中考数学总复习专题训练(三)

合集下载

九年级中考复习数学考点专题训练——专题三:一次函数

九年级中考复习数学考点专题训练——专题三:一次函数

中考数学考点专题训练——专题三:一次函数1.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b 的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.2.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?3.规定:若直线l与图形M有公共点,则称直线l是图形M的关联直线.已知:矩形ABCD的其中三个顶点的坐标为A(t,0),B(t+2,0),C(t+2,3)(1)当t=1时,如图以下三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,是矩形ABCD的关联直线;(2)已知直线l:y=x+2,若直线l是矩形ABCD的关联直线,求t的取值范围;(3)如果直线m:y=tx+2(t>0)是矩形ABCD的关联直线,请直接写出t的取值范围.4.如图,直线y=﹣与x轴相交于点A,与直线y=x相交于点B.(1)求点A,点B的坐标;(2)动点C从原点O出发,以每秒1个单位的速度在线段OA上向点A做匀速运动,连接BC,设运动时间为t秒,△BCA的面积为S,求出S关于t的函数关系式;(3)若点P是坐标平面内任意一点,以O,A,B,P为顶点的四边形是平行四边形,请直接写出点P的坐标.5.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.6.如图:在平面直角坐标系xOy中,过点A(﹣2,0)的直线l1和直线l2:y=2x相交于点B(2,m).(1)求直线l1的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与l1、l2的交点分别为C,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.7.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积为S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.8.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.9.如图,已知直线y=kx+b与直线y=﹣x﹣9平行,且y=kx+b还过点(2,3),与y轴交于A点.(1)求A点坐标;(2)若点P是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON 上分别截取:PC=MP,MB=OM,OE=ON,ND=NP,试证:四边形BCDE是平行四边形;(3)在(2)的条件下,在直线y=kx+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,直接写出所有符合的点P的坐标;若不存在,请说明理由.10.小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?11.如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C是直线y2=﹣x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.(1)求直线y1=kx+b的函数表达式;(2)当BC∥x轴时,求BD的长;(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.12.在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,△ABD 上存在点K,满足PK=1,直接写出b的取值范围.13.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A (x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.14.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k﹣n,求s与m之间的函数关系式,并写出m的取值范围.15.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.16.如图,直线与x、y轴交于点A、B,过点B作x轴的平行线交直线y=x+b于点D,直线y=x+b交x、y轴于点E、K,且DK=.(1)如图1,求直线DE的解析式;(2)如图2,点P为AB延长线上一点,把线段BP绕着点B顺时针旋转90°得到线段BF,若点F刚好落在直线DE上,求点P的坐标;(3)如图3,在(2)的条件下,点M为ED延长线上一点,连接PM和AM,AM交线段BD于点N,若PM+MN =AN,求线段PM的长.17.在平面上,对于给定的线段AB和点C,若平面上的点P(可以与点C重合)满足,∠APB=∠ACB.则称点P为点C关于直线AB的联络点.在平面直角坐标系xOy中,已知点A(2,0),B(0,2),C(﹣2,0).(1)在P1(2,2),P(1,0),R(1+,1)三个点中,是点O关于线段AB的联络点的是.(2)若点P既是点O关于线段AB的联络点,同时又是点B关于线段OA的联络点,求点P的横坐标m的取值范围;(3)直线y=x+b(b>0)与x轴,y轴分交于点M,N,若在线段BC上存在点N关于线段OM的联络点,直接写出b的取值范围.18.已知直线y=x+b与x轴交于点A,与y轴交于点B,(1)如图1,求∠BAO的度数;(2)如图2,点D在第三象限,连接BD,将线段BD以B为旋转中心逆时针旋转90°得到BE且点E在第四象限,连接DE、OE,若DE=2OE,求证:S△ADE=2S△AOE;(3)如图3,点C为点A关于y轴的对称点,点D在第二象限,连接BD,将线段BD以B为旋转中心逆时针旋转90°得到BE,点E在第四象限,连接OE且OE∥BC,过点A作AP⊥BE交BC于点P,点Q在AB上,BQ=BP,过点Q作QG⊥AP交x轴于点G.若OF=,CG=7,求S△AOE.19.如图,在平面直角坐标系xOy中,直线y=x+4与y=kx+4分别交x轴于点A、B,两直线交于y轴上同一点C,点D的坐标为(﹣,0),点E是AC的中点,连接OE交CD于点F.(1)求点F的坐标;(2)若∠OCB=∠ACD,求k的值;(3)在(2)的条件下,过点F作x轴的垂线1,点M是直线BC上的动点,点N是x轴上的动点,点P是直线l上的动点,使得以B,P,M、N为顶点的四边形是菱形,求点P的坐标.20.在平面直角坐标系中,O为坐标原点,直线y=x+4分别交y轴和x轴于点A、B两点,点C在x轴的正半轴上,AO=2OC,连接AC.(1)如图1,求直线AC的解析式;(2)如图2,点P在线段AB上,点Q在BC的延长线上,满足:AP=CQ,连接PQ交AC于点D,过点P作PE⊥AC于点E,设点P的横坐标为t,△PQE的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,PQ交y轴于点M,过点A作AN⊥AC交QP的延长线于点N,过点Q作QF ∥AC交PE的延长线于点F,若MN=DQ,求点F的坐标.备战2021中考数学考点专题训练——专题三:一次函数参考答案1.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b 的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.【答案】解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B(2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵AB=3,∴S△ABC=•y C==.2.为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y(m3)与注水时间t(h)之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?【答案】解:(1)设y与t的函数解析式为y=kt+b,,解得,,即y与t的函数关系式是y=140t+100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m3/h);(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.∴甲进水口进水的速度是乙进水口进水速度的,∵同时打开甲、乙两个进水口的注水速度是140m3/h,∴甲进水口的进水速度为:140÷(+1)×=60(m3/h),480÷60=8(h),即单独打开甲进水口注满游泳池需8h.3.规定:若直线l与图形M有公共点,则称直线l是图形M的关联直线.已知:矩形ABCD的其中三个顶点的坐标为A(t,0),B(t+2,0),C(t+2,3)(1)当t=1时,如图以下三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,是矩形ABCD的关联直线;(2)已知直线l:y=x+2,若直线l是矩形ABCD的关联直线,求t的取值范围;(3)如果直线m:y=tx+2(t>0)是矩形ABCD的关联直线,请直接写出t的取值范围.【答案】解:(1)当t=1时,A(1,0),B(3,0),C(3,3),D(1,3),则三个一次函数y1=x+4,y2=﹣x+2,y3=x+2中,y2=﹣x+2,y3=x+2是矩形ABCD的关联直线;故答案为:y2=﹣x+2,y3=x+2;(2)由矩形的性质得D(t,3),当y=3时,t+2=3,解得t=1;当y=0时t+2+2=0,解得t=﹣4.故t的取值范围为﹣4≤t≤1;(3)由矩形的性质得D(t,3),当y=3时,t2+2=3,解得t=±1(负值舍去).故t的取值范围为0<t≤1.4.如图,直线y=﹣与x轴相交于点A,与直线y=x相交于点B.(1)求点A,点B的坐标;(2)动点C从原点O出发,以每秒1个单位的速度在线段OA上向点A做匀速运动,连接BC,设运动时间为t秒,△BCA的面积为S,求出S关于t的函数关系式;(3)若点P是坐标平面内任意一点,以O,A,B,P为顶点的四边形是平行四边形,请直接写出点P的坐标.【答案】解:(1)当y=0时,0=﹣,解得x=4;则A(4,0);联立两直线的解析式得,解得.则B(2,2);(2)∵A(4,0),∴OA=4,∴S=(OA﹣t)×2=(4﹣t)×2=4﹣t(0≤t<4);(3)如图,当OA为平行四边形的边时,∵OA=4,∴P1(6,2),P2(﹣2,);当OA为对角线时,P3(2,﹣2).综上所示,点P的坐标为:P1(6,2),P2(﹣2,2),P3(﹣2,2).5.已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=x,过点C作CM⊥y轴,垂足为M,OM=9.(1)如图1,求直线AB的解析式;(2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求的值;(3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG =AF,求点P的坐标.【答案】解:(1)∵CM⊥y轴,OM=9,∴y=9时,9=x,解得x=12,∴C(12,9),∵AC⊥x轴,∴A(12,0),∵OA=OB,∴B(0,﹣12),设直线AB的解析式为y=kx+b,则有,解得,∴直线AB的解析式为y=x﹣12.(2)如图2中,∵∠CMO=∠MOA=∠OAC=90°,∴四边形OACM是矩形,∴AO=CM=12,∵NC=OM=9,∴MN=CM﹣NC=12﹣9=3,∴N(3,9),∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),∴OD=4a,把x=4a,代入y=x中,得到y=3a,∴E(4a,3a),∴DE=3a,把x=4a代入,y=3x中,得到y=12a,∴P(4a,12a),∴PD=12a,∴PE=PD﹣DE=12a﹣3a=9a,∴=.(3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.