漏斗粘度 Funnel Viscosity
定 义:定体积泄流时间。
单 位:秒;s
类 型: 马氏漏斗粘度 Marsh Funnel Viscosity 定义:1500ml 流出946ml 的时间。 标准:清水测量值:26±0.5s 中国漏斗粘度 定义:700ml流出500ml的时间。
标准:清水测量值:15±0.5s
1. 有效粘度(视粘度)
定义: η= τ/ γ 意义:钻井液作层流流动时,有效粘度等于以下四部分内摩擦力的微 观统计结果: 固 ~ 固颗粒间内摩擦阻力; 固 ~ 液相分子间内摩擦阻力; 液 ~ 液分子间内摩擦阻力;
固相结构 ~ 液相分子间内摩擦阻力;
几种流体(模式)表示的有效粘度: 宾 汉 体:η= ηs+ τ0/ γ
28
影响因素(类似于静切力): 单个链环的强度—— 颗粒间引力—— 电位、水化膜 厚度。 结构链环数目/单位体积(结构密度)—— 颗粒浓度、 分散度。 调整方法: 升τo—— 提高 c、分散度,降低 及水化膜厚度,加增 粘剂。 降τo—— 冲稀、加降粘剂拆结构。
29
二、钻井液的粘度
16
真实泥浆与不同流型的比较
r
钻井液 假塑性流体 宾汉流体 0 s 0
17
假塑性流体 Pseudoplastic Fluids 流变模式: τ = Kγn 流变曲线:过原点凸向切应力轴的曲线。
r
流变参数: 稠度系数 K 意义:反映流体的粘滞性。K越大,流体越难流动。 单位:dyn.sn/cm2 流型指数 n 0 意义:偏离牛顿流体的程度。 模式讨论 τ = Kγn 或者 η= Kγn-1 γ 0, τ 0 不符合大多数钻井液具有屈服应力的特点。 γ ,η 能够反映钻井液的剪切稀释性。 γ, η 0 无极限粘度,不符合钻井液情况。

第三章钻井液的流变性

第三章钻井液的流变性

第一节 钻井液的流动状态和基本概念
2. 基本概念
剪切速率:沿垂直于流速方向上
单位距离上流速的改变量或增加 量。 表达式如下: 表达式如下:
= dv dx
单位为: 单位为:s-1; 流体各层之间流速不同, 流体各层之间流速不同,层 与层之间必然存在相互作用。 与层之间必然存在相互作用。由 于液体内部内聚力的作用, 于液体内部内聚力的作用,流速 较快的液层会带动流速较慢的相邻液层, 较快的液层会带动流速较慢的相邻液层,而流速较慢的液层又会 阻碍流速较快的相邻液层。 阻碍流速较快的相邻液层。
τ
γ
假塑性流体
假塑性流体和塑性流体 的一个重要区别在于: 的一个重要区别在于:塑性 流体当剪切速率增大到一定 程度时, 程度时,剪切应力与剪切速 率之比为一常数, 率之比为一常数,在这个范 流变曲线为直线; 围,流变曲线为直线;而假 塑性流体剪切应力与剪切速 率之比总是变化的, 率之比总是变化的,即在流 变曲线中无直线段。 变曲线中无直线段。
第一节 钻井液的流动状态和基本概念
流体的基本流型
在实验过程中, 在实验过程中,人们发现除牛顿流体外还有一 些表现粘度异常的非牛顿流体, 些表现粘度异常的非牛顿流体,即不遵守牛顿内摩 擦定律的流体。 擦定律的流体。 按照流体流动时剪切速率与剪切应力之间的关 可以划分为不同的流型。 系,可以划分为不同的流型。根据流变曲线形状的 不同,可将流体的流型归纳为一下四种: 不同,可将流体的流型归纳为一下四种: 牛顿流体 非牛顿流 塑性流体 体 四种流型 假塑性流体 膨胀性流体
τ0
τs
γ
第一节 钻井液的流动状态和基本概念
塑性流体流变模式与流变曲线
τ = τ0 + µp ×γ

