2019届普陀区一模初三数学质量调研试卷解析
上海市普陀区2019届中考数学一模试卷含答案解析

2019年上海市普陀区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A.AE:EC=AD:DB B.AD:AB=DE:BC C.AD:DE=AB:BC D.BD:AB=AC:EC2.如图,在△ABC中,D是AB的中点,DE∥BC,若△ADE的面积为3,则△ABC的面积为()A.3 B.6 C.9 D.123.如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高,下列线段的比值不等于cosA的值的是()A.B.C.D.4.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是()A.B.C.D.5.下列命题中,正确的是()A.圆心角相等,所对的弦的弦心距相等B.三点确定一个圆C.平分弦的直径垂直于弦,并且平分弦所对的弧D.弦的垂直平分线必经过圆心6.已知在平行四边形ABCD中,点M、N分别是边BC、CD的中点,如果=,=,那么向量关于、的分解式是()A.﹣B.﹣+C.+D.﹣﹣二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么=.8.计算:2(+)+(﹣)=.9.计算:sin245°+cot30°•tan60°=.10.已知点P把线段分割成AP和PB两段(AP>PB),如果AP是AB和PB的比例中项,那么AP:AB的值等于.11.在函数①y=ax2+bx+c,②y=(x﹣1)2﹣x2,③y=5x2﹣,④y=﹣x2+2中,y关于x的二次函数是.(填写序号)12.二次函数y=x2+2x﹣3的图象有最点.(填:“高”或“低”)13.如果抛物线y=2x2+mx+n的顶点坐标为(1,3),那么m+n的值等于.14.如图,点G为△ABC的重心,DE经过点G,DE∥AC,EF∥AB,如果DE的长是4,那么CF 的长是.15.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O 重合,则折痕CD的长为cm.16.已知在Rt△ABC中,∠C=90°,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果△APQ 与△ABC相似,那么AP的长等于.17.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是米.18.已知A(3,2)是平面直角坐标中的一点,点B是x轴负半轴上一动点,联结AB,并以AB为边在x轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D点的坐标,那么D点的坐标是.三、解答题:(本大题共7题,满分78分)19.已知:如图,在梯形ABCD中,AD∥BC,AD=,点M是边BC的中点=,=(1)填空:=,=(结果用、表示)(2)直接在图中画出向量2+.(不要求写作法,但要指出图中表示结论的向量)20.将抛物线y=先向上平移2个单位,再向左平移m(m>0)个单位,所得新抛物线经过点(﹣1,4),求新抛物线的表达式及新抛物线与y轴交点的坐标.21.如图,已知AD是⊙O的直径,AB、BC是⊙O的弦,AD⊥BC,垂足是点E,BC=8,DE=2,求⊙O的半径长和sin∠BAD的值.22.已知:如图,有一块面积等于1200cm2的三角形纸片ABC,已知底边与底边BC上的高的和为100cm(底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF在边BC 上,顶点D、G分别在边AB、AC上,求加工成的正方形铁片DEFG的边长.23.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.24.已知,如图,在平面直角坐标系xOy中,二次函数y=ax2﹣的图象经过点、A(0,8)、B(6,2)、C(9,m),延长AC交x轴于点D.(1)求这个二次函数的解析式及的m值;(2)求∠ADO的余切值;(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标.25.如图,已知锐角∠MBN的正切值等于3,△PBD中,∠BDP=90°,点D在∠MBN的边BN上,点P在∠MBN内,PD=3,BD=9,直线l经过点P,并绕点P旋转,交射线BM于点A,交射线DN于点C,设=x(1)求x=2时,点A到BN的距离;(2)设△ABC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△ABC因l的旋转成为等腰三角形时,求x的值.2019年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A.AE:EC=AD:DB B.AD:AB=DE:BC C.AD:DE=AB:BC D.BD:AB=AC:EC【考点】平行线分线段成比例.【分析】根据比例式看看能不能推出△ABC∽△ADE即可.【解答】解:A、∵AE:EC=AD:DB,∴=,∴都减去1得:=,∵∠BAC=∠EAD,∴△ABC∽△ADE,∴∠D=∠B,∴DE∥BC,故本选项正确;B、根据AD:AB=DE:BC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;C、根据AD:DE=AB:BC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;D、根据BD:AB=AC:EC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;故选A.【点评】本题考查了平行线分线段成比例定理的应用,能理解平行线分线段成比例定理的内容是解此题的关键.2.如图,在△ABC中,D是AB的中点,DE∥BC,若△ADE的面积为3,则△ABC的面积为()A.3 B.6 C.9 D.12【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由平行可知△ADE∽△ABC,且=,再利用三角形的面积比等于相似比的平方可求得△ABC的面积.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵D是AB的中点,∴=,∴=()2=,且S△ADE=3,∴=,∴S△ABC=12,故选D.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高,下列线段的比值不等于cosA的值的是()A .B .C .D .【考点】锐角三角函数的定义.【分析】根据余角的性质,可得∠=∠BCD ,根据余弦等于邻边比斜边,可得答案.【解答】解:A 、在Rt △ABD 中,cosA=,故A 正确;B 、在Rt △ABC 中,cosA=,故B 正确C 、在Rt △BCD 中,cosA=cos ∠BCD=,故C 错误;D 、在Rt △BCD 中,cosA=cos ∠BCD=,故D 正确; 故选:C .【点评】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.如果a 、b 同号,那么二次函数y=ax 2+bx+1的大致图象是( )A .B .C .D .【考点】二次函数的图象.【分析】分a >0和a <0两种情况根据二次函数图象的开口方向、对称轴、与y 轴的交点情况分析判断即可得解.【解答】解:a>0,b>0时,抛物线开口向上,对称轴x=﹣<0,在y轴左边,与y轴正半轴相交,a<0,b<0时,抛物线开口向下,对称轴x=﹣<0,在y轴左边,与y轴正半轴坐标轴相交,D选项符合.故选D.【点评】本题考查了二次函数图象,熟练掌握函数图象与系数的关系是解题的关键,注意分情况讨论.5.下列命题中,正确的是()A.圆心角相等,所对的弦的弦心距相等B.三点确定一个圆C.平分弦的直径垂直于弦,并且平分弦所对的弧D.弦的垂直平分线必经过圆心【考点】命题与定理.【分析】根据有关性质和定理分别对每一项进行判断即可.【解答】解:A、在同圆或等圆中,相等的圆心角所对的弦相等,故本选项错误;B、不在一条直线上的三点确定一个圆,错误;C、平分弦的直径不一定垂直于弦,错误;D、弦的垂直平分线必经过圆心,正确;故选D【点评】此题考查了命题与定理,关键是熟练掌握有关性质和定理,能对命题的真假进行判断.6.已知在平行四边形ABCD中,点M、N分别是边BC、CD的中点,如果=,=,那么向量关于、的分解式是()A.﹣B.﹣+C.+D.﹣﹣【考点】*平面向量.【分析】首先根据题意画出图形,然后连接BD,由三角形法则,求得,又由点M、N分别是边BC、CD的中点,根据三角形中位线的性质,即可求得答案.【解答】解:如图,连接BD,∵在平行四边形ABCD中,=,=,∴=﹣=﹣,∵点M、N分别是边BC、CD的中点,∴MN∥BD,MN=BD,∴==(﹣)=﹣+.故选B.【点评】此题考查了平面向量的知识以及三角形的中位线的性质.注意结合题意画出图形,利用图形求解是关键.二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么=.【考点】比例的性质.【分析】根据比例设x=2k,y=5k,然后代入比例式进行计算即可得解.【解答】解:∵=,∴设x=2k,y=5k,则===.故答案为:.【点评】本题考查了比例的性质,利用“设k法”表示出x、y可以使计算更加简便.8.计算:2(+)+(﹣)=3+.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:2(+)+(﹣)=2+2+﹣=3+.故答案为:3+.【点评】此题考查了平面向量的知识.注意掌握去括号法则.9.计算:sin245°+cot30°•tan60°=.【考点】特殊角的三角函数值.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=sin245°+cot30°•tan60°=()2+×=.故答案为:.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.10.已知点P把线段分割成AP和PB两段(AP>PB),如果AP是AB和PB的比例中项,那么AP:AB的值等于.【考点】黄金分割.【分析】根据黄金分割的概念和黄金比是解答即可.【解答】解:∵点P把线段分割成AP和PB两段(AP>PB),AP是AB和PB的比例中项,∴点P是线段AB的黄金分割点,∴AP:AB=,故答案为:.【点评】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.11.在函数①y=ax2+bx+c,②y=(x﹣1)2﹣x2,③y=5x2﹣,④y=﹣x2+2中,y关于x的二次函数是④.(填写序号)【考点】二次函数的定义.【分析】根据形如y=ax2+bx+c(a≠0)是二次函数,可得答案.【解答】解:①a=0时y=ax2+bx+c是一次函数,②y=(x﹣1)2﹣x2是一次函数;③y=5x2﹣不是整式,不是二次函数;④y=﹣x2+2是二次函数,故答案为:④.【点评】本题考查了二次函数,形如y=ax2+bx+c(a≠0)是二次函数,注意二次项的系数不能为零.12.二次函数y=x2+2x﹣3的图象有最低点.(填:“高”或“低”)【考点】二次函数的最值.【分析】直接利用二次函数的性质结合其开口方向得出答案.【解答】解:∵y=x2+2x﹣3,a=1>0,∴二次函数y=x2+2x﹣3的图象有最低点.故答案为:低.【点评】此题主要考查了二次函数的性质,得出二次函数的开口方向是解题关键.13.如果抛物线y=2x2+mx+n的顶点坐标为(1,3),那么m+n的值等于1.【考点】二次函数的性质.【专题】推理填空题.【分析】根据抛物线y=2x2+mx+n的顶点坐标为(1,3),可知,从而可以得到m、n的值,进而可以得到m+n的值.【解答】解:∵抛物线y=2x2+mx+n的顶点坐标为(1,3),∴,解得m=﹣4,n=5,∴m+n=﹣4+5=1.故答案为:1.【点评】本题考查二次函数的性质,解题的关键是明确二次函数的顶点坐标公式.14.如图,点G为△ABC的重心,DE经过点G,DE∥AC,EF∥AB,如果DE的长是4,那么CF 的长是2.【考点】三角形的重心.【分析】连接BD并延长交AC于H,根据重心的性质得到=,根据相似三角形的性质求出AC,根据平行四边形的判定和性质求出AF,计算即可.【解答】解:连接BD并延长交AC于H,∵点G为△ABC的重心,∴=,∵DE∥AC,∴△BDE∽△BAC,∴==,又DE=4,∴AC=6,∵DE∥AC,EF∥AB,∴四边形ADEF是平行四边形,∴AF=DE=4,∴CF=AC﹣AF=2,故答案为:2.【点评】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.15.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.