∵GF∥x轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,∴∠OFR=∠R=∠AOS=∠BSG=90°,∴四边形OSRA是矩形,∴OS=AR,AR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°﹣45°=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵OF⊥FQ,∴∠OSR=∠R=∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠QFR+∠FQR=90°,∴∠OFS=∠FQR,∴△OFS≌△FQR(AAS),∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB=45°,∴SF=SB=QR,∵∠SGB=∠QGR,∠BSG=∠R,∴△BSG≌△QRG(AAS),∴SG=GR=6,设FR=m,则AR=m,AF=m,QR=SF=12﹣m,∵GQ﹣FG=AF,∴GQ=×m+6﹣m=m+6,∵GQ2=GR2+QR2,∴(m+6)2=62+(12﹣m)2,解得m=4,∴FS=8,AR=4,∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT是矩形,∴OT=SF=8,∵∠DHE=∠DPH,∴tan∠DHE=tan∠DPH,∴=,由(2)可知DE=3a,PD=12a,∴=,∴DH=6a,∴tan∠PHD===2,∵∠PHD=∠FHT,∴tan∠FHT==2,∴HT=2,∵OT=OD+DH+HT,∴4a+6a+2=8,∴a=,∴OD=,PD=12×=,∴P(,).6.如图:在平面直角坐标系xOy中,过点A(﹣2,0)的直线l1和直线l2:y=2x相交于点B(2,m).(1)求直线l1的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与l1、l2的交点分别为C,D.横、纵坐标都是整数的点叫做整点.①当n=﹣1时,直接写出△BCD内部(不含边上)的整点个数;②若△BCD的内部(不含边上)恰有3个整点,直接写出n的取值范围.【答案】解:(1)将点B的坐标代入y=2x得,m=2×2=4,故点B(2,4),设直线l1的表达式为y=kx+b,将点A、B的坐标代入上式并解得:,解得,故直线l1的表达式为:y=x+2;(2)①当n=﹣1时,如下图,从图中可以看出,整点个数为1,即点(0,1);②如上图,当n=﹣2时,△BCD的内部(不含边上)恰有3个整点,故﹣2≤n<﹣1.7.如图,在平面直角坐标系中,点O为坐标原点,直线l分别交x轴、y轴于A.B两点,OA<OB,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积为S,点C运动的时间为t,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.【答案】解:(1)x2﹣14x+48=0,则x=6或8,故点A、B的坐标分别为(6,0)、(0,8),则AB=10;设直线AB的表达式为:y=kx+b,则,解得,故直线AB的表达式为:y=﹣x+8;(2)过点C作CM⊥y轴于点M,则,即,解得:CM=|10﹣2t|,S=×BO×CM=×8×|10﹣2t|=|10﹣2t|,故S=;(3)点A、B的坐标分别为(6,0)、(0,8),设点P、Q的坐标分别为(0,s)、(m,n),①当AB是菱形的边时,点A向上平移8个单位向左平移6个单位得到点B,同样点Q向上平移8个单位向左平移6个单位得到点P,即0﹣8=m,s+6=n且BP=BA=10,解得:m=﹣8,n=24,故点Q的坐标为(﹣8,24);②当AB是菱形的对角线时,由中点公式得:6+0=m+0,8+0=s+n且BP=BQ,即(s﹣8)2=m2+(n﹣8)2,解得:m=6,m=,故点Q的坐标为(6,);综上,点Q的坐标为(﹣8,24)或(6,).8.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.【答案】解:(1)甲车改变速度前的速度为:500出5=100(km/h),乙车达绥芬河是时间为:800÷80=10(h),故答案为:100;10;(2)∵乙车速度为80km/h,∴甲车到达绥芬河的时间为:,甲车改变速度后,到达绥芬河前,设所求函数解析式为:y=kx+b(k≠0),将(5,500)和(,800)代入得:,解得,∴y=80x+100,答:甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式为y=80x+100();(3)甲车到达绥芬河时,乙车距绥芬河的路程为:800﹣80×=100(km),40÷(100﹣80)=2(h),即出发2h时,甲、乙两车第一次相距40km.故答案为:100;2.9.如图,已知直线y=kx+b与直线y=﹣x﹣9平行,且y=kx+b还过点(2,3),与y轴交于A点.(1)求A点坐标;(2)若点P是该直线上的一个动点,过点P分别作PM垂直x轴于点M,PN垂直y轴于点N,在四边形PMON 上分别截取:PC=MP,MB=OM,OE=ON,ND=NP,试证:四边形BCDE是平行四边形;(3)在(2)的条件下,在直线y=kx+b上是否存在这样的点P,使四边形BCDE为正方形?若存在,直接写出所有符合的点P的坐标;若不存在,请说明理由.【答案】解:(1)∵直线y=kx+b与y=﹣x﹣9平行,且过点A(2,3),则,解得,∴一次函数解析式为y=﹣x+4,当x=0时,y=4,∴A点坐标是(0,4);(2)证明:∵PM⊥x轴,PN⊥y轴,∴∠M=∠N=∠O=90°,∴四边形PMON是矩形,∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.∵PC=MP,MB=OM,OE=ON,ND=NP,∴PC=OE,CM=NE,ND=BM,PD=OB,在△OBE和△PDC中,OB=PD,∠O=∠CPD,OE=PC,∴△OBE≌△PDC(SAS),∴DC=BE,同理可证△MBC≌△NDE(SAS),∴DE=BC.∴四边形BCDE是平行四边形;(3)存在这样的点P,理由:设点P(m,﹣m+4),则CM=PC=|(4﹣m)|=|﹣m|,PD=m,当四边形BCDE为正方形时,则∠DCB=90°,DC=BC,而∠CBM+∠MCB=90°,∠MCB+∠DCP=90°,∴∠CBM=∠DCP,而∠DPC=∠CMB=90°,∴△DPC≌△CMB(AAS),∴CM=PD,即=|﹣m|=m,解得:m=或﹣8,故P点坐标是(,)或(﹣8,8).10.小碚向某校食堂王经理建议食堂就餐情况,经调查发现就餐时,有520人排队吃饭就餐,就餐开始后仍有学生继续前来排队进食堂.设学生按固定的速度增加,食堂打饭窗口打饭菜的速度也是固定的.若每分钟该食堂新增排队学生数12人,每个打饭窗口1每分钟打饭菜10人.已知食堂的前a分钟只开放了两个打饭窗口;某一天食堂排队等候的学生数y(人)与打饭菜时间x(分钟)的关系如图所示.(1)求a的值;(2)求排队到第16分钟时,食堂排队等候打饭菜的学生人数;(3)若要在开始打饭菜后8分钟内让所有排队的学生都能进食堂后来到食堂窗口的学生随到随吃,那么小碚应该建议食堂王经理一开始就需要至少同时开放几个打饭窗口?【答案】解:(1)由图象知,520+12a﹣2×10a=424,∴a=12;(2)设当12≤x≤20时,y与x之间的函数关系式为y=kx+b,由题意,得,解得:,∴y=﹣53x+1060,当x=16时,y=212,即排队到第16分钟时,食堂排队等候打饭菜的学生有212人.(3)设需同时开放n个打饭窗口,由题意知10n×8≥520+12×8解得:n≥7.7,∵n为整数,∴n最小=8.答:至少需要同时开放8个打饭窗口.11.如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C 是直线y2=﹣x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.(1)求直线y1=kx+b的函数表达式;(2)当BC∥x轴时,求BD的长;(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.【答案】解:(1)把A(4,0),B(0,3)代入y1=kx+b,得到,解得:,∴y1=﹣x+3.(2)∵BC∥x轴,∴点C的纵坐标为3,当y=3时,3=﹣x+5,解得x=,∴C(,3),∵CD⊥AB,∴直线CD的解析式为y=x+,由,解得,∴D(,),∴BD==.(3)如图,当∠BCD=∠BEO时,过点A作AM⊥BC交BC的延长线于M,点M作MN⊥x轴于N.∵OB=3,OE=OA=,∴tan∠BEO==2,∵CD⊥AB,AM⊥AB,∴CD∥AM,∴∠AMB=∠BCD=∠BEO,∴tan∠AMB==2,∵AB===5,∴AM=AB=,∵∠AOB=∠ANM=∠BAM=90°,∴∠BAO+∠ABO=90°,∠BAO+∠MAN=90°,∴∠MAN=∠ABO,∴△ABO∽△MAN,∴==,∴==,∴AN=,MN=2,∴M(,2),∴直线BM的解析式为y=﹣x+3,由,解得x=,∴点C的横坐标为当∠CBD=∠BEO时,同法可得点C的横坐标为.12.在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若△ABC上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,△ABD 上存在点K,满足PK=1,直接写出b的取值范围.【答案】解:(1)①如图1中,由题意A(1,1),A,B关于直线x=2对称,∴B(3,1).故答案为(3,1).②如图2中,由题意A(﹣0.5,1),直线l:x=0.5,∵直线AC的解析式为y=﹣2x,∴C(0.5,﹣1),∴点C到x轴的距离为1,故答案为1.③由题意A(t﹣1,0),B(t+1,0),∵△ABC上所有点到y轴的距离都不小于1,∴t﹣1≥1或t+1≤﹣1,解得t≥2或t≤﹣2.故答案为t≥2或t≤﹣2.(2)如图3中,∵A(t﹣1,0),B(t+1,0),∴AB=t+1﹣(t﹣1)=2,∵△ABD是以AB为斜边的等腰直角三角形,∴点D到AB的距离为1,,∴当点D在AB上方时,若直线m上存在点P,△ABD上存在点K,满足PK=1,则0≤b≤3.当点D在AB下方时,若直线m上存在点P,△ABD上存在点K,满足PK=1,则﹣1≤b≤2.13.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A (x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.【答案】解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.把(﹣2,14)代入可得14=﹣+b,∴b=,∴直线RT的解析式为y=x+14.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k﹣n,求s与m之间的函数关系式,并写出m的取值范围.【答案】解:(1)图象G对应的函数关系式y=;(2)当m=3时,图象G对应的函数关系式y=,当x=3时,y=9﹣6﹣1=2.当﹣2≤x≤3时,y=﹣x2+x+1=﹣(x﹣1)2+,当x=1时,y取得最大值为;当x=﹣2时,y取得最小值为﹣3.故图象G的最高点的坐标为(3,2),最低点的坐标为(﹣2,﹣3).(3)当y=﹣2时,﹣x2+x+1=﹣2,解得x1=1﹣,x2=1+,∵点P的变换点Q在函数的图象上,∴m的取值范围为1﹣<m≤2﹣或﹣≤m≤1或1+≤m≤2+;(4)当m>1时,x=m左侧的最高点的坐标为(1,),x=m右侧的最低点的坐标为(m,m2﹣2m﹣1),∵点Q的纵坐标y0的取值范围是y0≥k或y0≤n,∴y0≥m2﹣2m﹣1或y0≤,∴k=m2﹣2m﹣1,n=,当k=时,m2﹣2m﹣1=,解得m1=1+,m2=1﹣(舍去),∵k>n,∴当m>1+时,s=m2﹣2m﹣1﹣=m2﹣2m﹣;当m≤1时,x=m左侧图象无最高点,x=m右侧的最低点的坐标为(1,﹣2),没有符合点Q的纵坐标y0的取值范围是y0≥k或y0≤n.综上所述,求s与m之间的函数关系式为s=m2﹣2m﹣(m>1+).15.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC 所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】解:(1)∵AC所在直线解析式为y=﹣x+15,∴令x=0,y=15,令y=0.则﹣,解得x=9.∴A(9,0),C(0,15),B(9,15),。