钻井液的流变性—流体流动的基本流型

钻井液的流变性—流体流动的基本流型

知识点2:非牛顿流体的基本流型
假塑性流体
某些钻井液、高分子化合物的水溶液以及乳状液均属 于假塑性流体。其流变曲线通过原点凸向剪切应力轴的曲线。 流动特点是施加极小的剪切应力就能产生流动,不存在静切 力,黏度随剪切应力增大而降低。
K n
K——稠度系数, Pa·sn; n——流性指数,n<1。
上式为假塑性流体的流变模式,也成为幂律公式。
μ——粘滞系数,黏度,Pa·s。
dx
知识点1:流体流动的基本概念
在实际应用中一般用mPa·s表示液体黏度, 1Pa·s=1000 mPa·s,例如20℃,水的黏度是 1.0087mPa·s。
上式为牛顿内摩擦力数学表达式;遵循牛顿内摩 擦定律的流体为牛顿流体;不遵守牛顿内摩擦定律流 体为非牛顿流体。大多数钻井液属于非牛顿流体。
知识点3:钻井液流变参数
3、塑性粘度和动切力的控制 影响塑性粘度的因素主要有钻井液固相含量,钻井
液中粘土的分散程度,高分子处理剂的使用等。可通过 降低钻井液的固相含量、加水稀释或化学絮凝等方法降 低塑性粘度;可以加入粘土、重晶石、混入原油或适当 提高pH值提高塑性粘度;也可以通过增加聚合物处理 剂的浓度提高塑性粘度,同时可以提高动切。
(2)塑性粘度(ηp或PV)
钻井液的塑性粘度是塑性流体的性质,不随剪切速率变化,反映 了在层流情况下,钻井液中网架结构的破坏与恢复处于动态平衡时, 悬浮颗粒之间、固相颗粒与液相之间以及连续相内部的摩擦作用的强 弱。在钻井的过程中合理控制好塑性粘度,利于安全、优质、快速、 低耗地进行钻井。
知识点3:钻井液流变参数
知识点3:钻井液流变参数
2、 钻井液的黏度和剪切稀释性
1)钻井液的粘度 (1)漏斗黏度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常称为聚结;端—面与端—端连接形成三维的网架
结构、特别是当粘土含量足够高时,形成布满整个
空间的连续网架结构,称做凝胶结构,称为絮凝。
与聚结和絮凝相对应的相反过程分别叫做分散和解 絮凝 ,如图3-5所示。
2018/10/12
石油工程学院
18
2018/10/12
石油工程学院
19
塑性流体机理分析
一般情况下,钻井液中的粘土颗粒在不同程度上 处在一定的絮凝状态。要使钻井液开始流动,必须施
加一定的剪切应力,破坏絮凝时形成的连续网架结构。
这个力为静切应力,静切应力反映所形成结构的强弱, 将静切应力称为凝胶强度。 在钻井液开始流动以后,初期的剪切速率较低,结 构的拆散速度大于恢复速度,拆散程度随剪切速率增
加而增大,粘度随剪切速率增加而降低。
2018/10/12
石油工程学院
20
随着结构拆散程度增大,拆散速度逐渐减小,结
钻井液为塑性流体和假塑性流体。
2018/10/12
石油工程学院
10
2018/10/12
石油工程学院
11
牛顿流体
通常将剪切应力与剪切速率的关系遵守牛顿内摩擦定 律的流体,称为牛顿流体。



水、酒精等大多数纯液体、轻质油、低分量化合物 溶液以及低速流动的气体等均为牛顿流体。 流动特点:加很小的剪切力能流动,剪切应力与流速 梯度成正比。在层流区域内,粘度不随切力流速梯度 变化,为常量。
2018/10/12
石油工程学院
12
牛顿流体的流变模型与流变曲线
流变方程
流变曲线
2018/10/12
石油工程学院
13