【考点】垂径定理;勾股定理.【分析】作MO交CD于E,则MO⊥CD.连接CO.根据勾股定理和垂径定理求解.【解答】解:作MO交CD于E,则MO⊥CD,连接CO,对折后半圆弧的中点M与圆心O重合,则ME=OE=OC,在直角三角形COE中,CE==,折痕CD的长为2×=(cm).【点评】作出辅助线,构造直角三角形,根据对称性,利用勾股定理解答.16.已知在Rt△ABC中,∠C=90°,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果△APQ与△ABC相似,那么AP的长等于或.【考点】相似三角形的性质.【分析】根据勾股定理求出AB的长,根据相似三角形的性质列出比例式解答即可.【解答】解:∵AC=4,BC=3,∠C=90°,∴AB==5,当△APQ∽△ABC时,=,即=,解得,AP=;当△APQ∽△ACB时,=,即,解得,AP=,故答案为:或.【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等、正确运用分情况讨论思想是解题的关键.17.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是8米.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意首先得出AD,BD的长,再利用坡角的定义得出DC的长,再结合勾股定理得出答案.【解答】解:过点A作AD⊥CB延长线于点D,∵∠ABD=45°,∴AD=BD,∵AB=4,∴AD=BD=ABsin45°=4×=4,∵坡度i=1:,∴==,则DC=4,故AC==8(m).故答案为:8.【点评】此题主要考查了勾股定理以及解直角三角形的应用等知识,正确得出DC,AD的长是解题关键.18.已知A(3,2)是平面直角坐标中的一点,点B是x轴负半轴上一动点,联结AB,并以AB 为边在x轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D点的坐标,那么D点的坐标是(2,).【考点】相似三角形的判定与性质;坐标与图形性质.【分析】如图,过C作CH⊥x轴于H,过A作AF⊥x轴于F,AG⊥y轴于G,过D作DE⊥AG于E,于是得到∠CHB=∠AFO=∠AED=90°,根据余角的性质得到∠DAE=∠FAB,推出△BCH∽△ABF,根据相似三角形的性质得到,求得BH=AF=1,CH=BF=,通过△BCH≌△ADE,得到AE=BH=1,DE=CH=,求得EG=3﹣1=2,于是得到结论.【解答】解:如图,过C作CH⊥x轴于H,过A作AF⊥x轴于F,AG⊥y轴于G,过D作DE⊥AG 于E,∴∠CHB=∠AFO=∠AED=90°,∴∠GAF=90°,∴∠DAE=∠FAB,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BCH=∠ABF,∴△BCH∽△ABF,∴,∵A(3,2),∴AF=2,AG=3,∵点C的横坐标是a,∴OH=﹣a,∵BC:AB=1:2,∴BH=AF=1,CH=BF=,∵△BCH∽△ABF,∴∠HBC=∠DAE,在△BCH与△ADE中,,∴△BCH≌△ADE,∴AE=BH=1,DE=CH=,∴EG=3﹣1=2,∴D(2,).故答案为:(2,).【点评】本题考查了相似三角形的判定和性质,坐标与图形的性质,全等三角形的判定和性质,矩形的性质,正确的画出图形是解题的关键.三、解答题:(本大题共7题,满分78分)19.已知:如图,在梯形ABCD中,AD∥BC,AD=,点M是边BC的中点=,=(1)填空:=,=﹣﹣(结果用、表示)(2)直接在图中画出向量2+.(不要求写作法,但要指出图中表示结论的向量)【考点】*平面向量.【分析】(1)由在梯形ABCD中,AD∥BC,AD=,可求得,然后由点M是边BC的中点,求得,再利用三角形法则求解即可求得;(2)首先过点A作AE∥CD,交BC于点E,易得四边形AECD是平行四边形,即可求得=2,即可知=2+.【解答】解:(1)∵在梯形ABCD中,AD∥BC,AD=,=,∴=3=3,∵点M是边BC的中点,∴==;∴=﹣=﹣(+)=﹣﹣;故答案为:,﹣﹣;(2)过点A作AE∥CD,交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴==,∴=﹣=2,∴=+=2+.【点评】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.20.将抛物线y=先向上平移2个单位,再向左平移m(m>0)个单位,所得新抛物线经过点(﹣1,4),求新抛物线的表达式及新抛物线与y轴交点的坐标.【考点】二次函数图象与几何变换.【分析】利用二次函数平移的性质得出平移后解析式,进而利用x=0时求出新抛物线与y轴交点的坐标.【解答】解:由题意可得:y=(x+m)2+2,代入(﹣1,4),解得:m1=3,m2=﹣1(舍去),故新抛物线的解析式为:y=(x+3)2+2,当x=0时,y=,即与y轴交点坐标为:(0,).【点评】此题主要考查了二次函数图象与几何变换,正确利用二次函数平移的性质得出解析式是解题关键.21.如图,已知AD是⊙O的直径,AB、BC是⊙O的弦,AD⊥BC,垂足是点E,BC=8,DE=2,求⊙O的半径长和sin∠BAD的值.【考点】垂径定理;解直角三角形.【分析】设⊙O的半径为r,根据垂径定理求出BE=CE=BC=4,∠AEB=90°,在Rt△OEB中,由勾股定理得出r2=42+(r﹣2)2,求出r.求出AE,在Rt△AEB中,由勾股定理求出AB,解直角三角形求出即可.【解答】解:设⊙O的半径为r,∵直径AD⊥BC,∴BE=CE=BC==4,∠AEB=90°,在Rt△OEB中,由勾股定理得:OB2=0E2+BE2,即r2=42+(r﹣2)2,解得:r=5,即⊙O的半径长为5,∴AE=5+3=8,∵在Rt△AEB中,由勾股定理得:AB==4,∴sin∠BAD===.【点评】本题考查了垂径定理,勾股定理,解直角三角形的应用,能根据垂径定理求出BE是解此题的关键.22.已知:如图,有一块面积等于1200cm2的三角形纸片ABC,已知底边与底边BC上的高的和为100cm(底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF在边BC 上,顶点D、G分别在边AB、AC上,求加工成的正方形铁片DEFG的边长.【考点】相似三角形的应用.【分析】作AM⊥BC于M,交DG于N,设BC=acm,BC边上的高为hcm,DG=DE=xcm,根据题意得出方程组求出BC和AM,再由平行线得出△ADG∽△ABC,由相似三角形对应高的比等于相似比得出比例式,即可得出结果.【解答】解:作AM⊥BC于M,交DG于N,如图所示:设BC=acm,BC边上的高为hcm,DG=DE=xcm,根据题意得:,解得:,或(不合题意,舍去),∴BC=60cm,AM=h=40cm,∵DG∥BC,∴△ADG∽△ABC,∴,即,解得:x=24,即加工成的正方形铁片DEFG的边长为24cm.【点评】本题考查了方程组的解法、相似三角形的运用;熟练掌握方程组的解法,证明三角形相似得出比例式是解决问题的关键.23.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;(2)根据相似三角形的性质得到,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到,等量代换得到,即可得到结论.【解答】证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,∴△ACE∽△BDE;(2)∵△ACE∽△BDE,∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴,∴BE•DC=AB•DE.【点评】本题考查了相似三角形的判定和性质,邻补角的定义,熟练掌握相似三角形的判定和性质是解题的关键.24.已知,如图,在平面直角坐标系xOy中,二次函数y=ax2﹣的图象经过点、A(0,8)、B(6,2)、C(9,m),延长AC交x轴于点D.(1)求这个二次函数的解析式及的m值;(2)求∠ADO的余切值;(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标.【考点】二次函数综合题.【分析】(1)把点A、B的坐标代入函数解析式求得系数a、c的值,从而得到函数解析式,然后把点C的坐标代入来求m的值;(2)由点A、C的坐标求得直线AC的解析式,然后根据直线与坐标轴的交点的求法得到点D的坐标,所以结合锐角三角函数的定义解答即可;(3)根据相似三角形的对应角相等进行解答.【解答】解:(1)把A(0,8)、B(6,2)代入y=ax2﹣,得,解得,故该二次函数解析式为:y=x2﹣x+8.把C(9,m),代入y=x2﹣x+8得到:m=y=×92﹣×9+8=5,即m=5.综上所述,该二次函数解析式为y=x2﹣x+8,m的值是5;(2)由(1)知,点C的坐标为:(9,5),又由点A的坐标为(0,8),所以直线AC的解析式为:y=﹣x+8,令y=0,则0=﹣x+8,解得x=24,即OD=24,所以cot∠ADO===3,即cot∠ADO=3;(3)在△APQ与△MDQ中,∠AQP=∠MQD.要使△APQ与△MDQ相似,则∠APQ=∠MDQ或∠APQ=∠DMQ(根据题意,这种情况不可能),∴cot∠APQ=cot∠MDQ=3.作BH⊥y轴于点H,在直角△PBH中,cot∠P==3,∴PH=18,OP=20,∴点P的坐标是(0,20).【点评】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数、一次函数解析式,相似三角形的判定与性质,锐角三角函数的定义.在求有关动点问题时要注意分析题意分情况讨论结果.25.如图,已知锐角∠MBN的正切值等于3,△PBD中,∠BDP=90°,点D在∠MBN的边BN上,点P在∠MBN内,PD=3,BD=9,直线l经过点P,并绕点P旋转,交射线BM于点A,交射线DN于点C,设=x(1)求x=2时,点A到BN的距离;(2)设△ABC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△ABC因l的旋转成为等腰三角形时,求x的值.【考点】几何变换综合题.【分析】(1)由PD∥AH得到=2,即可;(2)由PD∥AH得到,再由tan∠MBN=3,比例式表示出BC,CD,即可;(3)△ABC 为等腰三角形时,分三种情况①AB=AC ,②CB=CA ,③BC=BA 利用tan ∠MBN=3,建立方程即可.【解答】解:(1)如图1,过点A 作AH ⊥BC ,∵PD ⊥BC ,∴PD ∥AH ,∴=2,∴AH=2PD=6,(2)∵PD ∥AH ,∴=x ,∴AH=PD ×x=3x ,∵tan ∠MBN=3,∴BH=3,∵,∴,∴CD=,∴BC=BD+CD=9+=,∴S △ABC =AH ×BC=×3x ×=,∴y=(1<x ≤9),(3)①当AB=AC时,∵tan∠PCB=tan∠MBC=3,∴=3,∴CD=1,∴BC=BD+CD=10,∴=10,∴x=5,②当CB=CA时,如图2,过点C作CE⊥AB,BE=AB=x,∵tan∠MBN=3,∴cos∠MBN=,∴=,∴,∴x=;③当BA=BC时,x=,∴x=1+,∴△ABC为等腰三角形时,x=5或或1+.【点评】此题是几何变换的综合题,主要考查平行线分线段成比例定理和锐角三角函数,由平行线分线段成比例定理建立方程是解本题的关键.。
上海市普陀区2019-2020学年中考数学一模考试卷含解析