2021年中考数学复习专题之三角形03-【三角形的面积】基础训练

2021年中考数学复习专题之三角形03-【三角形的面积】基础训练

2021中考数学复习专题之三角形03【三角形的面积】基础训练一.选择题1.△ABC中,BC=10,AC﹣AB=4.过C作∠BAC的角平分线的垂线,垂足为D,连结BD,CD,则S的最大值为()△BDCA.10B.15C.12D.142.如图,在四边形ABCD中,对角线AC,BD交于点O,∠CBD=90°,BC=4,OB=OD=3,AC=10,则四边形ABCD的面积为()A.48B.36C.24D.123.在平面直角坐标系中,由点A(a,3),B(a+4,3),C(b,﹣3)组成的△ABC的面积是()A.6B.12C.24D.不确定4.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.95.如图,在△ABC中,AG=BG,BD=DE=EC,CF=4AF,若四边形DEFG的面积为14,则△ABC的面积为()A.24B.28C.35D.306.如图,点P在直线m上移动,A,B是直线n上的两个定点,且直线m∥n.对于下列各值:①点P到直线n的距离;②△PAB的周长:③△PAB的面积:④∠APB的大小.其中不会随点p 的移动而变化的是()A.①②B.①③C.②④D.③④7.如图,△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是20,则△ABE的面积是()A .10B .6C .5D .48.活动课上,小华将两张直角三角形纸片如图放置,已知AC =8,O 是AC 的中点,△ABO 与△CDO 的面积之比为4:3,则两纸片重叠部分即△OBC 的面积为( )A .4B .6C .2D .29.如图,已知△ABC 中,CN =3BN ,AM =CM ,AN 交BM 于O .若S △ABC =40,则下列正确的是( )①S △ABO =2;②BO :MO =2:3;③AO :NO =4;④S △AMO =12:⑤S △CMO =13.A .①②④B .②③④C .②③④⑤D .①②③④10.已知点A (1,2a +1),B (﹣a ,a ﹣3),若线段AB ∥x 轴,则三角形AOB 的面积为( ) A .21B .28C .14D .10.5二.填空题11.如图,点E 、F 都在线段AB 上,分别过点A 、B 作AB 的垂线AD 、BC ,连接DE 、DF 、CE 、CF ,DF 交CE 于点G ,已知AD =BE =7.5,AE =BF =CB =2.5.如果△DEG 的面积为S 1,△CFG 的面积为S 2,则S 1﹣S 2= .12.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法中正确的序号是 .①△ABE 的面积等于△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .13.如图,△ABC 中,D 是AB 的中点,且AE :CE =3:1,S △CEP =1,则S △BPC = .14.如图,已知△ABC 中,∠BAC =120°,点D 在边BC 上,且AD =4.BD :CD =3:2.当△ABD 面积最大时,AB 的长为 .15.如图,AD 是△ABC 的中线,G 是AD 上的一点,且AG =2GD ,连结BG ,若S △ABC =12,则S △ABG 为 .三.解答题16.在平面直角坐标系中,已知点A,B,C的坐标分别为A(﹣1,0),B(3,﹣2),C(a,b),且+|a+2b﹣7|=0.(1)求点C的坐标;(2)画出△ABC并求△ABC的面积;(3)若BC与x轴交点为点M,求点M坐标.17.如图,长方形ABCD中,AB=10cm,BC=8cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若点P运动的时间为x秒,那么当x为何值时,△APE的面积等于32cm2?(提醒:同学们,要分类讨论哦!)18.如图,在△ABC中,AD是BC边上的中线,AE是BC边上的高线,已知AE=4,△ABD的面积是6,求BC的长.19.在平面直角坐标系中,已知以A(﹣1,0)或以B(3,0)为直角顶点的直角三角形ABC的面积为6,求顶点C的坐标.20.已知A(0,2),B(4,0),C(6,6)(1)在图中的直角坐标系中画出△ABC;(2)求△ABC的面积.参考答案一.选择题1.解:如图:延长AB ,CD 交点于E ,∵AD 平分∠BAC ,∴∠CAD =∠EAD ,∵CD ⊥AD ,∴∠ADC =∠ADE =90°,在△ADE 和△ADC 中,,∴△ADE ≌△ADC (ASA ),∴AC =AE ,DE =CD ;∵AC ﹣AB =4,∴AE ﹣AB =4,即BE =4;∵DE =DC ,∴S △BDC =S △BEC ,∴当BE ⊥BC 时,S △BDC 面积最大,即S △BDC 最大面积=××10×4=10.故选:A .2.解:在Rt△OBC中,由勾股定理,得CO===5.∵AC=10,∴AO=5,∴OA=OC,∵OB=OD=3,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:C.3.解:∵点A(a,3),B(a+4,3),∴AB=4,∵C(b,﹣3),∴点C在直线y=﹣3上,∵AB :y =3与直线y =﹣3平行,且平行线间的距离为6, ∴S =×4×6=12,故选:B .4.解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE , 同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH , ∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE , ∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8, ∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .5.解:连接EG ,CG ,∵BD =DE =EC ,∴BD =BC ,∵AG =BG =AB ,∴S △BDG =S △BCG =S △ABC =S △ABC ,同理S △ECF =S △ABC =S △ABC ,S △AFG =×S △ABC =S △ABC ,∴S 四边形DEFG =S △ABC ﹣S BDG ﹣S △CEF ﹣S △AGF =S △ABC =14,∴S △ABC =30.故选:D .6.解:①∵直线m ∥n ,∴点P 到直线n 的距离不变;②∵PA 、PB 的长度随点P 的移动而变化,∴△PAB 的周长会随点P 的移动而变化;③∵点P 到直线n 的距离不变,AB 的大小,∴△PAB 的面积不变;④直线m 、n 之间的距离不随点P 的移动而变化,∠APB 的大小随点P 的移动而变化; 故不会随点p 的移动而变化的是①③,故选:B .7.解:∵AD 是BC 上的中线,∴S △ABD =S △ACD =S △ABC ,∵BE 是△ABD 中AD 边上的中线,∴S △ABE =S △BED =S △ABD ,∴S △ABE =S △ABC ,∵△ABC 的面积是20,∴S △ABE ==5. 故选:C .8.解:∵点O 是直角△ABC 斜边AC 的中点,∴S △ABO =S △CBO ,OB =OA =OC ,∵△ABO 与△CDO 的面积之比为4:3,∴△CBO 与△CDO 的面积之比为4:3,∴OB :OD =4:3,设OB =4x ,则OD =3x ,∴OA =OC =4x ,∵AC =8,∴4x +4x =8,解得x =1,在Rt △ODC 中,OD =3,OC =4,∴CD ==,∴S △ODC =×3×=,而△CBO 与△CDO 的面积之比为4:3,∴S △OBC =×=2.故选:D .9.解:过M 点作MD ∥BC ,交AN 于点N ,连接OC ,则△DOM ∽△NOB ,∴DM :BN =DO :ON =MO :BO ,∵AM =CM ,∴DM 为△ANC 的中位线,∴AD =DN ,BC =2DM ,∵CN =3BN ,∴DM :BN =3:2,BN :BC =1:4,∴DO :ON =MO :BO =3:2,∴BO :MO =2:3,故②正确;AO :NO =4:1,故③正确;AO :AN =4:5,OM :BM =3:5,∵S △ABC =40,AM =CM ,BN :BC =1:4,∴S △ABN =10,S △ABM =20,∵S △ABO :S △ABN =AO :AN =4:5,S △AMO :S △ABM =MO :BM =3:5,∴S △ABO =8,故①错误;S △AMO =12,故④正确;∵AM =CM ,∴S △CMO =S △AMO =12,故⑤错误.故选:B .10.解:∵AB ∥x 轴,∴2a +1=a ﹣3.解得a =﹣4.∴A (1,﹣7),B (4,﹣7).∴AB =3.∴△AOB 的面积为:×3×7=10.5,故选:D .二.填空题11.解:∵AD =BE =7.5,AE =BF =CB =2.5.∴AF =BE ,∴AD =AF =7.5,在△ADE 和△BEC 中,,∴△ADE ≌△BEC (SAS ),∴S △DAE =S △CBE ,∵S 1=S △DAF ﹣S △DAE ﹣S △EFG ,S 2=S △CBE ﹣S △EFG ﹣S △CBF ,∴S 1﹣S 2=S △DAE +S △CBF =+=.故答案为.12.解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG =2∠ACF ,故③正确;根据已知条件不能推出∠HBC =∠HCB ,即不能推出BH =CH ,故④错误;故答案为:①②③.13.解:连接PA ,∵D 是AB 的中点,∴S △ADC =S △BCD ,S △PAD =S △PBD ,∴S △BPC =S △APC ,∵AE :CE =3:1,S △CEP =1,∴S △AEP =3S △CEP =3,∴S △APC =4,∴S △BPC =4,故答案为4.14.解:作DE ⊥AB 于E ,∴S △ABD =AB •DE ,∵DE ⊥AB ,∴DE ≤AD .当DA ⊥AB 时,DE 与DA 重合,此时,DE 取得最大值4,△ABD 面积最大,作CF ⊥AB ,交BA 的延长线于F ,∴DE ∥CF ,∴△BDE ∽△BCF , ∴=,即=, ∴=,∴CF =,∵∠BAC =120°,∴∠CAF =60°,∴∠ACF =30°∴AF =tan30°•CF =×=,∵AD ∥CF , ∴==,∴AB =. 故答案为.15.解:∵AD 是△ABC 的中线,S △ABC =12,∴S △ABD =S △ABC =×12=6,∵AG =2GD ,∴S △ABG =S △ABD =×6=4,故答案为:4.三.解答题16.解:(1)∵+|a +2b ﹣7|=0, ∴, 解得:,∴C (1,3);(2)如图,△ABC 为所作,如图,分别过点B ,点C 作x 轴的平行线BF ,DE ,过点A ,点B 作y 轴的平行线DF ,EB , ∴S △ABC =S 四边形DFBE ﹣S △ADC ﹣S △BCE ﹣S △ABF ,=4×5﹣﹣﹣,=8;(3)设点M 的坐标为(m ,0),∵S△ABC =S△AMC+S△ABM,S△ABC=8,∴,∴AM=,∴m﹣(﹣1)=,∴m=,∴M(,0).17.解:①如图1,当P在AB上时,∵△APE的面积等于32,∴×2x•8=32,解得:x=4;②当P在BC上时,∵△APE的面积等于32,∴S 矩形ABCD ﹣S △CPE ﹣S △ADE ﹣S △ABP =32,∴10×8﹣(10+8﹣2x )×5﹣×8×5﹣×10×(2x ﹣10)=32, 解得:x =6.6;③当P 在CE 上时,∴(10+8+5﹣2x )×8=32,解得:x =7.5<(10+8+5),x =7.5时2x =15,P 在BC 边,∴舍去;答:4或6.6.18.解:∵AD 为△ABC 的中线,∴S △ABC =2S △ABD =2×6=12, ∴×AE •BC =12,即4•BC =12,∴BC =6.19.解:设C 点的纵坐标为t ,∵A (﹣1,0),B (3,0),∴AB =4,∵S=×4×|t|=6,解得|t|=3,△ABC∴点C的坐标为(﹣1,3)或(3,3)或(﹣1,﹣3)或(3,﹣3).20.解:(1)在平面直角坐标系中画出△ABC如图所示:(2)△ABC的面积=6×6﹣×4×2﹣﹣=36﹣4﹣6﹣12=14.21 / 21。