塑性流体
与牛顿流体不同,当剪切速率为零时:即
剪切力τ≠0,而是τs,即施加 的切应力必须超过某一特定值才 能开始流动。
τs为开始流动的最小切应力,
称为静切力,简称切力或凝胶强
τs
而假塑性流体剪切应力与剪切速率之比总是变化的,
在流变曲线中无直线段。
石油工程学院
23
2018/10/12
假塑性流体流变模式与流变曲线
假塑性流体服从下 式所示的幂律方程,即 该式为假塑性流体的流 变模式,习惯上称为幂律 模式,式中的n(流性指数) 和是K(稠度系数)是假塑性 流体的两个重要流变参数。
2018/10/12
石油工程学院
7
流变方程
流变曲线
2018/10/12
石油工程学院
8
3.流体的基本流型
按照流体流动时剪切速率与剪切应力之间的关系, 流体可以划分为不同的流型。除牛顿流型外,根据所测 出的流变曲线形状的不同,将非牛顿流体的流型归纳为 塑性流型、假塑性流型和膨胀流型。以上四种基本流型 的流变曲线见图3-4。符合这四种流型的流体分别叫做 牛顿流体、塑性流体、假塑性流体和膨胀性流体。
钻井液流变性是钻井液的一项基本性能,
在解决 (1)携带岩屑,保证井底和井服的清洁;
(2)悬浮岩屑与重晶石;(3)提高机械钻速;(4)
保持井眼规则和保证井下安全起着十分重要的 作用。钻井液的某些流变参数还直接用于钻井 环空水力学的有关计算。
2018/10/12
石油工程学院
1
第一节 流体的基本流型及其特点
润土。
2018/10/12
石油工程学院
34
(2)电解质:在钻井过程中无机电解质的侵入均会引
起钻井液絮凝程度增加,增加动切力。 (3)降粘剂:大多数降粘剂都是吸附在粘土端面, 使粘土带有一定的负电荷,拆散网架结构,降低动切 力。
2018/10/12
石油工程学院
35
宾汉流变模式参数调整
(1)降低塑性粘度:通过合理使用固控设备、加水
τs
2018/10/12
τ
0
石油工程学院
33
影响动切力的因素主要有
(1)粘土矿物的类型和浓度。在常见的粘土矿物中,
蒙脱石最容易水化膨胀和分散、并形成网架结构。随
着钻井液中蒙脱石浓度增加,塑性粘度上升比较缓慢,
动切力上升很快。高岭石和伊利石等粘土矿物对动切
力的影响较小。钻井液需要提高动切力时,可选用膨
τ
0
度。
2018/10/12
石油工程学院
14