上海市普陀区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A.B.C.D.2.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.73.比1小2的数是()A.3-B.2-C.1-D.14.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a5.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①12AFFD=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③6.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为()A.3.82×107B.3.82×108C.3.82×109D.0.382×10107.下列图标中,是中心对称图形的是()A .B .C .D .8.光年天文学中的距离单位,1光年大约是9500000000000km ,用科学记数法表示为( ) A .1095010km ⨯B .129510km ⨯C .129.510km ⨯D .130.9510km ⨯9.最小的正整数是( )A .0B .1C .﹣1D .不存在10.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( ) A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×10511.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>12.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为倒数的点是( )A .点A 与点BB .点A 与点DC .点B 与点DD .点B 与点C二、填空题:(本大题共6个小题,每小题4分,共24分.)13.空气质量指数,简称AQI ,如果AQI 在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI 画出的频数分布直方图如图所示.已知每天的AQI 都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为______%.14.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x )件.若使利润最大,每件的售价应为______元.15.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm 之间的人数约有_____人.16.函数y=的自变量x的取值范围是_____.17.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m1.18.因式分解:9x﹣x2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.20.(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:该公司“高级技工”有名;所有员工月工资的平均数x为2500元,中位数为元,众数为元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.21.(6分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC 的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.22.(8分)先化简,再求值:22111mm m⎛⎫⋅-⎪-⎝⎭,其中m=2.23.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(10分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.25.(10分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上(1)画出将△ABC绕点B按逆时针方向旋转90°后所得到的△A1BC1;(2)画出将△ABC向右平移6个单位后得到的△A2B2C2;(3)在(1)中,求在旋转过程中△ABC扫过的面积.26.(12分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?27.(12分)如图,二次函数y =﹣212x +mx+4﹣m 的图象与x 轴交于A 、B 两点(A 在B 的左侧),与),轴交于点C .抛物线的对称轴是直线x =﹣2,D 是抛物线的顶点. (1)求二次函数的表达式; (2)当﹣12<x <1时,请求出y 的取值范围; (3)连接AD ,线段OC 上有一点E ,点E 关于直线x =﹣2的对称点E'恰好在线段AD 上,求点E 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】试题分析:主视图是从正面看到的图形,只有选项A 符合要求,故选A . 考点:简单几何体的三视图. 2.B 【解析】试题解析:过点C 作CO ⊥AB 于O ,延长CO 到C′,使OC′=OC ,连接DC′,交AB 于P ,连接CP .此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC ,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得.故选B . 3.C 【解析】 1-2=-1,故选C 4.D 【解析】 【分析】根据实数a 在数轴上的位置,判断a ,﹣a ,a 2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断. 【详解】由数轴上的位置可得,a<0,-a>0, 0<a 2<a, 所以,a <a 2<﹣a. 故选D 【点睛】本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a ,﹣a ,a 2的位置. 5.D 【解析】 【详解】∵在▱ABCD 中,AO=12AC , ∵点E 是OA 的中点, ∴AE=13CE , ∵AD ∥BC , ∴△AFE ∽△CBE , ∴AF AE BC CE ==13, ∵AD=BC ,∴AF=13AD , ∴12AF FD =;故①正确; ∵S △AEF =4,AEF BCE S S V V =(AF BC )2=19,∴S △BCE =36;故②正确; ∵EF AE BE CE = =13, ∴AEF ABE S S V V =13, ∴S △ABE =12,故③正确; ∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D . 6.B 【解析】 【分析】根据题目中的数据可以用科学记数法表示出来,本题得以解决. 【详解】解:3.82亿=3.82×108, 故选B . 【点睛】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法. 7.B 【解析】 【分析】根据中心对称图形的概念 对各选项分析判断即可得解. 【详解】解:A 、不是中心对称图形,故本选项错误; B 、是中心对称图形,故本选项正确; C 、不是中心对称图形,故本选项错误; D 、不是中心对称图形,故本选项错误. 故选B . 【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合. 8.C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将9500000000000km 用科学记数法表示为129.510⨯. 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 9.B 【解析】 【分析】根据最小的正整数是1解答即可. 【详解】最小的正整数是1. 故选B . 【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答. 10.A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106, 故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 11.C 【解析】首先求出二次函数24y x x m =--的图象的对称轴x=2ba-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>. 故选C .点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数20y ax bx c a =++≠()的图象性质.12.A 【解析】 【详解】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 根据倒数定义可知,-2的倒数是-12,有数轴可知A 对应的数为-2,B 对应的数为-12,所以A 与B 是互为倒数. 故选A .考点:1.倒数的定义;2.数轴.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.80 【解析】【分析】先求出AQI 在0~50的频数,再根据101410010146+⨯++%,求出百分比.【详解】由图可知AQI 在0~50的频数为10,所以,空气质量类别为优和良的天数共占总天数的百分比为:101410010146+⨯++%=80%..故答案为80【点睛】本题考核知识点:数据的分析.解题关键点:从统计图获取信息,熟记百分比计算方法. 14.3 【解析】试题分析:设最大利润为w 元,则w=(x ﹣30)(30﹣x )=﹣(x ﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题. 15.1 【解析】 【分析】用总人数300乘以样本中身高在170cm-175cm 之间的人数占被调查人数的比例. 【详解】估计该校男生的身高在170cm-175cm 之间的人数约为300×1261016126++++=1(人),故答案为1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.x≠﹣1【解析】【分析】根据分母不等于2列式计算即可得解.【详解】解:根据题意得x+1≠2,解得x≠﹣1.故答案为:x≠﹣1.【点睛】考查的知识点为:分式有意义,分母不为2.17.150【解析】 设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为. 18.x (9﹣x )【解析】试题解析:()299x x x x -=-. 故答案为()9x x -.点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y =﹣x 2+4;(2)①E (5,9);②1.【解析】【分析】(1)待定系数法即可解题,(2)①求出直线DA 的解析式,根据顶点E 在直线DA 上,设出E 的坐标,带入即可求解;②AB 扫过的面积是平行四边形ABGE,根据S 四边形ABGE =S 矩形IOKH ﹣S △AOB ﹣S △AEI ﹣S △EHG ﹣S △GBK ,求出点B (2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题. 【详解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函数的图象的顶点为A(0,4),∴设二次函数表达式为y=ax2+4,将B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函数表达式y=﹣x2+4;(2)①设直线DA:y=kx+b(k≠0),将A(0,4),D(﹣4,0)代入,得440bk b=⎧⎨-+=⎩,解得,14kb=⎧⎨=⎩,∴直线DA:y=x+4,由题意可知,平移后的抛物线的顶点E在直线DA上,∴设顶点E(m,m+4),∴平移后的抛物线表达式为y=﹣(x﹣m)2+m+4,又∵平移后的抛物线过点B(2,0),∴将其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合题意,舍去),∴顶点E(5,9),②如图,连接AB,过点B作BL∥AD交平移后的抛物线于点G,连结EG,∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.∵B(2,0),∴点G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣12×2×4﹣12×5×5﹣12×2×4﹣12×5×5=63﹣8﹣25=1答:图象A,B两点间的部分扫过的面积为1.【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.20.(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)y能反映该公司员工的月工资实际水平.【解析】【分析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)2500502100084003171346y⨯--⨯=≈(元).y能反映该公司员工的月工资实际水平.21.(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【解析】【分析】(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;(3)①AE直线的斜率k AE=2,而直线BC斜率的k AE=2即可求解;②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.