3、2020重庆中考复习数学几何最值专题训练三(含答案解析)

3、2020重庆中考复习数学几何最值专题训练三(含答案解析)

2020年重庆中考数学最值专题训练三(含答案)1、(2018•明光市二模)如图,正方形ABCD中,AB=4,点E、F分别为BC,AD上的点,过点E、F 的直线将正方形ABCD的面积分为相等的两部分.过点A作AG⊥EF于点G,连接DG,则线段DG长的最小值为()A.2B.2﹣2C.2D.2﹣22、如图,正方形ABCD的边长为2,点E、F分别是边AB、CD上的动点,且AE=CF,连接EF,将线段EF绕点E逆时针旋转90°得到线段EG,连接DG,则线段DG长的最小值为.3、(2019•南充模拟)如图,正方形ABCD的边长为2,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ,PQ,则线段PQ的最小值为.4、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为.5、(2019•惠山区一模)如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF,OF.则线段OF长的最小值()A.2B.+2C.2﹣2 D.56、如图,在边长为2的正方形ABCD中,点O为AB中点,以AB为直径在正方形ABCD内部作半圆,E为半圆上任意一点(不与A.B重合),连接CE,将线段CE绕点C逆时针旋转90°得列CF,连接DE、BF,OF.则线段OF长的最小值为.7、(2019秋•颍州区校级月考)如图,正方形ABCD的边长为5,O是AB边的中点,点E是正方形内一动点,OE=2,将线段CE绕C点逆时针旋转90°得CF,连OF,线段OF的最小值为.8、(2019•太原二模)如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,点D是AC边的中点,E是直线BC上一动点,将线段DE绕点D逆时针旋转90°得到线段DF,连接AF、EF,在点E的运动过程中线段AF的最小值为.9、(2019秋•锡山区期中)已知:如图,△ABC是边长为6的等边三角形,直线AF⊥BC于F,点D是直线AF上一动点,以BD为边在BD的右侧作等边△BDE,连接EF,则EF的最小值为.10、(2019•台州模拟)如图,四边形ABCD是矩形,AB=4,BC=a(a>1),E是BC上的一点,且BE=1,点F是边AB上的任意一点.连接EF,将线段EF绕点E顺时针旋转90°,得到线段EG.在点F从点B运动到点A的过程中,若要点G能落在对角线AC上,则a的最大值为.11、如图1,四边形ABCD是矩形,AB=2,BC=4,点E是AD边上的一个动点,以CE为边在CE的右侧作矩形CEFG,且CG:CE=1:2,连接DG、BE、BG,则2BG+BE的最小值为.2020年重庆中考数学最值专题训练三(含答案)1、(2018•明光市二模)如图,正方形ABCD中,AB=4,点E、F分别为BC,AD上的点,过点E、F 的直线将正方形ABCD的面积分为相等的两部分.过点A作AG⊥EF于点G,连接DG,则线段DG长的最小值为()A.2B.2﹣2C.2D.2﹣2解:连接AC,BD交于O,∵过点E、F的直线将正方形ABCD的面积分为相等的两部分,∴EF过点O,∵AG⊥EF,∴∠AGO=90°,∴点G在以AO为直径的半圆弧上,设AO的中点为M,连接DM交半圆弧于G,则此时,DG最小,∵四边形ABCD是正方形,AB=4,∴AC=8,AC⊥BD,∴AO=OD=AC=4,∴AM=OM=AO=2,∴DM==2,∴DG=2﹣2,故选:B.2、如图,正方形ABCD的边长为2,点E、F分别是边AB、CD上的动点,且AE=CF,连接EF,将线段EF绕点E逆时针旋转90°得到线段EG,连接DG,则线段DG长的最小值为.解:如图,过点F作FM⊥AB于M,过点G作GH⊥AD于H,GN⊥AB于N,∵四边形ABCD是正方形,∴AB=BC=AD=CD=2,∠B=∠C=∠BAD=90°,且FM⊥AB,GH⊥AD,GN⊥AB,∴四边形BCFM,四边形AHGN是矩形,∴BM=CF,NG=AH,AN=GH,MF=BC=2,∵将线段EF绕点E逆时针旋转90°得到线段EG,∴EG=EF,∠GEF=90°,∴∠NEG+∠FEM=90°,且∠NGE+∠NEG=90°,∴∠FEM=∠NGE,且∠N=∠FME=90°,EF=EG,∴△EGN≌△EFM(AAS)∴NE=MF=2,EM=NG,设AE=CF=a,∴EM=2﹣2a=NG=AH,AN=2﹣a=GH,∴HD=AD﹣AH=2﹣(2﹣2a)=2a,∵GD==∴当a=时,GD有最小值为,3、(2019•南充模拟)如图,正方形ABCD的边长为2,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ,PQ,则线段PQ的最小值为.解:连接OD,如图所示:∵DQ=DP,∠PDQ=90°,∴PQ=DP,OD===5,∵OP+DP≥OD,∴DP≥OD﹣OP=5﹣2=3,∴PQ≥3,∴线段PQ的最小值为3.4、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为2.解:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH=60°,∠AEF=∠HEG,且EF=EG,AE=EH,∴△AEF≌△HEG(SAS)∴∠A=∠EHG=120°=∠AEH,∴AD∥HG,∴点G的轨迹是过点H且平行于AD的直线,∴当DG⊥HG时,线段GD长度有最小值,∵∠HEM=60°,EH=4,HM⊥AD,∴EM=2,MH=EM=2,∴线段GD长度的最小值为2,5、(2019•惠山区一模)如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF,OF.则线段OF长的最小值()A.2B.+2C.2﹣2 D.5解法一:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD=,∴OM=,∵OF+MF≥OM,∴OF≥.故选:D.解法二:如图,由于OE=2,所以E点可以看作是以O为圆心,2为半径的半圆上运动,延长BA到P 点,使得AP=OC,连接PE,∵AE=CF,∠P AE=∠OCF,∴△P AE≌△OCF,∴PE=OF,当O、E、P三点共线时,PE最小,OP===5,∴PE=OF=OP﹣OE=5﹣2,∴OF的最小值是5﹣2.6、如图,在边长为2的正方形ABCD中,点O为AB中点,以AB为直径在正方形ABCD内部作半圆,E为半圆上任意一点(不与A.B重合),连接CE,将线段CE绕点C逆时针旋转90°得列CF,连接DE、BF,OF.则线段OF长的最小值为.解:由于OE=2,所以E点可以看作是以O为圆心,2为半径的半圆上运动,延长BA到P点,使得AP=OC,连接PE,∵AE=CF,∠P AE=∠OCF,∴△P AE≌△OCF(SAS),∴PE=OF,当PE最小时,为O、E、P三点共线,OP===5,∴PE=OF=OP﹣OE=5﹣2,∴OF的最小值是5﹣2.7、(2019秋•颍州区校级月考)如图,正方形ABCD的边长为5,O是AB边的中点,点E是正方形内一动点,OE=2,将线段CE绕C点逆时针旋转90°得CF,连OF,线段OF的最小值为.解:如图,连接CO,将线段CO绕点C逆时针旋转90°得CM,连接FM,OM,则∠ECF=∠OCM=90°,∴∠ECO=∠FCM,∵CE=CF,CO=CM,∴△ECO≌△FCM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=5,O是AB边的中点,∴OB=2.5,∴OC==,∴OM=OC=,∵OF+MF≥OM,∴OF≥﹣2.∴线段OF的最小值为﹣2.8、(2019•太原二模)如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,点D是AC边的中点,E是直线BC上一动点,将线段DE绕点D逆时针旋转90°得到线段DF,连接AF、EF,在点E的运动过程中线段AF的最小值为+1.解:如图,作DM⊥BC于M,FJ⊥DM于J交AB于N.∵Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,∴AC=2BC=4,AB=BC=2,∵AD=DC.DM∥AB,∴DM=AB=,BM=CM=1,易证四边形BMJN是矩形,∴JN=BM=1,∵∠FDJ+∠EDM=90°,∠EDM+∠DEM=90°,∴∠FDJ=∠DEM,∵∠FJD=∠DME=90°,∴△FJD≌△DME(AAS),∴FJ=DM=,∴FN=FJ+JN=1+,∴点F在直线l上运动(直线l与直线AB之间的距离为+1),根据垂线段最短可知,当AF⊥直线l时,AF的值最短,最小值为+1,9、(2019秋•锡山区期中)已知:如图,△ABC是边长为6的等边三角形,直线AF⊥BC于F,点D是直线AF上一动点,以BD为边在BD的右侧作等边△BDE,连接EF,则EF的最小值为.解:如图,取AB中点H,连接DH,∵△ABC,△BDE都是等边三角形,∴AB=BC,BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠EBC,∵△ABC是等边三角形,AF⊥BC,∴BF=BC=AB=3,∠BAF=30°,∵H是AB中点,∴AH=BH=AB=BF=3,且∠ABD=∠EBC,BD=BE,∴△BHD≌△BFE(SAS)∴EF=DH,∴当DH取最小值时,EF有最小值,当DH⊥AF时,DH有最小值,∴DH=AH=,∴EF的最小值为,10、(2019•台州模拟)如图,四边形ABCD是矩形,AB=4,BC=a(a>1),E是BC上的一点,且BE=1,点F是边AB上的任意一点.连接EF,将线段EF绕点E顺时针旋转90°,得到线段EG.在点F从点B运动到点A的过程中,若要点G能落在对角线AC上,则a的最大值为.解:如图,当点G落在对角线AC上,过点G作GH⊥BC于点H,∵△EFB≌△GEH,∴GH=BE=1,EH=BF,∴CH=BC﹣BE﹣EH=a﹣1﹣BF,∵△CHG∽△CBA,∴,∴,∴BF=∵点F是边AB上的任意一点,∴0≤BF≤AB,∴0≤≤4,∴≤a≤∴a的最大值为11、如图1,四边形ABCD是矩形,AB=2,BC=4,点E是AD边上的一个动点,以CE为边在CE的右侧作矩形CEFG,且CG:CE=1:2,连接DG、BE、BG,则2BG+BE的最小值为4.解:延长BE、GD相交于点H.∵矩形ECGF、矩形ABCD,∴∠ECG=∠BCD=90°,∴∠DCG=∠BCE∵CD:CB=2:4=1:2,CG:CE=1:2,∴CD:CB=CG:CE,∵∠DCG=∠BCE∴△DCG∽△BCE,∴,∠BEC=∠DGC,∴DG=BE作EN⊥BC于N,GM⊥BC交BC的延长线于M.易证△ECN∽△CGM,∴==2,∵EN=AB=2,∴CM=1,∴点G的运动轨迹是直线MG,作点D关于直线GM的对称点G′,连接BG′交GM于G,此时BG+GD的值最小,最小值=BG′∵DG=BE,∴BE=2DG,∴2BG+BE=2BG+2DG=2(BG+DG)∴2BG+BE的最小值就是2(BG+DG)的最小值.∵BG′==2,∴2BG+BE的最小值为4。