剪切应力继续增大,并超过τs时,塑性流体不 能均匀剪切,粘度随剪切速率的增加而降低,图中 曲线段;继续增加剪切速率,粘度不随剪切速率的 增加而降低,图中直线段;
塑性粘度(PV):不随切力 或流速梯度改变的粘度。 动切力(YP):直线段延长 线与切应力的交点为动切应力或 叫屈服值。
构的破坏与恢复处于动平衡时,悬浮的固相颗粒之间、
固相颗粒与液相之间以及连续液相内部的内摩擦作用 的强弱。
2018/10/12
石油工程学院
31
影响塑性粘度的因素主要有:
(1)钻井液中的固相含量。是影响塑性粘度的主要因素。一般情 况下,随着钻井液固体颗粒逐渐增多,颗粒的总表面积不断增大, 颗粒间的内摩擦力增加。 (2)钻井液中粘土的分散程度。当粘土含量相同时,分散度越 高,塑性粘度越大。 (3)高分子聚合物处理剂。钻井液中加入高分子聚合物处理剂 提高液相粘度,增大塑性粘度。高分子聚合物处理剂浓度越高,
2018/10/12
石油工程学院
9
膨胀流体比较少见。流动特点是:稍加外力发生
流动;粘度随剪切速率(或剪切应力)增加而增大,静
臵时又恢复原状。与假塑性流体相反,其流变曲线凹
向剪切应力轴。膨胀流体在静止状态时,所含有的颗
粒是分散的。剪切应力增大,部分颗粒会纠缠在一起
形成网架结构,增大流动阻力。目前广泛使用的多数
属于塑性流体。水基钻井液主要由粘土、水和处理 剂所组成。粘土矿物具有片状或棒状结构,形状不 规则,颗粒之间容易彼此连接在一起。形成空间网 架结构。粘上颗粒可能出现三种不同连接方式,面面、端—面和端—端连接。
2018/10/12
石油工程学院
17
三种不同的连接方式将产生不同的后果。面—
面连接会导致形成较厚的片,颗粒分散度降低,通
塑性粘度越高;相对分子质量越大,塑性粘度越高。
2018/10/12
石油工程学院
32
动切力
动切力(屈服值)是塑性流体流变曲线中的直线段 在τ轴上的截距。动切力反映钻井液在层流流动时, 粘土颗粒之间及高分子聚合物分子之间相互作用力的 大小,即形成空间网架结构能力的强弱。影响钻井液
形成结构的因素,影响动切力值。
某些钻井液、高分子化合 物的水溶液以及乳状液等属于
假塑性流体。流变曲线是通过
原点井凸向剪切应力轴的曲线。 这类流体的流动特点:施 加极小的剪切应力能产生流动, 不存在静切应力,粘度随剪切
速率的增大而降低。
2018/10/12
石油工程学院
22
假塑性流体和塑性流体的一个重要区别在于:塑
性流体当剪切速率增大到一定程度时,剪切应力与剪 切速率之比为一常数,在这个范围,流变曲线为直线;
影响K值的主要因素:受体系中固含和液相粘度 的影响,同时也受结构强度的影响。当固体含量或 聚合物处理剂的浓度增大时,K值相应增大;
25
四、膨胀型流体
膨胀型流体特点:粘度随剪 切速率增加而增加,静止 时又恢复原状;也没有静 切应力。与假塑性流体相 反。流变曲线凹向剪切应 力轴。
2018/10/12
石油工程学院
26
膨胀型流体机理分析
静止时,粒子是分散的, 剪切速率增加时,粒子排列 变乱,有些粒子被搅在一起 形成网架结构,架子搭得越 多,流动阻力越大,粘度随 剪切速率的增加而增大。
2018/10/12
石油工程学院
38
K值与钻井液的粘度、切力 联系在一起。K值与流体在剪切
速率为s-1时的粘度有关。
K值越大,粘度越高,一般 将K值称为稠度系数。对于钻井 液,K值反映可泵性。K值过大, 造成重新开泵困难。K值过小,
对携岩不利。 K值的单位为Pa·sn
石油工程学院
39
2018/10/12
稀释或化学絮凝等方法,尽量减少固相含量。 (2)提高塑性粘度:应用低造浆粘土配浆,加入加
重剂、混油、提高PH值、加入高分子聚合物等。
2018/10/12
石油工程学院
36
(3)降低动切力:最有效的方法加入降粘剂,若 由钙镁离子侵入,可加入沉淀剂,除去钙镁离子。 (4)提高动切力: 可加入预水化膨润土浆,或增 大高分聚合物的加量。对于钙处理钻井液或盐水钻井 液,可通过适当增加钙钠离子浓度。
2018/10/12
τs
τ0
石油工程学院
15

0 塑
塑性流体流变模式与流变曲线
宾汉模 式 塑性流 体流变 曲线
τs
τ0
此式是塑性流体的流变模式,该式常称为宾汉模 式,并将塑性流体称为宾汉塑性流体。
2018/10/12
石油工程学院
16
粘土含量高的钻井液、高含蜡原油和油漆等都
50~250s-1;钻杆内100~ 1000s-1;钻头喷嘴处最高
,大约在10000~100000s-1。
2018/10/12
石油工程学院
3
剪切速率:沿垂直于流 速方向上单位距离上流速的 改变量或增加量。 表达式如下:
流速分布特 点
γ dv dx
单位为:s-Biblioteka ; 流体各层之间流速不同,层 与层之间存在相互作用。液体内部内聚力的作用,流 速较快的液层带动流速较慢的相邻液层,流速较慢的 液层阻碍流速较快的相邻液层。
构恢复速度相应增加。当剪切速率增至一定程度,结
构破坏的速度和恢复的速度保持相等(达到动态平衡)
时,结构拆散的程度不再随剪切速率增加而发生变化,
相关文档
最新文档