【详解】(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函数的表达式为y=﹣x2+x+2;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,解得:k=2,b=2,故:直线BC的函数表达式为y=2x+2,(3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),则AE直线的斜率k AE=2,而直线BC斜率的k AE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而BP=AE,∴线段BP与线段AE的关系是相互垂直;②设点P的横坐标为m,当P点在线段BC上时,P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,直线MM′⊥BC,∴k MM′=﹣,直线MM′的方程为:y=﹣x+(2+m),则M′坐标为(0,2+m)或(4+m,0),由题意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故点P的坐标为(﹣4±2,﹣8±4);当P点在线段BE上时,点P 坐标为(m ,﹣4),点M 坐标为(m ,2),则PM=6,直线MM′的方程不变,为y=﹣x+(2+m ),则M′坐标为(0,2+m )或(4+m ,0),PM′2=m 2+(6+m )2=(2m )2,解得:m=0,或﹣;或PM′2=42+42=(6)2,无解;故点P 的坐标为(0,﹣4)或(﹣,﹣4); 综上所述:点P 的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.22.1m m-+,原式23=-. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m 的值代入计算即可求出值.【详解】原式()()21111m m m m m mm -⋅=-+-+, 当m =2时,原式23=-. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)证明见解析;(2)AE =2时,△AEF 的面积最大.【解析】【分析】(1)根据正方形的性质,可得EF=CE ,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE ,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH ≌△ECD ,由全等三角形的性质可得FH=ED ; (2)设AE=a ,用含a 的函数表示△AEF 的面积,再利用函数的最值求面积最大值即可.【详解】(1)证明:∵四边形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,,∴△FEH≌△ECD,∴FH=ED.(2)解:设AE=a,则ED=FH=4-a,∴S△AEF=AE·FH=a(4-a)=-(a-2)2+2,∴当AE=2时,△AEF的面积最大.【点睛】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.24.(1)作图见解析(2)∠BDC=72°【解析】解:(1)作图如下:(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°.∵AD是∠ABC的平分线,∴∠ABD=12∠ABC=12×72°=36°.∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.(1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;②分别以点E、F为圆心,大于12EF为半径画圆,两圆相较于点G,连接BG交AC于点D.(2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.25.(1)(1)如图所示见解析;(3)4π+1.【解析】【分析】(1)根据旋转的性质得出对应点位置,即可画出图形;(1)利用平移的性质得出对应点位置,进而得出图形;(3)根据△ABC扫过的面积等于扇形BCC1的面积与△A1BC1的面积和,列式进行计算即可.【详解】(1)如图所示,△A1BC1即为所求;(1)如图所示,△A1B1C1即为所求;(3)由题可得,△ABC扫过的面积=29041413602π⨯⨯+⨯⨯=4π+1.【点睛】考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积.26.(1)10,144;(2)详见解析;(3)96【解析】【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人), 答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.27.(1)y=﹣12x 1﹣1x+6;(1)72<y <558;(3)(0,4). 【解析】【分析】(1)利用对称轴公式求出m 的值,即可确定出解析式;(1)根据x 的范围,利用二次函数的增减性确定出y 的范围即可;(3)根据题意确定出D 与A 坐标,进而求出直线AD 解析式,设出E 坐标,利用对称性确定出E 坐标即可.【详解】(1)∵抛物线对称轴为直线x=﹣1,∴﹣122m ⨯-()=﹣1,即m=﹣1,则二次函数解析式为y=﹣12x 1﹣1x+6;(1)当x=﹣12时,y=558;当x=1时,y=72. ∵﹣12<x <1位于对称轴右侧,y 随x 的增大而减小,∴72<y <558; (3)当x=﹣1时,y=8,∴顶点D 的坐标是(﹣1,8),令y=0,得到:﹣12x 1﹣1x+6=0,解得:x=﹣6或x=1.∵点A 在点B 的左侧,∴点A 坐标为(﹣6,0).设直线AD 解析式为y=kx+b ,可得:2860k b k b -+=⎧⎨-+=⎩,解得:212k b =⎧⎨=⎩,即直线AD 解析式为y=1x+11. 设E (0,n ),则有E′(﹣4,n ),代入y=1x+11中得:n=4,则点E 坐标为(0,4).【点睛】本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.。
上海市普陀区2019年中考数学一模试卷(Word版,含答案解析)

2019年上海市普陀区中考数学一模试卷一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列函数中,y 关于 x 的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C. D.y=(x﹣1)2﹣x2【分析】根据二次函数的定义,逐一分析四个选项即可得出结论.【解答】解:A、当 a=0 时,y=bx+c 不是二次函数;B、y=x(x﹣1)=x2﹣x 是二次函数;C、y=不是二次函数;D、y=(x﹣1)2﹣x2=﹣2x+1 为一次函数.故选:B.【点评】本题考查了二次函数的定义,牢记二次函数的定义是解题的关键.2.在Rt△ABC中,∠C=90°,AC=2,下列结论中,正确的是()A.AB=2sinA B.AB=2cosA C.BC=2tanA D.BC=2cotA【分析】直接利用锐角三角函数关系分别计算得出答案.【解答】解:∵∠C=90°,AC=2,∴cosA==,故 AB=,故选项 A,B 错误;A . tanA= = ,则 BC=2tanA ,故选项 C 正确;则选项 D 错误.故选:C .【点评】此题主要考查了锐角三角函数关系,正确将记忆锐角三角函数关系是解题关键.3. 如图,在△ABC 中,点 D 、E 分别在边 AB 、AC 的反向延长线上,下面比例式中,不能判断 ED∥BC 的是()B .C .D .【分析】根据平行线分线段成比例定理,对各选项进行逐一判断即可.【解答】解:A .当时,能判断 ED∥BC; B. 当时,能判断 ED∥BC; C. 当时,不能判断 ED∥BC; D. 当时,能判断 ED∥BC;故选:C .【点评】本题考查的是平行线分线段成比例定理,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4.已知,下列说法中,不正确的是()A. B.与方向相同C. D.【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、错误.应该是﹣5=;B、正确.因为,所以与的方向相同;C、正确.因为,所以∥;D、正确.因为,所以||=5||;故选:A.【点评】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.5.如图,在平行四边形 ABCD 中,F 是边 AD 上的一点,射线 CF 和 BA 的延长线交于点 E,如果,那么的值是()A. B. C.D.【分析】根据相似三角形的性质进行解答即可.【解答】解:∵在平行四边形 ABCD 中,∴AE∥CD,∴△EAF∽△CDF,∵,∴,∴,∵AF∥BC,∴△EAF∽△EBC,∴=,故选:D.【点评】此题考查相似三角形的判定和性质,综合运用了平行四边形的性质和相似三角形的性质是解题关键.6.如图,已知 AB 和 CD 是⊙O 的两条等弦.OM ⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC 的延长线交于点 P,联结 OP.下列四个说法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1 B.2 C.3 D.4【分析】如图连接 OB、OD,只要证明Rt△OMB≌Rt△OND,Rt△OPM≌Rt△OPN 即可解决问题.【解答】解:如图连接 OB、OD;∵AB=CD,∴=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC,故③正确,故选:D.【点评】本题考查垂径定理、圆心角、弧、弦的关系、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.二.填空题(本大题共 12 题,每题 4 分,满分 48 分)7.如果 = ,那么= .【分析】利用比例的性质由=得到=,则可设 a=2t,b=3t,然后把 a=2t,b=3t 代入中进行分式的运算即可.【解答】解:∵=,∴=,设 a=2t,b=3t,∴==.故答案为.【点评】本题考查了比例的性质:常用的性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.8.已知线段 a=4 厘米,b=9 厘米,线段 c 是线段 a 和线段 b 的比例中项,线段 c 的长度等于 6 厘米.【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以 c2=4×9,解得c=±6(线段是正数,负值舍去),∴c=6cm,故答案为:6.【点评】本题考查比例线段、比例中项等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.9.化简: = ﹣4 +7 .【分析】根据屏幕绚丽的加法法则计算即可【解答】解::=﹣4+6=﹣4+7,故答案为;【点评】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.10.在直角坐标系平面内,抛物线 y=3x2+2x 在对称轴的左侧部分是下降的(填“上升”或“下降”)【分析】由抛物线解析式可求得其开口方向,再结合二次函数的增减性则可求得答案.【解答】解:∵在 y=3x2+2x 中,a=3>0,∴抛物线开口向上,∴在对称轴左侧部分 y 随 x 的增大而减小,即图象是下降的,故答案为:下降.【点评】本题主要考查二次函数的性质,利用二次函数的解析式求得抛物线的开口方向是解题的关键.11.二次函数 y=(x﹣1)2﹣3 的图象与 y 轴的交点坐标是(0,﹣2).【分析】求自变量为 0 时的函数值即可得到二次函数的图象与 y 轴的交点坐标.【解答】解:把 x=0 代入 y=(x﹣1)2﹣3 得 y=1﹣3=﹣2,所以该二次函数的图象与 y 轴的交点坐标为(0,﹣2),故答案为(0,﹣2).【点评】本题考查了二次函数图象上点的坐标特征,在 y 轴上的点的横坐标为 0.12.将抛物线 y=2x2 平移,使顶点移动到点 P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是y=2(x+3)2+1 .【分析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【解答】解:抛物线 y=2x2 平移,使顶点移到点 P(﹣3,1)的位置,所得新抛物线的表达式为 y=2(x+3)2+1.故答案为:y=2(x+3)2+1.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故 a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.在直角坐标平面内有一点 A(3,4),点 A 与原点 O 的连线与 x 轴的正半轴夹角为α,那么角α的余弦值是.【分析】利用锐角三角函数的定义、坐标与图形性质以及勾股定理的知识求解.