2020年中考数学专题训练(三)与角平分线有关的全等证明的三种模型

2020年中考数学专题训练(三)与角平分线有关的全等证明的三种模型

专题训练(三)与角平分线有关的全等证明的三种模型模型一过角平分线上的点向角的两边作垂线如图3-ZT-1,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B.图3-ZT-1结论:PB=PA.1.如图3-ZT-2,∠1=∠2,∠3=∠4.求证:AP平分∠BAC.图3-ZT-22.感知:如图3-ZT-3①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.易知:DB=DC.探究:如图3-ZT-3②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.图3-ZT-33.如图3-ZT-4,P为∠ABC的平分线上的一点,点D和点E分别在AB和BC上,且BD<BE,PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.图3-ZT-44.如图3-ZT-5,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,求∠PAC 的度数.图3-ZT-5模型二截取构造对称全等(截长补短)如图3-ZT-6,P是∠MON的平分线上一点,A是射线OM上任意一点,在ON上截取OB=OA,连接PB.图3-ZT-6结论:△OPB≌△OPA.5.如图3-ZT-7所示,在△ABC中,AD是△ABC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC 与AB+AC的大小,并说明理由.图3-ZT-76.如图3-ZT-8所示,AD是△ABC的内角平分线,P是AD上异于点A的任意一点,试比较PC-PB与AC-AB 的大小,并说明理由.图3-ZT-87.如图3-ZT-9所示,在△ABC中,∠A=100°,∠ABC=40°,AB=AC,BD是∠ABC的平分线,延长BD至点E,使ED=AD.求证:BC=AB+CE.图3-ZT-9模型三角平分线+垂线(延长法)如图3-ZT-10,P是∠MON的平分线上的一点,AP⊥OP于点P,延长AP交ON于点B.图3-ZT-10结论:OA=OB.8.如图3-ZT-11,在△ABC中,AD是∠BAC的平分线,BE⊥AD于点E.探究∠ABE,∠DBE,∠C之间的数量关系.图3-ZT-119.如图3-ZT-12,已知等腰直角三角形ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于点E.求证:BD=2CE.图3-ZT-12教师详解详析1.证明:如图,过点P作PQ⊥AB于点Q,PN⊥BC于点N,PM⊥AC于点M.∵∠1=∠2,∠3=∠4,∴PQ=PN,PN=PM.∴PQ=PM.又∵PQ⊥AB,PM⊥AC,∴AP平分∠BAC.2.证明:如图,过点D分别作DE⊥AB于点E,DF⊥AC于点F.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠F=∠DEB=90°,DE=DF.∵∠ABD+∠ACD=180°,∠ACD+∠FCD=180°,∴∠ABD=∠FCD.在△DFC和△DEB中,{∠F=∠DEB,∠FCD=∠EBD, DF=DE,∴△DFC≌△DEB.∴DC=DB.3.解:∠BDP+∠BEP=180°.证明:过点P作PM⊥AB于点M,PN⊥BC于点N,则∠PMD=∠PNE=90°.∵BP平分∠ABC,∴PM=PN.在Rt△DPM和Rt△EPN中,{PD=PE,PM=PN,∴Rt△DPM≌Rt△EPN(HL).∴∠ADP=∠BEP.∵∠BDP+∠ADP=180°,∴∠BDP+∠BEP=180°.4.解:如图,过点P作PN⊥BD,PF⊥BA,PM⊥AC,垂足分别为N,F,M.设∠PCD=x °.∵CP 平分∠ACD ,∴∠ACP=∠PCD=x °,PM=PN. ∵BP 平分∠ABC , ∴∠ABP=∠PBC ,PF=PN. ∴PF=PM. ∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°.∴∠BAC=∠ACD-∠ABC=2x °-(x °-40°)-(x °-40°)=80°. ∴∠CAF=100°.在Rt △PFA 和Rt △PMA 中,{PA =PA,PF =PM,∴Rt △PFA ≌Rt △PMA (HL). ∴∠FAP=∠PAC=50°.5.解:PB+PC>AB+AC.理由如下:如图,在BA 的延长线上截取一点F ,使AF=AC ,连接PF.在△ACP 和△AFP 中,{AC =AF,∠CAP =∠FAP,AP =AP,∴△ACP ≌△AFP (SAS). ∴AC=AF ,PC=PF. ∵PB+PF>BF , ∴PB+PC>AB+AC.6.解:PC-PB<AC-AB.理由如下:如图,在AC上截取一点F,使AF=AB,连接PF.在△ABP和△AFP中,{AB=AF,∠BAP=∠FAP, AP=AP,∴△ABP≌△AFP(SAS).∴PB=PF.∵AF=AB=AC-CF,∴CF=AC-AB.∵PC-PF<CF,∴PC-PB<AC-AB.7.证明:如图,在BC上截取一点F,使得FB=AB,连接DF.∵BD是∠ABC的平分线,∠ABC=40°,∴∠ABD=∠FBD=20°.在△ABD和△FBD中,{AB=FB,∠ABD=∠FBD, BD=BD,∴△ABD≌△FBD(SAS).∴AD=FD,∠BDF=∠BDA=180°-∠A-∠ABD=60°.∴∠FDC=∠BDA=∠EDC=60°.又∵ED=AD,∴ED=FD.在△EDC和△FDC中,{ED =FD,∠EDC =∠FDC,DC =DC,∴△EDC ≌△FDC (SAS). ∴CE=CF.∴BC=FB+CF=AB+CE.8.解:如图,延长BE 交AC 于点F.在△ABE 和△AFE 中,{∠BAE =∠FAE,AE =AE,∠AEB =∠AEF =90°,∴△ABE ≌△AFE (ASA). ∴∠ABE=∠AFE. ∵∠AFB=∠DBE+∠C , ∴∠ABE=∠DBE+∠C.9.证明:如图,延长CE ,BA 交于点F.在△BEF 和△BEC 中,{∠FBE =∠CBE,BE =BE,∠BEF =∠BEC,∴△BEF ≌△BEC (ASA). ∴FE=CE=12CF ,即CF=2CE.∵∠ABD+∠ADB=90°,∠EDC+∠DCE=90°,∠ADB=∠EDC , ∴∠ABD=∠DCE.在△ABD 和△ACF 中,{∠ABD =∠DCE,AB =AC,∠BAD =∠CAF =90°,∴△ABD≌△ACF(ASA).∴BD=CF.∴BD=2CE.。