【解答】解:∵在直角坐标平面内有一点 A(3,4),∴OA==5,∴cosα=.故答案为:.【点评】本题考查了解直角三角形、锐角三角函数的定义、坐标与图形性质以及勾股定理的知识,此题比较简单,易于掌握.14.如图,在△ABC 中,AB=AC,点 D、E 分别在边BC、AB 上,且∠ADE=∠B,如果 DE:AD=2:5,BD=3,那么 AC= ,.【分析】根据∠ADE=∠B,∠EAD=∠DAB,得出△AED∽△ABD,利用相似三角形的性质解答即可.【解答】解:∵∠ADE=∠B,∵∠EAD=∠DAB,∴△AED∽△ABD,∴,即,∴AB=,∵AB=AC,∴AC=,故答案为:,【点评】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.15.如图,某水库大坝的横断面是梯形 ABCD,坝顶宽 AD=6 米,坝高是 20 米,背水坡 AB 的坡角为 30°,迎水坡 CD 的坡度为 1:2,那么坝底 BC 的长度等于(46+20 )米(结果保留根号)【分析】过梯形上底的两个顶点向下底引垂线 AE、DF,得到两个直角三角形和一个矩形,分别解Rt△ABE、Rt△DCF求得线段 BE、CF 的长,然后与EF 相加即可求得 BC 的长.【解答】解:如图,作AE⊥BC,DF⊥BC,垂足分别为点 E,F,则四边形 ADFE 是矩形.由题意得,EF=AD=6 米,AE=DF=20 米,∠B=30°,斜坡 CD 的坡度为 1: 2,在Rt△ABE 中,∵∠B=30°,∴BE=AE=20 米.在Rt△CFD中,∵=,∴CF=2DF=40 米,∴BC=BE+EF+FC=20+6+40=46+20(米).所以坝底 BC 的长度等于(46+20)米.故答案为(46+20).【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.16.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足为点 D,以点 D为圆心作⊙D,使得点 A 在⊙D外,且点 B 在⊙D内.设⊙D的半径为 r,那么 r 的取值范围是.【分析】先根据勾股定理求出 AB 的长,进而得出 CD 的长,由点与圆的位置关系即可得出结论.【解答】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==4.∵CD⊥AB,∴CD=.∵AD•BD=CD2,设 AD=x,BD=4﹣x.解得 x=∴点 A 在圆外,点 B 在圆内,r 的范围是,故答案为:.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.17.如图,点 D 在△ABC的边 BC 上,已知点 E、点 F 分别为△ABD和△ADC 的重心,如果 BC=12,那么两个三角形重心之间的距离 EF 的长等于 4 .【分析】连接 AE 并延长交 BD 于 G,连接 AF 并延长交 CD 于 H,根据三角形的重心的概念、相似三角形的性质解答.【解答】解:如图,连接 AE 并延长交 BD 于 G,连接 AF 并延长交 CD 于 H,∵点 E、F 分别是△ABD 和△ACD 的重心,∴DG=BD,DH=CD,AE=2GE,AF=2HF,∵BC=12,∴GH=DG+DH= (BD+CD)= BC= ×12=6,∵AE=2GE,AF=2HF,∠EAF=∠GAH,∴△EAF∽△GAH,∴==,∴EF=4,故答案为:4.【点评】本题考查了三角形重心的概念和性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的 2 倍.18.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点 A 落到边 BC 上的点A′处,折痕分别交边 AB、AC 于点 E,点 F,如果A′F∥AB,那么 BE= .【分析】设 BE=x,则 AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF ∽△BCA,可得=,即=,进而得到 BE=.【解答】解:如图,由折叠可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折叠可得,AF=A'F,设 BE=x,则 AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴=,即= ,解得 x=,∴BE=,故答案为:.【点评】本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.三、解答题(本大题共 7 题,满分 78 分)19.(10 分)计算:45°.【分析】直接利用特殊角的三角函数值进而代入化简得出答案.【解答】解:原式=﹣×= ﹣= .【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 20 .(10 分)已知一个二次函数的图象经过 A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点 C 的坐标.【分析】设一般式 y=ax2+bx+c,把 A、B、D 点的坐标代入得,然后解法组即可得到抛物线的解析式,再把 C(m,2m+3)代入解析式得到关于 m 的方程,解关于 m 的方程可确定 C 点坐标.【解答】解:设抛物线的解析式为 y=ax2+bx+c,把 A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴抛物线的解析式为 y=2x2+x﹣3,把 C(m,2m+3)代入得 2m2+m﹣3=2m+3,解得 m1=﹣,m2=2,∴C点坐标为(﹣,0)或(2,7).【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与 x 轴有两个交点时,可选择设其解析式为交点式来求解.21.(10 分)如图,已知⊙O经过△ABC 的顶点 A、B,交边 BC 于点 D,点A 恰为的中点,且 BD=8,AC=9,sinC= ,求⊙O的半径.【分析】如图,连接 OA.交 BC 于 H.首先证明OA⊥BC,在Rt△ACH中,求出 AH,设⊙O的半径为 r,在Rt△BOH中,根据 BH2+OH2=OB2,构建方程即可解决问题;【解答】解:如图,连接 OA.交 BC 于 H.∵点 A 为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵sinC== ,AC=9,∴AH=3,设⊙O 的半径为 r,在Rt△BOH 中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点评】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(10 分)下面是一位同学的一道作图题:已知线段 a、b、c(如图),求作线段 x,使 a:b=c:x他的作法如下:(1)、以点 O 为端点画射线 OM,ON.(2)、在 OM 上依次截取 OA=a,AB=b.(3)、在 ON 上截取 OC=c.(4)、联结 AC,过点 B 作BD∥AC,交 ON 于点D.所以:线段 CD 就是所求的线段 x.①试将结论补完整②这位同学作图的依据是平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例③如果 OA=4,AB=5,,试用向量表示向量.【分析】①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证△OAC∽△OBD得= ,即 BD= AC,从而知= =﹣=﹣.【解答】解:①根据作图知,线段 CD 就是所求的线段 x,故答案为:CD;②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③∵OA=4、AB=5,且BD∥AC,∴△OAC∽△OBD,∴=,即= ,∴BD=AC,∴= =﹣=﹣.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理及向量的计算.23.(12 分)已知:如图,四边形ABCD 的对角线AC 和BD 相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【解答】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴= ,∴AB•BC=BD•BE.【点评】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.24.(12 分)如图,已知在平面直角坐标系中,已知抛物线 y=ax2+2ax+c(其中a、c 为常数,且 a<0)与 x 轴交于点 A,它的坐标是(﹣3,0),与 y轴交于点 B,此抛物线顶点 C 到 x 轴的距离为 4(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点 P 是抛物线上的一点,且∠ABP=∠CAO,试直接写出点 P 的坐标.【分析】(1)先求得抛物线的对称轴方程,然后再求得点 C 的坐标,设抛物线的解析式为 y=a(x+1)2+4,将点(﹣3,0)代入求得 a 的值即可;(2)先求得 A、B、C 的坐标,然后依据两点间的距离公式可得到 BC、AB、AC 的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;(3)记抛物线与 x 轴的另一个交点为 D.先求得 D(1,0),然后再证明∠DBO=∠CAB,从而可证明∠CAO=ABD,故此当点 P 与点 D 重合时,∠ABP=∠CAO;当点 P 在 AB 的上时.过点 P 作PE∥AO,过点 B 作BF∥AO,则PE∥BF.先证明∠EPB=∠CAB,则tan∠EPB=,设 BE=t,则 PE=3t,P(﹣3t,3+t),将 P(﹣3t,3+t)代入抛物线的解析式可求得 t 的值,从而可得到点 P 的坐标.【解答】解:(1)抛物线的对称轴为 x=﹣=﹣1.∵a<0,∴抛物线开口向下.又∵抛物线与 x 轴有交点,∴C 在 x 轴的上方,∴抛物线的顶点坐标为(﹣1,4).设抛物线的解析式为 y=a(x+1)2+4,将点(﹣3,0)代入得:4a+4=0,解得:a=﹣1,∴抛物线的解析式为 y=﹣x2﹣2x+3.(2)将 x=0 代入抛物线的解析式得:y=3,∴B(0,3).∵C(﹣1,4)、B(0,3)、A(﹣3,0),∴BC=,AB=3 ,AC=2 ,∴BC2+AB2=AC2,∴∠ABC=90°.∴tan∠CAB== .(3)如图 1 所示:记抛物线与 x 轴的另一个交点为 D.∵点 D 与点 A 关于 x=﹣1 对称,∴D(1,0).∴tan∠DBO=.又∵由(2)可知:tan∠CAB=.∴∠DBO=∠CAB.又∵OB=OA=3,∴∠BAO=∠ABO.∴∠CAO=∠ABD.∴当点 P 与点 D 重合时,∠ABP=∠CAO,∴P(1,0).如图 2 所示:当点 P 在 AB 的上时.过点P 作PE∥AO,过点 B 作BF∥AO,则PE∥BF.∵BF∥AO,∴∠BAO=∠FBA.又∵∠CAO=∠ABP,∴∠PBF=∠CAB.又∵PE∥BF,∴∠EPB=∠PBF,∴∠EPB=∠CAB.∴tan∠EPB=.设 BE=t,则 PE=3t,P(﹣3t,3+t).将 P(﹣3t,3+t)代入抛物线的解析式得:y=﹣x2﹣2x+3 得:﹣9t2+6t+3=3+t,解得 t=0(舍去)或 t=.∴P(﹣,).综上所述,点 P 的坐标为 P(1,0)或 P(﹣,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理的逆定理、等腰直角三角形的性质、锐角三角函数的定义,用含 t 的式子表示点 P 的坐标是解题的关键.25.(14 分)如图 1,∠BAC 的余切值为 2,AB=2,点 D 是线段 AB 上的一动点(点 D 不与点 A、B 重合),以点 D 为顶点的正方形 DEFG 的另两个顶点E、F 都在射线 AC 上,且点 F 在点 E 的右侧,联结 BG,并延长 BG,交射线 EC 于点 P.(1)点 D 在运动时,下列的线段和角中,④⑤是始终保持不变的量(填序号);①AF;②FP;③BP;④∠BDG;⑤∠GAC;⑥∠BPA;(2)设正方形的边长为 x,线段 AP 的长为 y,求 y 与 x 之间的函数关系式,并写出定义域;(3)如果△PFG与△AFG 相似,但面积不相等,求此时正方形的边长.【分析】(1)作BM⊥AC于 M,交 DG 于 N,如图,利用三角函数的定义得到=2,设 BM=t,则 AM=2t,利用勾股定理得(2t)2+t2=(2)2,解得t=2,即 BM=2,AM=4,设正方形的边长为 x,则 AE=2x,AF=3x,由于tan∠GAF==,则可判断∠GAF为定值;再利用DG∥AP得到∠BDG=∠BAC,则可判断∠BDG为定值;在Rt△BMP中,利用勾股定理和三角函数可判断 PB 在变化,∠BPM在变化,PF 在变化;(2)易得四边形DEMN 为矩形,则 NM=DE=x,证明△BDG∽△BAP,利用相似比可得到 y 与 x 的关系式;(3)由于∠AFG=∠PFG=90°,△PFG与△AFG 相似,且面积不相等,利用相似比得到 PF=x,讨论:当点 P 在点 F 点右侧时,则 AP=x,所以= x,当点 P 在点 F 点左侧时,则 AP= x,所以= x,然后分别解方程即可得到正方形的边长.【解答】解:(1)作 BM⊥AC 于 M,交 DG 于 N,如图,在Rt△ABM中,∵cot∠BAC==2,设 BM=t,则 AM=2t,∵AM2+BM2=AB2,∴(2t)2+t2=(2 )2,解得 t=2,∴BM=2,AM=4,设正方形的边长为 x,在Rt△ADE中,∵cot∠DAE==2,∴AE=2x,∴AF=3x,在Rt△GAF中,tan∠GAF=== ,∴∠GAF 为定值;∵DG∥AP,∴∠BDG=∠BAC,∴∠BDG 为定值;在Rt△BMP中,PB=,而 PM 在变化,∴PB 在变化,∠BPM 在变化,∴PF 在变化,所以∠BDG 和∠GAC 是始终保持不变的量;故答案为④⑤;(2)易得四边形 DEMN 为矩形,则 NM=DE=x,∵DG∥AP,∴△BDG∽△BAP,∴=,即=,∴y=(1≤x<2)(3)∵∠AFG=∠PFG=90°,△PFG与△AFG 相似,且面积不相等,∴=,即= ,∴PF=x,当点 P 在点 F 点右侧时,AP=x,∴=x,解得 x=,当点 P 在点 F 点左侧时,AP=AF﹣PF=3x﹣x= x,∴=x,解得 x=,综上所述,正方形的边长为或.【点评】本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质.。