专题3分式与二次根式含答案解析2023年江西省中考数学一轮复习专题训练

专题3分式与二次根式含答案解析2023年江西省中考数学一轮复习专题训练

专题3 分式与二次根式一、单选题1.下列计算一定正确的是( )A .2a 2b ⋅a 3=2a 5bB .2a 2+a 3=2a 5C .a a−1−1a−1=0D .3a −a =32.计算 a+1a −1a 的结果为( )A .1B .-1C .a+2aD .a−2a3.分式 x+5x−2的值是零,则 x 的值为( )A .5B .-5C .-2D .24.(2021·章贡模拟)下列运算中,正确的是( )A .(a 2)3=a 5B .(12)−1=−2 C .(2021−√5)0=1D .a 3•a 3=2a 65.下列计算错误的是( )A .a 2ab =a b(ab≠0 )B .ab 2÷ 12b =2ab 3(b≠0)C .2a 2b+3ab 2=5a 3b 3D .(ab 2)3=a 3b 66.(2020·吉安模拟)下列计算正确的是( )A .3x 2y +5xy =8x 3y 2B .(x +y)2=x 2+y 2C .(−2x)2÷x =4xD .y x−y +xy−x =17.下列说法正确的是( )A .若A 、B 表示两个不同的整式,则 A B一定是分式B .(a 4)2÷a 4=a 2C .若将分式 xyx+y 中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若 3m =5,3n =4 则 32m−n =528.2019新型冠状病毒,因武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名“2019-nCoV”.冠状病毒是一个大型病毒家族,借助电子显微镜,我们可以看到这些病毒直径约为125纳米(1纳米=1 × 10-9米),125纳米用科学记数法表示等于( )米 A .1.25 × 10-10 B .1.25 × 10-11 C .1.25 × 10-8D .1.25 × 10-79.下列各等式中,正确是( )A .- √(−3)2 =-3B .± √32 =3C .( √−3 )2=-3D .√32 =±310.(2020·抚州模拟)下列计算正确的是( )A .-(x -y )2=-x 2-2xy -y 2B .(- 12 xy 2)3=- 16x 3y 6C .x 2y÷ 1y =x 2(y≠0)D .(- 13 )-2÷ 94=4二、填空题11.(2022·玉山模拟)计算12x −13x的结果是 .12.(2022·石城模拟)已知 a ,b(a ≠b) 满足 a 2−2a −1=0 , b 2−2b −1=0 ,则 ab +ba =. 13.(2022·瑞金模拟)使式子√x+3x−5有意义的x 的取值范围是 .14.(2022·新余模拟)2021年10月11日,联合国《生物多样性公约》缔约方大会第十五次会议(COP15)在昆明正式拉开帷幕.在多彩的生物界,科学家发现世界上最小的开花结果植物是澳洲的出水浮萍,其质量仅有0.000000076克,0.000000076用科学记数法表示是 .15.(2021·江西模拟)若二次根式 √2021−x 有意义,则x 的取值范围是 .16.(2020·安源模拟)今年世界各地发现新冠肺炎疫情,疫情是由一种新型冠状病毒引起的,疫情发生后,科学家第一时间采集了病毒样本进行研究.研究发现这种病毒的直径约85纳米(1纳米=0.000000001米).数据85纳米用科学记数法可以表示为 米.17.(2020·石城模拟)一种细菌的半径约为0.000045米,用科学记数法表示为 米.18.(2020·抚州模拟)对于任意不相等的两个数a ,b ,定义一种运算※如下:a※b= √a+b a−b,如3※2= √3+23−2=√5 .那么4※8= . 19.(2020七上·景德镇期中)已知: a =√5+√3 , b =√5−√3,则 a 2−ab +b 2= . 20.(2020八下·高安期末)计算: (2√13)⋅(13√27)= . 三、计算题21.(2022七下·南康期末)计算下列各式的值:(1)√2(√2+2);(2)√3(√31√3.22.(2022八下·新余期末)计算:(1)√28−|1−√7|−(√2022−1)0(2)(√3+2)2−√48+√8×√1223.(2022·瑞金模拟)(1)计算:(π−3)0+(13)−1−√12+2sin60° (2)化简:(1x+2−1)÷x 2−1x+224.(2022·高安模拟)计算:(1)(−12)0+|√3−2|+tan60°; (2)2m−4m 2−4÷m−1m+2−1m−125.(2022·赣州模拟)先化简,再求值:5a +a 2−4a−1÷a 2+2a a−1,其中a =3.答案解析部分1.【答案】A【解析】【解答】2a 2b ⋅a 3=2a 5b ,故A 符合题意;2a 2+a 3不能合并同类项,故B 不符合题意;a a−1−1a−1=a−1a−1=1,故C 不符合题意; 3a −a =2a ,故D 不符合题意; 故答案为:A .【分析】根据合并同类项,单项式乘单项式,分式的加减分别计算,再判断即可.2.【答案】A【解析】【解答】解:a+1a−1a =a+1−1a =aa =1 . 故答案为:A .【分析】利用分式的基本性质计算求解即可。

2020初中数学中考专题复习——四边形中的线段最值问题专项训练3(附答案详解)

2020初中数学中考专题复习——四边形中的线段最值问题专项训练3(附答案详解)
19.在平面直角坐标系中,点 是原点,四边形 是矩形,点 ,点 .以点 为中心,顺时针旋转矩形 ,得到矩形 ,点 的对应点分别为 .
(1)如图①,当点 落在 边上时,求点 的坐标;
(2)如图②,当点 落在线段 上时, 与 交于点 .求点 的坐标;
(3)记 为矩形 对角线的交点, 为 的面积,求 的取值范围(直接写出结果即可).
A. B. C. D.
3.线段AB上有一动点C(不与A,B重合),分别以AC,BC为边向上作等边△ACM和等边△BCN,点D是MN的中点,连结AD,BD,在点C的运动过程中,有下列结论:①△ABD可能为直角三角形;②△ABD可能为等腰三角形;③△CMN可能为等边三角形;④若AB=6,则AD+BD的最小值为 .其中正确的是( )
【详解】
解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',
根据轴对称性质可知,PN=PN',
∴PM-PN=PM-PN'≤MN',
当P,M,N'三点共线时,PM-PN'= MN',
∵正方形边长为4,
∴AC= AB=4 ,
∵O为AC中点,
∴AO=OC=2 ,
∵N为OA中点,
∴ON= ,
7.A
【解析】
【分析】
连接BD、BF,延长AC交GE于H,连接BH,证明四边形BNHM是矩形,得出MN=BH,由直角三角形的性质得出GH,AH的长,当BH⊥AG时,BH最小,由直角三角形的性质得出BH的长,即可得出答案.
【详解】
连接BD、BF,延长AC交GE于H,连接BH,如图所示:
∵四边形ABCD和四边形BEFG是菱形,∠DAB=60°,∴AD∥BC∥GF,AC⊥BD,BF⊥GE,BE=BG,AM=CM,EN=GN,∴∠GAH=30°,∠EBG=∠DAB=60°,∴△BEG是等边三角形,∴∠BGE=60°,∴∠AHG=90°,∴四边形BNHM是矩形,GH AG=4,AH GH=4 ,∴MN=BH,当BH⊥AG时,BH最小.

中考数学专题复习阅读思考题强化练习(三)

中考数学专题复习阅读思考题强化练习(三)
(2)如要补充:计算过程,人员分工,指导教师,活动感受等.(答案不唯一,合理即可.)
【详解】
解:(1)在Rt△AFE中,tan∠AFE= ,∠AFE=37°,
∴ ,
∵∠HCD=90°,∠FDC=90°,
∴HC∥FD,
又∵HC=FD,
∴四边形HCDF是矩形,
∴HF=CD=32m.
在Rt△AHE中,tan∠AHE= = ≈0.45,
(2)根据三角形的三边关系;三角形两边之和大于第三边,由于每段的长为不小于1的整数,所以设最小的是1,又由于其中任意三段都不能拼成三角形,所以每段长是:1,1,2,3,5,然后依此类推,最后每段的总和要不大于15即可.
【详解】
解:(1)填表如下:

第2项
第3项
第4项
第5项
第6项
第7项
第8项
第9项

这一项的平方
问题解答:
(1)根据柏拉图的研究,当 时,请直接写出一组勾股数;
(2)若 表示大于1的整数,试证明 是一组勾股数;
(3)请举出一个反例(即写出一组勾股数),说明柏拉图给出的勾股数公式不能构造出所有的勾股数.
6.阅读下列材料,并完成相应任务:
黄金分割
天文学家开普勒把黄金分割称为神圣分割,并指出毕达哥拉斯定理(勾股定理)和黄金分割是几何中的双宝,前者好比黄金,后者堪称珠宝,历史上最早正式在书中使用“黄金分割”这个名称的是欧姆,19世纪以后“黄金分割”的说法逐渐流行起来,黄金分割被广泛应用于建筑等领域.黄金分割指把一条线段分为两部分,使其中较长部分与线段总长之比等于较短部分与较长部分之比,该比值为 .用下面的方法(如图①)就可以作出已知线段 的黄金分割点 :
解得IF=
故S△ABI= AB•FI= ×9× = .

2021年九年级数学中考复习分类专题练习:等边三角形的判定与性质(三)

2021年九年级数学中考复习分类专题练习:等边三角形的判定与性质(三)

2021年九年级数学中考复习分类专题:等边三角形的判定与性质(三)一.选择题1.如图,等边△ABC中,D、E分别为AC、AB上两点,下列结论:①若AD=AE,则△ADE是等边三角形;②若DE∥BC,则△ADE是等边三角形,其中正确的有()A.①B.②C.①②D.都不对2.如图,D是等边△ABC的边AC上的一点,E是等边△ABC外一点,若BD=CE,∠1=∠2,则对△ADE的形状最准确的是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形3.设M,N,P分别是等边三角形ABC各边上的点,AM=BN=CP,则△MNP是()A.等边三角形B.等腰三角形C.直角三角形D.不等边三角形4.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个5.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A.30°B.45°C.120°D.15°6.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°7.如图,已知△ABC是等边三角形,点D,E,F分明是边AB,BC,AC的中点,则图中等边三角形的个数是()A.2个B.3个C.4个D.5个8.如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,图中与BD相等的线段有()A.5条B.6条C.7条D.8条9.如图,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB=2,BC=3,则BD的长是()A.5 B.7 C.8 D.910.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二.填空题11.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,则PQ=.12.在△ABC 中,AB =AC =8cm ,∠B =60°,则BC = cm .13.如图,△ABC 是等边三角形,D ,E ,F 分别是AB ,BC ,CA 边上一点,且AD =BE =CF .则△DEF 的形状是 .14.两块完全一样的含30°角的三角板重叠在一起,若绕长直角边中点M 转动,使上面一块的斜边刚好过下面一块的直角顶点.如图,∠A =30°,AC =8,则此时两直角顶点C ,C ′间的距离是 .15.如图,已知△ABC 中高AD 恰好平分边BC ,∠B =30°,点P 是BA 延长线上一点,点 O 是线段AD 上一点且OP =OC ,下面的结论:①∠APO +∠DCO =30°;②△OPC 是等边三角形;③AC =AO +AP ;④S △ABC =S 四边形AOCP .其中正确的为 .(填序号)16.如图所示是两块完全一样的含30°角的三角板,分别记作△ABC 和△A 1B 1C 1,现将两块三角板重叠在一起,设较长直角边的中点为M ,绕中点M 转动三角板ABC ,使其直角顶点C 恰好落在三角板A 1B 1C 1的斜边A 1B 1上,当∠A =30°,AC =10时,两直角顶点C ,C 1的距离是 .三.解答题17.如图,已知:边长相等的等边△ABC和等边△DEF重叠部分的周长是6.(1)求证:△FGH和△CHL和△LEK和△KBJ和△JDI和△IAG都是等边三角形.(或证明∠AGF=∠FHC=∠CLE=∠EKB=∠BJI=∠DIA=120°)(2)求等边△ABC的边长.18.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,且BE=8cm.(1)求∠D的度数;(2)若BC=10cm,求ED的长.19.如图,△ABC是等边三角形,O为△ABC内一点,且∠AOB=120°,∠BOC=120°.求证:由线段AO、BO、CO构成的一个三角形是等边三角形.证明过程如下,请仔细阅读并将证明继续下去:证明:将△ABO绕点A逆时针旋转60°,此时B点与C点重合,O落在O′,连接AO′、OO′、CO′,∴AO=AO′,∠OAO′=60°∴△AOO′是一个等边三角形∴AO=OO′又∵OB=O′C∴线段OA、OB、OC构成了△OCO′请继续:20.如图,等边△ABC中,点D、E、F分别同时从点A、B、C出发,以相同的速度在AB、BC、CA上运动,连结DE、EF、DF.(1)证明:△DEF是等边三角形;(2)在运动过程中,当△CEF是直角三角形时,试求的值.21.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC 于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).参考答案一.选择题1.解:∵△ABC为等边三角形,∴∠A=60°,∵AD=AE,∴△ADE是等边三角形;所以①正确;∵△ABC为等边三角形,∴∠C=∠B=60°,∵DE∥BC,∴∠ADE=∠C=∠B=∠AED=60°,∴△ADE是等边三角形,所以②正确.故选:C.2.解:∵三角形ABC为等边三角形,∴AB=AC,∵BD=CE,∠1=∠2,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE=60°,∴△ADE是等边三角形.故选:C.3.解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°,∵AM=BN=CP,∴BM=CN=AP,在△AMP,△BNM和△CPN中,,∴△AMP≌△BNM≌△CPN(SAS),∴PM=MN=NP,∴△MNP是等边三角形.4.解:∵△ABC和△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴AD=BE,故选项①正确;∵∠ACB=∠ACE=60°,由△BCE≌△ACD得:∠CBE=∠CAD,∴∠BMC=∠ANC,故选项②正确;由△BCE≌△ACD得:∠CBE=∠CAD,∵∠ACB是△ACD的外角,∴∠ACB=∠CAD+∠ADC=∠CBE+∠ADC=60°,又∠APM是△PBD的外角,∴∠APM=∠CBE+∠ADC=60°,故选项③正确;在△ACN和△BCM中,,∴△ACN≌△BCM,∴AN=BM,故选项④正确;∴CM=CN,∴△CMN为等腰三角形,∵∠MCN=60°,∴△CMN是等边三角形,故选项⑤正确;故选:D.5.解:设∠B=x∵BD=AD则∠B=∠BAD=x,∠ADE=2x,∵AD=AE∴∠AED=∠ADE=2x,∵AE=EC,∠AED=∠EAC+∠C∴∠EAC=∠C=x又BD=DE=AD,由直角三角形斜边的中线等于斜边的一半,知∠BAE=90°,则∠B+∠AED=x+2x=90°得x=30°∴∠BAC=180°﹣2x=120°故选:C.6.解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.7.解:∵D,E,F分明是边AB,BC,AC的中点,∴AD=BD=BE=EC=CF=FA=DF=DE=EF=AB=AC=∴等边三角形有:△ABC、△ADF、△BDE、△CEF、△DEF共5个,故选:D.8.解:如图,连接EF.∵等边△ABC中,AD是BC边上的高,∴∠BAD=∠CAD=30°,∵∠BDE=∠CDF=60°,∴∠ADE=∠ADF=30°,△AEF、△BDE、△CDF、△DEF都是全等的等边三角形,∴∴BD=DC=DE=BE=AE=AF=FC=FD,即图中与BD相等的线段有7条.故选:C.9.解:在CB的延长线上取点E,使BE=AB,连接AE,∵∠ABC=120°,∴∠ABE=180﹣∠ABC=60°,∵BE=AB,∴△ABE为等边三角形,∴AE=AB,∠BAE=∠E=60°,∵∠DAC=60°,∴∠DAC=BAE,∵∠BAD=∠BAC+∠DAC,∠EAC=∠BAC+∠BAE,∴∠BAD=∠EAC,∵BD平分∠ABC,∴∠ABD=∠ABC=60°,∴∠ABD=∠E,在△ABD和△AEC中,,∴△ABD≌△AEC(ASA),∴BD=CE,∵CE=BE+BC=AB+BC=3+2=5,∴BD=5,故选:A.10.解:∵△ABC是等边三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,∴PQ=BP=4,∵PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,即△PQC是直角三角形,∵△BPQ是等边三角形,∴∠BOQ=∠BQP=60°,∴∠BPA=∠BQC=60°+90°=150°,∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC,∵∠PQC=90°,PQ≠QC,∴∠QPC≠45°,即∠APC≠135°,∴选项A、B、C正确,选项D错误.故选:D.二.填空题(共6小题)11.解:如图,连OQ,∵点P关于直线OB的对称点是Q,∴OB垂直平分PQ,∴∠POB=∠QOB=30°,OP=OQ,∴∠POQ=60°,∴△POQ为等边三角形,∴PQ=PO=2.故答案为2.12.解:∵在△ABC中,AB=AC=8cm,∠B=60°,∴△ABC是等边三角形,∴BC=8cm.故答案为:8.13.解:∵△ABC为等边三角形,且AD=BE,∴AF=BD,∠A=∠B=60°,∴在△ADF与△BED中,,∴△ADF≌△BED(SAS).同理证得△ADF≌△CFE(SAS),∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.故答案是:等边三角形.14.解:如图,连接CC',∵点M是AC中点,∴AM=CM=AC=4,∵旋转,∴CM=C'M,AM=A'M∴A'M=MC=C'M=4,∴∠A'=∠A'CM=30°∴∠CMC'=∠A'+∠MCA'=60°,且CM=C'M∴△CMC'是等边三角形∴C'C=CM=4故答案为:415.解:①连接OB,如图1,∵△ABC中高AD恰好平分边BC,即AD是BC垂直平分线,∴AB=AC,BD=CD,∴OB=OC=OP,∴∠APO=∠ABO,∠DBO=∠DCO,∵∠ABC=∠ABO+∠DBO=30°,∴∠APO+∠DCO=30°.故①正确;②△OBP中,∠BOP=180°﹣∠OPB﹣∠OBP,△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB,∴∠POC=360°﹣∠BOP﹣∠BOC=∠OPB+∠OBP+∠OBC+∠OCB,∵∠OPB=∠OBP,∠OBC=∠OCB,∴∠POC=2∠ABD=60°,∵PO=OC,∴△OPC是等边三角形,故②正确;③如图2,在AC上截取AE=PA,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故③正确;④如图3,作CH⊥BP,∵∠HCB=60°,∠PCO=60°,∴∠PCH=∠OCD,在△CDO和△CHP中,,∴△CDO≌△CHP(AAS),∴S△OCD =S△CHP∴CH=CD,∵CD=BD,∴BD=CH,在Rt△ABD和Rt△ACH中,,∴Rt△ABD≌Rt△ACH(HL),∴S △ABD =S △AHC ,∵四边形OAPC 面积=S △OAC +S △AHC +S △CHP ,S △ABC =S △AOC +S △ABD +S △OCD∴四边形OAPC 面积=S △ABC .故④正确.故答案为:①②③④.16.解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC =A 1C 1,∴CM =A 1M =C 1M =AC =5,∵∠A =30°,∴∠A 1=∠A 1CM =30°,∴∠CMC 1=60°,∴△CMC 1为等边三角形,∴CC 1=CM =5,∴CC 1长为5.故答案为5.三.解答题(共5小题)17.解:(1)∵△ABC和△DEF都是等边三角形,∴∠F=60°,FG=FH,FD=BC,∴△FGH是等边三角形,同理△CHL、△LEK、△KBJ、△JDI、△TAG都是等边三角形;(2)∵△FGH是等边三角形,∴GH=FG.同理,IJ=ID,HL=CL,JK=KB,∴重叠部分的周长为:FD+BC=6,∴FD=BC=3,即等边△ABC的边长是 3.18.解:(1)延长ED交BC于点F,延长AD交BC于H,如图.∵∠EBC=∠E=60°,∴△BEF是等边三角形,∴EF=BF=BE=8,∠EFB=60°.∵AB=AC,AD平分∠BAC,∴AH⊥BC,即∠AHC=90°,∴∠HDF=30°,∴∠ADE=∠HDF=30°;(2)∵BC=10,∴FC=2.∵AB=AC,AD平分∠BAC,∴BH=CH=BC=5,∴HF=5﹣2=3.在Rt△DHF中,∵∠HDF=30°,∴DF=2HF=6,∴DE=8﹣6=2.∴ED的长为2cm.19.证明:将△ABO绕点A逆时针旋转60°,此时B点与C点重合,O落在O′,连接AO′、OO′、CO′,∴AO=AO′,∠OAO′=60°,∴△AOO′是一个等边三角形,∴AO=OO′,又∵OB=O′C,∴线段OA、OB、OC构成了△OCO′,∵∠AOB=120°,∠BOC=120°.∴∠AOC=120°,∠AO′C=120°∵△AOO′是一个等边三角形,∴∠AOO′=∠AO′O=60°,∴∠O′OC=∠OO′C=60°,∴△OCO′是等边三角形,∴线段AO、BO、CO构成的一个三角形是等边三角形.20.(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA,∵AD=BE=CF,∴BD=EC=AF,在△ADF、△BED和△CFE中∴△ADF≌△BED≌△CFE,∴DE=EF=FD,∴△DEF是等边三角形;(2)解:∵△ABC和△DEF是等边三角形,∴△DEF∽△ABC,∵DE⊥BC,∴∠BDE=30°,∴BE=BD,即BE=BC,CE=BC,∵EF=EC•sin60°=BC•=BC,∴=()2=()2=.21.解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,如图所示,同理可得△DBE≌△EFC,∴DB=EF=2,BC=1,则CD=BC+DB=3.故答案为:(1)=;(2)=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学总复习专题训练(三(方程与不等式)考试时间:120分钟满分150分A. x 1B. x : 1C. X 2 —1D. X 「13 .如果不等式组x 2m 1的解集是x • -1,那么m 的值是()。