2019年上海市普陀区中考数学一模试卷-解析版

2019年上海市普陀区中考数学一模试卷一、选择题(本大题共6小题,共24.0分)1. 已知二次函数y =(a −1)x 2+3的图象有最高点,那么a 的取值范围是( )A. a >0B. a <0C. a >1D. a <12. 下列二次函数中,如果图象能与y 轴交于点A(0,1),那么这个函数是( )A. y =3x 2B. y =3x 2+1C. y =3(x +1)2D. y =3x 2−x3. 如图,在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,如果添加下列其中之一的条件,不一定能使△ADE 与△ABC 相似,那么这个条件是( )A. ∠AED =∠BB. ∠ADE =∠CC. AD AC =AE ABD. AD AB =DE BC 4. 已知a ⃗ 、b ⃗ 、c ⃗ 都是非零向量,如果a ⃗ =2c ⃗ ,b ⃗ =−2c ⃗ ,那么下列说法中,错误的是( ) A. a ⃗ //b ⃗ B. |a ⃗ |=|b ⃗ |C. a ⃗ +b ⃗ =0D. a ⃗ 与b ⃗ 方向相反5. 已知⊙O 1和⊙O 2,其中⊙O 1为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于( )A. 1B. 4C. 5D. 86. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE//BC ,且DE 经过重心G ,在下列四个说法中①DE BC =23;②BD AD =13;③C △ADE C △ABC =23;④S △ADE S 四边形DBCE =45,正确的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共12小题,共48.0分)7. 如果x y =72,那么x−2yy 的值是______.8. 化简:3(a⃗ +12b ⃗ )−2(a ⃗ −b ⃗ )=______. 9. 如果抛物线y =2x 2+x +m −1经过原点,那么m 的值等于______.10. 将抛物线y =12(x +3)2−4先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是______. 11.已知抛物线y =2x 2+bx −1的对称轴是直线x =1,那么b 的值等于______. 12.已知△ABC 三边的比为2:3:4,与它相似的△A′B′C′最小边的长等于12,那么△A′B′C′最大边的长等于______. 13.在Rt △ABC 中,∠ACB =90°,AB =3,BC =1,那么∠A 的正弦值是______. 14. 正八边形的中心角为______度.15.如图,在梯形ABCD中,AD//BC,AB⊥BC,BD⊥DC,tan∠ABD=1,BC=5,2那么DC的长等于______.16.如图,AB//CD,AD、BC相交于点E,过E作EF//CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于______.17.已知二次函数y=ax2+c(a>0)的图象上有纵坐标分别为y1、y2的两点A、B,如果点A、B到对称轴的距离分别等于2、3,那么y1______y2(填“<”、“=”或“>”)18.如图,△ABC中,AB=AC=8,cosB=3,点D在边BC上,将△ABD沿直线AD4翻折得到△AED,点B的对应点为点E,AE与边BC相交于点F,如果BD=2,那么EF=______.三、计算题(本大题共1小题,共10.0分)19.计算:4sin45°+cos230°−2cot45°.tan60°−√2四、解答题(本大题共6小题,共68.0分)20. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,点E 在边BC 上,AE与BD 相交于点G ,AG :GE =3:1.(1)求EC :BC 的值;(2)设BA ⃗⃗⃗⃗⃗ =a ⃗ ,AO ⃗⃗⃗⃗⃗ =b ⃗ ,那么EC ⃗⃗⃗⃗⃗ =______,GB ⃗⃗⃗⃗⃗ =______(用向量a ⃗ 、b ⃗ 表示)21. 如图,⊙O 1和⊙O 2相交于A 、B 两点,O 1O 2与AB 交于点C ,O 2A 的延长线交⊙O 1于点D ,点E 为AD 的中点,AE =AC ,联结OE .(1)求证:O 1E =O 1C ;(2)如果O 1O 2=10,O 1E =6,求⊙O 2的半径长.22. 如图,小山的一个横断面是梯形BCDE ,EB//DC ,其中斜坡DE 的坡长为13米,坡度i =1:2.4,小山上有一座铁塔AB ,在山坡的坡顶E 处测得铁塔顶端A 的仰角为45°,在与山坡的坡底D 相距5米的F 处测得铁塔顶端A 的仰角为31°(点F 、D 、C 在一直线上),求铁塔AB 的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)23.已知:如图,△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,AE2=AF⋅AB,∠DAF=∠EAC.(1)求证:△ADE∽△ACB;(2)求证:DFDE =CECB.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx−3(a≠0)与x轴交于点A(−1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为点D.(1)求抛物线的表达式及点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;(3)如果点F是抛物线上的一点.且∠FBD=135°,求点F的坐标.25.如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ//BC,并使∠QOC=∠B,求AQ:OQ的值.答案和解析1.【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.【解答】解:由题意可知:a−1<0,∴a<1,故选:D.2.【答案】B【解析】【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.根据y轴上点的坐标特征,分别计算出x=0时四个函数对应的函数值,然后根据函数值是否为1来判断图象能否与y轴交于点A(0,1).【解答】解:当x=0时,y=3x2=0;当x=0时,y=3x2+1=1;当x=0时,y=3(x+1)2=9;当x=0时,y=3x2−x=0,所以抛物线y=3x2+1与y轴交于点(0,1).故选B.3.【答案】D【解析】【分析】由已知及三角形相似的判定方法,对每个选项分别分析、判断解答出即可.本题考查了直角三角形相似的判定:①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.【解答】解:由题意得,∠A=∠A,A.当∠ADE=∠B时,△ADE∽△ABC;故本选项不符合题意;B.当∠ADE=∠C时,△ADE∽△ABC;故本选项不符合题意;C.当ADAC =AEAB时,△ADE∽△ABC;故本选项不符合题意;D.当ADAB =DEBC时,不能推断△ADE与△ABC相似;故选项符合题意;故选:D.4.【答案】C【解析】【分析】根据平面相等向量的定义、共线向量的定义以及向量的模的计算方法解答.考查了向量,向量是既有方向又有大小的.【解答】解:A.因为a⃗=2c⃗,b⃗ =−2c⃗,所以a⃗//b⃗ ,且a⃗与b⃗ 方向相反,故本选项说法正确;B.因为a⃗=2c⃗,b⃗ =−2c⃗,所以|a⃗|=|b⃗ |=|2c⃗|,故选项说法正确;C.因为a⃗=2c⃗,b⃗ =−2c⃗,所以a⃗//b⃗ ,则a⃗⋅b⃗ =0,故本选项说法错误;D.因为a⃗=2c⃗,b⃗ =−2c⃗,所以a⃗//b⃗ ,且a⃗与b⃗ 方向相反,故本选项说法正确;故选:C.5.【答案】B【解析】【分析】此题主要考查了两圆的位置关系,用到的知识点为:两圆内切,圆心距=两圆半径之差,外切时,r+R=d.【解答】根据两圆位置关系是内切,则圆心距=两圆半径之差,以及外切时,r+R=d,分别求出即可.解:∵两圆相内切,设小圆半径为x,圆心距为2,∴3−x=2,∴x=1,∴小圆半径为1,这两圆外切时,圆心距为:1+3=4.故选:B.6.【答案】C【解析】【分析】本题考查相似三角形的判定和性质以及三角形重心的性质的运用,解决问题的关键是知道相似三角形的对应边对应成比例.连接AG并延长,交BC于F,依据DE//BC,且DE经过重心G,即可得到△ADE∽△ABC,且相似比为2:3,依据相似三角形的性质,即可得到正确结论.【解答】解:如图所示,连接AG并延长,交BC于F,∵DE//BC,且DE经过重心G,∴△ADE∽△ABC,∴DEBC =ADAB=AGAF=23,故①正确;∴C△ADEC△ABC =23,故③正确;∵DG//BF,∴GFGA =DBDA=12,故②错误;∵△ADE∽△ABC ,DE BC =23,∴S △ADE S △ABC =49, ∴S △ADES 四边形DBCE =45,故④正确; 故选C .7.【答案】32【解析】解:∵x y =72,∴设x =7a ,则y =2a ,那么x−2y y =7a−4a 2a=32. 故答案为:32.直接根据已知用同一未知数表示出各数,进而得出答案.此题主要考查了比例的性质,正确表示出x ,y 的值是解题关键.8.【答案】a ⃗ +72b ⃗【解析】解:3(a⃗ +12b ⃗ )−2(a ⃗ −b ⃗ )=3a ⃗ +32b ⃗ −2a ⃗ +2b ⃗ =(3−2)a ⃗ +(32+2)b ⃗ =a ⃗ +72b ⃗ .故答案是:a⃗ +72b ⃗ . 平面向量的运算法则也符合实数的运算法则.考查了平面向量,解题的关键是掌握平面向量的计算法则.9.【答案】1【解析】解:把(0,0)代入y =2x 2+x +m −1得m −1=0,解得m =1,故答案为1.把原点坐标代入抛物线解析式即可得到对应m 的值.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 10.【答案】y =12(x +1)2−1【解析】解:将抛物线y =12(x +3)2−4向右平移2个单位所得直线解析式为:y =12(x +3−2)2−4=12(x +1)2−4;再向上平移3个单位为:y =12(x +1)2−4+3,即y =12(x +1)2−1.故答案是:y =12(x +1)2−1.根据“左加右减、上加下减”的原则进行解答即可.此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.11.【答案】−4【解析】解:∵y=2x2+bx−1,∴抛物线对称轴为x=−b2×2=−b4,∴−b4=1,解得b=−4,故答案为−4.由对称轴公式可得到关于b的方程,可求得答案.本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键,即y=ax2+bx+c的对称轴为x=−b2a.12.【答案】24【解析】解:设△A′B′C′的最大边长是x,根据相似三角形的对应边的比相等,可得:2 12=4x,解得:x=24,∴△A′B′C′最大边的长等于24.