.X a m + 2A. 3B. 1C. -1D. -34 .不等式2x — 1 > 3x-5的正整数解的个数为()。

A. 1个B. 2个C. 3个D. 4个5.若关于x 的方程2x — 4=3m 和 x+2=m 有相同的根,贝U m 的值是()。

A. 10B.— 8C.— 10D. 86 .代数式3 - 1 与代数式-k +34 的值相等时, k 的值为()A. 7B. 8C. 9 D .101 2^Q —77.若3 m + 1与 —互为相反数,则 m 的值为()。

x + m = 48 .由方程组'可得出x 与y 的关系是( )。

j _3 = m.A. x y =1B. x y = -1C. x y=7D. x y = -73x + y = k +19.若方程组丿 丫 的解为x 、y ,且2<k<4,则x-y 的取值范围是、x+3y=3()。

1 A. 0<x-y<B. 0<x-y<1C. -3<x-y<-1D. -1<x-y<12、选择题(每小题 3分,共45 分)1 .方程x2 = x +1的根是( )。

)。

2. a :3,则不等式(a-3)x ■ a -3的解集是(4 --D3 ■4-c4 - 3-B3 ■4x v = 410. 如果中的解x、y 相同,则m的值是()。

(X —(m —1)y =6A. 1B. — 1C. 2D. —211•足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,- 队打了14场比赛,负5场,共得19分,那么这个队胜了()。

A. 3场B. 4场C. 5场D. 6场12. 当分母解x的方程今 =-^ 时产生增根,则m的值等于()。

x —1 x —1A. —2B. —1C. 1.D. 213. 一种药品经两次降价,由每盒50元调至40.5元,平均每次降价的百分率是A. 5%B. 10 %C. 15%D. 20 %14. 如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为2A. 400cmB.2500cm2C. 600cmD.24 000cm15. 10年前,母亲的年龄是儿子的6倍;倍.求母子现在的年龄.设母亲现年一次方程组是(10年后,母亲的年龄是儿子的2 x 岁,儿子现年y岁,列出的二元x +10 =6(y+10 , A. ■■x -10 =2 y-10 .B.x-10 =6(y-10),x 10 =2(y 10).川+10=6(x+10), C.l y —10=2(x—10). D.y-10 = 6(x 10), y 10 = 2(x-10).二、填空题(每小题3分,共45分)1.已知方程4x+5y=8,用含x的代数式表示y为__________________2 .方程x+2y=5在正整数范围内的解是_________________________3. 已知方程3x2—19x+m=0的一个根是1,那么它的另一个根是m= ________ °4. 若方程x2+mx— 1=0的两个实数根互为相反数,那么m的值是 _________ °5. 当m ____ 时,方程x2+mx+4=0有两个相等的实数根;当m _____ 时,方程mf+4x+1=0有两个不相等的实数根;6. 方程2x(mx—4)=x2—6没有实数根,则最小的整数m= __________ 。

7. 一元二次方程x2+px+q=0两个根分别是2+ • . 3和2 — 3 ,则p= _______ , q= _________ 。

&已知方程3x+y=12有很多解,请你写出互为相反数的一组解_______________________________________________________________________ 。

2 2 x9. 若2x —3xy —20y =0,且y 工0, 则y = ________ 。

"x = 210. 写出一个以丿为解的一个二元一次方程组____________ 。

y = —311. 如果x2—2(m+1)x+m2+5是一个完全平方式,则m= __________ 。

12. 若方程x2+(a2—2)x —3=0的两根是1和一3,贝U a=________ 。

13. 若关于x的方程x2+2(m—1)x+4m2=0有两个实数根,且这两个根互为倒数,那么m的值为__________ 。

14. 如果关于x的方程x2—4x+m=0与x2—x —2m=0有一个根相同,则m的值为__________。

2 115. 已知方程2x2—3x+k=0的两根之差为2^,贝U k= __________ 。

三、解答下列各题( 第8题11分,其余每小题7分,共60分)2 2 2 21.已知a,b,c是三角形的三边长,且方程(a +b +c )x +2(a+b+c)x+3=0有两个相等的实数根,求证:这个三角形是正三角形2x 5y = -26,和方程组3x - 5y = 36的解相同,求2 •已知方程组_ax _by = -4 (bx + ay = -8(2a b)2 006的值.3 •车间里有90名工人,每人每天能隆产螺母 栓配两个螺母,那么应分配多少人生产螺栓, 和螺母正好配套?4 •用图象法解方程组2x +15•已知关于x 的方程x 2,kx-2=0的一个解与方程 3的解相同。

X — 1⑴求k 的值;⑵求方程x 2 ■ kx - 2 = 0的另一个解.6 •某商场将进货价为 30元的台灯以40元售出,平均每月能售出600个•调 查表明:这种台灯的售价每上涨 1元,其销售量就将减少 10个.为了实 现平均每月10000?元的销售利润,这种台灯的售价应定为多少?这时应 进台灯多少个?请你利用方程解决这一问题.24个或螺栓15个,若一个螺多少人生产螺母才能使螺栓7.甲、乙两地间铁路长2400 千米, 经技术改造后, 列车实现了提速. 提速后比提速前速度增加20 千米/ 时, 列车从甲地到乙地行驶时间减少 4 小时. 已知列车在现有条件下安全行驶的速度不超过140 千米/时. 请你用学过的数学知识说明这条铁路在现有条件下是否还可以再次提速?8.某工厂现有甲种原料360kg ,乙种原料290kg ,计划用这两种原料生产A, B两种产品共50件•已知生产一件A种产品,需要甲种原料9kg , 乙种原料3kg ;生产一件B 种产品,需要甲种原料4kg ,乙种原料10kg ,按要求安排A,B 两种产品的生产件数,有哪几种方案?你能设计出来吗?参考答案10、x+y=-1(不唯一);11、2; 12、土 2; 13、1 •由"=0 得(a -b)2 (b -c)2 (c - a)2 =0,所以 a = b = c 。

2x 5y - -26,3x - 5y = 36, =2'代入方程组二 一6.ax - by - -4, bx ay - -8.求得 a=1,b=-1 。

3 •设应分配x 人生产螺栓,y 人生产螺母,则x 'y=90,解得x=4。

,x15^ = 24y.、y = 50.44 •由 2x+y=4,得 y= — 2x+4。

由 4x+3y=6,得 y= x 2 。

3一4在同一坐标系内作出一次函数y= — 2x+4的图象和y= x 2的图象,32x + y = 4 如图(1),观察图象的交点坐标为(3,— 2), •••方程组丿的j4x +3y = 6x = 3解是丿。

= -2X +1 5. (1)v3, • x 1 =3x -3 , • x =2。

x —1经检验x = 2是原方程的解。

、1、B 2 、A 3、D4、D5、B6、B 10、 B 11 、 C 12 、 A 13、B14 、 A 158 -4x 52、{ x =1 { x =3y =2, y =11616;4、0;5、± 4, m K 4 且 mr^ 0; 6、2;7、一 4; 8、12 ;14、0 或3 ;15、-2。

2 •通过解方程组亠+〔x 求得yy - -6把x = 2代入方程x2• kx —2 = 0中,解得k= —1 (2)解x2-x -2 = 0,得为=2 , x2=—1 。

•••方程X2•kx-2=o的另一个解为x=—1 。

6 .设售价为x 元,则(x-30 ) [600- (x-40 )x 10]=10000 , ?解得x=50, x=80,即售价为50元时进500个;售价为80元时进200个。

7 •设提速后列车速度为x千米/时,则:2400 2400 ’4x -20 x解之得:x 1=120 x 2=—100(舍去)经检验x=120是原方程的根•/ 120<140•仍可再提速答:这条铁路在现有条件下仍可再次提速。

8 •设生产A种产品x件,则生产B种产品(50-x)件•根据提意,得”9x+4(50 —x) < 360,彳' 丿解得30 < x < 32 )。

有三种方案:(1)生产A种3x 10(50-x) < 290.产品30件,B种产品20件;(2)生产A种产品31件,B种产品19件;(3)生产A种产品32件,B种产品18件。

相关文档
最新文档