故答案为:24.由于△A′B′C′∽△ABC,因此它们各对应边的比都相等,可据此求出△A′B′C′的最大边的长.本题主要考查了相似三角形的性质:相似三角形的对应边成比例.13.【答案】13【解析】解:∵∠ACB=90°,AB=3,BC=1,∴∠A的正弦sinA=BCAB =13,故答案为13.我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.代入数据直接计算得出答案.本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.【答案】45【解析】解:正八边形的中心角等于360°÷8=45°;故答案为45.根据中心角是正多边形相邻的两个半径的夹角来解答.本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.【答案】2√5【解析】解:∵AB⊥BC,∴∠ABD+∠DBC=90°,∵BD⊥DC,∴∠C+∠DBC=90°,∴∠ABD=∠C,∴tanC=BDDC =12,∴BD=12CD,由勾股定理得,BD2+CD2=BC2,即(12CD)2+CD2=52,解得,CD=2√5,故答案为:2√5.根据垂直的定义得到∠ABD=∠C,根据正切的定义得到BD=12CD,根据勾股定理计算即可.本题考查的是梯形的性质,正切的定义,勾股定理,掌握梯形的性质,正切的定义是解题的关键.16.【答案】15【解析】【分析】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.由△ABE∽△DCE,推出BEEC =ABCD=23,可得BEBC=25,再证明△BEF∽△BCD,可得EFCD=BEBC=25,由此即可解决问题.【解答】解:∵AB//CD,∴△ABE∽△DCE,∴BEEC =ABCD=23,∴BEBC =25,∵EF//CD,∴△BEF∽△BCD,∴EFCD =BEBC=25,∵EF=6,∴CD=15,故答案为15.17.【答案】<【解析】解:∵二次函数y=ax2+c(a>0),∴抛物线开口向上,对称轴为y轴,∵点A、B到对称轴的距离分别等于2、3,∴y1<y2.故答案为<.由于二次函数y=ax2+c(a>0)的图象的开口向上,对称轴为y轴,然后根据点A和点B离对称轴的远近可判断y1与y2的大小关系.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足解析式y= ax2+bx+c(a、b、c为常数,a≠0).18.【答案】3215【解析】解:如图所示,过A作AH⊥BC于H,∵AB=AC=8,cosB=34,∴BH=6=CH,BC=12,由折叠可得,BD=DE=2,∠E=∠ABC=∠C,AB=AE=6,又∵∠AFC=∠DFE,∴△AFC∽△DFE,∴DFAF =EFCF=DEAC=14,设EF=x,则CF=4x,AF=8−x,∴DF=14AF=2−14x,∵BD+DF+CF=BC,∴2+2−14x+4x=12,解得x=3215,∴EF=3215,故答案为3215.过A作AH⊥BC于H,依据等腰三角形的性质即可得到BH=6=CH,由折叠可得,BD=DE=2,∠E=∠ABC=∠C,AB=AE=6,依据△AFC∽△DFE,即可得到DFAF =EFCF=DE AC =14,设EF=x,则CF=4x,AF=8−x,DF=14AF=2−14x,依据BD+DF+CF=BC,可得x的值,进而得出EF的长.本题主要考查了相似三角形的判定与性质,等腰三角形的性质的运用,解决问题的关键是利用相似三角形的对应边成比例,列方程求解.19.【答案】解:原式=4×√22+(√32)2−2×1√3−√2=2√2+34−2(√3+√2)=34−2√3.【解析】直接利用特殊角的三角函数值分别代入求出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.【答案】(1)∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∴ADBE =AGGE=3,∴BC BE =3, ∴EC :BC =2:3. (2)23a ⃗ +43b ⃗ ,12a ⃗ +12b ⃗ .【解析】【分析】本题考查平行四边形的性质,平行线分线段成比例定理,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)根据平行四边形的性质,平行线分线段成比例定理即可解决问题;(2)利用三角形法则计算即可.【解答】解:(1)见答案;(2)∵AO ⃗⃗⃗⃗⃗ =b ⃗ ,AC =2AO ,∴AC ⃗⃗⃗⃗⃗ =2b ⃗ ,∵BC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =a ⃗ +2b ⃗ ,EC =23BC ,∴EC ⃗⃗⃗⃗⃗ =23a ⃗ +43b ⃗ , ∵AD//BE ,∴BG GD =EG AG =13,∴BG =14BD ,∵BD ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =a ⃗ +a ⃗ +2b ⃗ =2a ⃗ +2b⃗ , ∴BG ⃗⃗⃗⃗⃗ =14(2a ⃗ +2b ⃗ )=12a ⃗ +12b ⃗ , 故答案为23a ⃗ +43b ⃗ ,12a ⃗ +12b ⃗ . 21.【答案】(1)证明:连接O 1A ,∵点E 为AD 的中点,∴O 1E ⊥AD ,∵⊙O 1和⊙O 2相交于A 、B 两点,O 1O 2与AB 交于点C ,∴O 1C ⊥AB ,在Rt △O 1EA 和Rt △O 1CA 中,{O 1A =O 1A AE =AC, ∴Rt △O 1EA≌Rt △O 1CA(HL)∴O 1E =O 1C ;(2)解:设⊙O 2的半径长为r ,∵O 1E =O 1C =6,∴O 2C =10−6=4,在Rt △O 1EO 2中,O 2E =√O 1O 22−O 1E 2=8,则AC =AE =8−r ,在Rt △ACO 2中,O 2A 2=AC 2+O 2C 2,即r 2=(8−r)2+42,解得,r=5,即⊙O2的半径长为5.【解析】本题考查的是相交两圆的性质,全等三角形的判定和性质,垂径定理,勾股定理的应用,掌握相交两圆的连心线,垂直平分两圆的公共弦是解题的关键.(1)连接O1A,根据垂径定理得到O1E⊥AD,根据相交两圆的性质得到O1C⊥AB,证明Rt△O1EA≌Rt△O1CA,根据全等三角形的性质证明结论;(2)设⊙O2的半径长为r,根据勾股定理列出方程,解方程得到答案.22.【答案】解:延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,∵斜坡DE的坡长为13米,坡度i=1:2.4,∴设EH=5x,则DH=12x,∵EH2+DH2=DE2,∴(5x)2+(12x)2=132,∴x=1(负值舍去),∴EH=5,DH=12,∵EB//DC,∴∠ABE=∠AGH=90°,∵∠AEB=45°,∴AB=BE,∴HG=AB,∴FG=5+12+AB,AG=AB+5,∵∠F=31°,∴tanF=tan31°=AGFG =AB+517+AB=0.6,∴AB=13米,答:铁塔AB的高度是13米.【解析】延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,根据勾股定理得到EH=5,DH=12,根据三角函数的定义解直角三角形,然后列方程可得到结论.本题考查了解直角三角形的应用−仰角俯角问题,解直角三角形的应用−坡度坡角问题,矩形的性质,掌握的作出辅助线是解题的关键.23.【答案】证明:(1)∵AE2=AF⋅AB,∴AEAB =AFAE,∵∠EAF=∠BAE,∴△AEF∽△ABE,∴∠AEF=∠B,∵∠DAF=∠EAC,∴∠DAE=∠BAC,∴△ADE∽△ACB.(2)∵△ADE∽△ACB,∴DE BC =AD AC ,∠D =∠C ,∵∠DAF =∠EAC ,∴△ADF∽△ACE ,∴AD AC =DF EC , ∴DEBC=DF EC , ∴DF DE =CE CB .【解析】(1)由AE 2=AF ⋅AB ,推出△AEF∽△ABE ,推出∠AEF =∠B ,再证明∠DAE =∠BAC ,即可解决问题;(2)由△ADE∽△ACB ,推出DE BC =AD AC ,∠D =∠C ,再证明△ADF∽△ACE ,可得AD AC =DFEC ,由此即可解决问题;本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.【答案】解:(1)OB =3OA =3,则点B 的坐标为(3,0),将点A 、B 的坐标代入二次函数表达式得:{0=a −b +c 0=9a +3b +c,解得:{a =1b =−2, 则抛物线的表达式为:y =x 2−2x −3…①,函数对称轴为x =−b2a =1,则点D 的坐标为(1,−4);(2)如图,过点D 作DL ⊥y 轴,交于点E ,设:OE =m ,则EL =4−m ,OB =3,DL =1,∵∠LED +∠OEB =90°,∠OEB +∠OBE =90°,∴∠LED =∠OBE ,∴tan∠LED =tan∠OBE ,即:OE OB =LD EL ,m 3=14−m ,解得:m =1或3(舍去x =3),则点E 的坐标为(0,−1);(3)延长BD 交y 轴于点H ,将△BCH 围绕点B ,顺时针旋转135°至△BC′H′的位置,延长BH′交抛物线于点F ,∵OB=OC=3,∴∠OCB=∠OBC=45°,则∠FBD=135°,BC′⊥x轴,则点C′(3,3√2),∠H′C′B=∠HCB=180°−45°=135°,tan∠ABD=−y DOB−x D =42=2,OH=OB⋅tan∠ABD=2×3=6,则:HC=6−3=3=H′C′,过点C′作C′G⊥GH′交于点G,在△BGH′中,GC′=H′C′cos45°=3√22=GH′,则点H′的坐标为(3−3√22,9√22),将点H′、B的坐标代入一次函数表达式y=kx+b得:{0=3k+b9√22=(3−3√22)k+b,解得:{k=−3b=9,则直线BH′的表达式为:y=−3x+9…②,联立①②并解得:x=3或−4(x=3舍去),故点F的坐标为(−4,21).【解析】(1)把点A、B的坐标代入二次函数表达式,即可求解;(2)设:OE=m,则EL=4−m,OB=3,DL=1,利用∠LED=∠OBE,即可求解;(3)延长BD交y轴于点H,将△BCH围绕点B顺时针旋转135°至△BC′H′的位置,延长BH′交抛物线于点F.确定直线BH′的表达式,即可求解.本题考查的是二次函数综合运用,涉及到解直角三角形、图形旋转等知识,其中(3)用图形旋转的方法,确定旋转后图形的位置时本题的难点.25.【答案】解:(1)如图①中,作CH⊥AB于H.∵CH ⊥AB ,∴∠AHC =∠BHC =90°,∵∠ACB =90°,∴∠ACH +∠BCH =90°,∵∠ACH +∠A =90°,∴∠BCH =∠A ,∴△ACH∽△CBH , ∴CH BH =AH CH , ∵OC =2,∠COH =60°,∴∠OCH =30°,∴OH =12OC =1,CH =√3, ∴√3a−1=√3,整理得:2a 2−a −4=0,解得a =1+√334或1−√334(舍弃).经检验a =1+√334是分式方程的解. ∴a =1+√334.(2)如图②中,设OC =x.作CH ⊥AB 于H ,则OH =x 2,CH =√32x.在Rt △ACH 中,∵AC 2=AH 2+CH 2,∴(3a)2=(√32x)2+(2a +12x)2,整理得:x 2+ax −5a 2=0,解得x =(√6−1)a 或(−√6−1)a(舍弃),∴OC =(√6−1)a ;(3)如图②−1中,延长QC 交CB 的延长线于K .∵∠AOC=∠∠AOQ+∠QOC=∠ABC+∠OCB,∠QOC=∠ABC,∴∠AOQ=∠KCO,∵AQ//BK,∴∠Q=∠K,∴△QOA∽△KCO,∴AQOK =OQKC,∴AQOQ =OKKC,∵∠K=∠K,∠KOB=∠AOQ=∠KCO,∴△KOB∽△KCO,∴OKKC =OBOC,∴AQOQ =OBOC=(√6−1)a=√6+15.【解析】(1)如图①中,作CH⊥AB于H.证明△ACH∽△CBH,可得CHBH =AHCH,由此构建方程即可解决问题.(2)如图②中,设OC=x.作CH⊥AB于H,则OH=x2,CH=√32x.在Rt△ACH中,根据AC2=AH2+CH2,构建方程即可解决问题.(3)如图②−1中,延长QC交CB的延长线于K.利用相似三角形的性质证明AQOQ =OBOC,即可解决问题.本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2019学年第一学期上海市普陀区初三质量调研数学试卷试题分析(第21题)

学生猜想△DAP或△PAC是等腰三角形,错误求出DP=1,或直接猜想出∠B=30°或∠C=30°,得出AP= ;
典型错误4
计算比例式 时,出现计算错误.
试题分析
本题主要考查相似三角形判定与性质定理,要求学生会熟练运用上述定理,并能区分基本图形,能分析其中的基本边、角元素及其数量关系.
试题图形基于学生非常熟悉的一线三等角基本形,但又和常见的一线三等角基本形证明题不同,本题是需要学生运用不常用的直角三角形直角边与斜边对应成比例来判定两个直角三角形Rt△ABP∽Rt△PCD,得出两个直角三角形的一对对应锐角∠APB=∠PDC或∠B=∠C,再利用三角形外角性质定理求证出所需要证明的一对相等的角.
3.三角形的外角性质定理;
4.等腰三角形性质定理;
5.比例线段的计算.
能力目标
1.知道相似三角形判定与性质定理,并能熟练运用;
2.认知区分基本图形,能分析出其中的基本边、角元素;
3.会根据相似三角形各边之间的对应关系得出比例线段;
3.能正确进行比例线段的求解运算.
试题的不同解法
解法1
(参考答案)
(1)∵PA⊥AB,DP⊥BC,
∴AD=1.
∵∠APD=∠C,∠PAD=∠CAP,
∴△APD∽△ACP.
∴ ,
∴AP= .
解法2
运用锐角三角比相等,得出∠B=∠C,
在Rt△ABP和Rt△PCD中,
,
∵ ,
∴ ,
∴ ,
∴∠B=∠C.
(后续解法与解法1类似)
解法3
构造基本图形,证明∠B=30°或∠C=30°,或直接求出AP,
(1)
(2)
∴∠BAP=∠CPD=90°.
2019年上海市普陀区中考数学一模试卷及答案(word解析版)

上海市普陀区2019年中考数学一模试卷一.选择题:(本大题共6题,每题4分,满分24分)B2.(4分)(2019•普陀区一模)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一3.(4分)(2019•普陀区一模)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k4.(4分)(2019•普陀区一模)如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()5.(4分)(2019•普陀区一模)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()=;=;==6.(4分)(2019•普陀区一模)已知线段a、b、c,求作第四比例线段x,下列作图正确的..二.填空题:(本大题共12题,每题4分,满分48分)7.(4分)(2019•普陀区一模)如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是34千米.÷8.(4分)(2019•普陀区一模)把长为10cm的线段进行黄金分割,那么较长线段长为5﹣5cm.线段分割叫做黄金分割,他们的比值(×﹣原线段的9.(4分)(2019•普陀区一模)如果两个相似三角形的对应角平分线之比为1:4,那么它们的周长之比是1:4.10.(4分)(2019•普陀区一模)如果抛物线y=(k﹣1)x2+4x的开口向下,那么k的取值范围是k<1.11.(4分)(2019•普陀区一模)把抛物线y=x2的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=(x﹣3)2﹣2.12.(4分)(2019•普陀区一模)二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表,则m的值为﹣1.13.(4分)(2019•普陀区一模)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,则BC= 2.14.(4分)(2019•普陀区一模)如图,点D、E、F分别是△ABC三边的中点,那么与相等的向量是和.相等的向量.相等的向量是和.故答案为:和.15.(4分)(2019•普陀区一模)如图,G是△ABC的重心,AG⊥GC,AC=4,则BG的长为4.16.(4分)(2019•普陀区一模)如图,△ABC中,∠C=90°,BC=4cm,tanB=,则△ABC 的面积是12cm2.tanB===tanB==,17.(4分)(2019•普陀区一模)如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是210cm.18.(4分)(2019•普陀区一模)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,那么四边形MABN的面积是.=),即可求得四边形)NC=22,=24﹣=18.三、解答题:(本大题共7题,满分78分)19.(10分)(2019•普陀区一模)计算:.,﹣20.(10分)(2019•普陀区一模)如图,已知两个不平行的向量、.先化简,再求作:(不要求写作法,但要指出图中表示结论的向量).21.(10分)(2019•普陀区一模)已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD,垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.22.(10分)(2019•普陀区一模)一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈,tan21.3°≈,sin63.5°≈,tan63.5°≈2)CBD=,,,﹣=60=1523.(12分)(2019•普陀区一模)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长.EM=,即可求得答案.EM=24.(12分)(2019•普陀区一模)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.×=2,)代入,得﹣+时,在POD==不符合题意,舍去,2|2|2)25.(14分)(2019•普陀区一模)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=3;直线BC 与直线B′C′所夹的锐角为60度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.)(=2=。
┃精选3套试卷┃2019年上海市普陀区中考数学学业质量检查模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.2R B.32R C.22R D.3R【答案】D【解析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=3R.【详解】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴3,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.2.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>12B.m>4C.m<4 D.12<m<4【答案】B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,∴40120mm-⎧⎨-⎩>①,<②解不等式①得,m>1,解不等式②得,m>1 2所以,不等式组的解集是m>1,即m的取值范围是m>1.故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.下列二次根式,最简二次根式是( )A.8B.12C.5D.27【答案】C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO =30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,332) B.(2,332) C.(332,32) D.(32,3﹣332)【答案】A【解析】解:∵四边形AOBC 是矩形,∠ABO=10°,点B 的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×33=1.∵将△ABC 沿AB 所在直线对折后,点C 落在点D 处,∴∠BAD=10°,AD=33.过点D 作DM ⊥x 轴于点M ,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D 的坐标为(32,332).故选A .5.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x =,则( ) A .这两组数据的波动相同 B .数据B 的波动小一些 C .它们的平均水平不相同 D .数据A 的波动小一些【答案】B【解析】试题解析:方差越小,波动越小.22,A B s s >数据B 的波动小一些. 故选B.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F.已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B ..5C .6D .8【答案】C【解析】解:∵AD ∥BE ∥CF ,根据平行线分线段成比例定理可得AB DE BC EF=,即123EF =,解得EF=6,故选C.7.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③【答案】A【解析】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.8.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A.B.C.D.【答案】C【解析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP ∽△PCD ,根据相似三角形的性质即可得出y=- 1ax 2+x ,对照四个选项即可得出. 【详解】∵△ABC 为等边三角形, ∴∠B=∠C=60°,BC=AB=a ,PC=a-x . ∵∠APD=60°,∠B=60°,∴∠BAP+∠APB=120°,∠APB+∠CPD=120°, ∴∠BAP=∠CPD , ∴△ABP ∽△PCD , ∴CD PC BP AB =,即y a xx a-=, ∴y=-1ax 2+x. 故选C. 【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-1ax 2+x 是解题的关键.9.下列各数中最小的是( ) A .0 B .1C .﹣3D .﹣π【答案】D【解析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断. 【详解】﹣π<﹣3<0<1. 则最小的数是﹣π. 故选:D . 【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.10.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.二、填空题(本题包括8个小题)11.一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为______.【答案】3 4±【解析】首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值.【详解】在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=±4;当a=4时,把(4,0)代入y=kx+3,得k=34 -;当a=-4时,把(-4,0)代入y=kx+3,得k=34;故k的值为34或34-【点睛】考点:本体考查的是根据待定系数法求一次函数解析式解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值.12.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是_____.【答案】(673,0)【解析】由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n,纵坐标为0,据此可解. 【详解】解:由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n,纵坐标为0,∵2019÷3=673, ∴P 2019 (673,0)则点P 2019的坐标是 (673,0). 故答案为 (673,0). 【点睛】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上. 13.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.【答案】25°.【解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°, ∴∠2=45°-∠3=45°-20°=25°.14.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 318 652 793 1 604 4 005 发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1). 【答案】1.2【解析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.【答案】1或5.【解析】小正方形的高不变,根据面积即可求出小正方形平移的距离.【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,①如图,小正方形平移距离为1厘米;②如图,小正方形平移距离为4+1=5厘米.故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.16.若a2+3=2b,则a3﹣2ab+3a=_____.【答案】1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.17.因式分解:2x-=____________.312【答案】3(x-2)(x+2)【解析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底. 【详解】原式=3(x 2﹣4)=3(x-2)(x+2). 故答案为3(x-2)(x+2). 【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底. 18.如果关于x 的方程x 2+2ax ﹣b 2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a+b=_____. 【答案】±1.【解析】根据根的判别式求出△=0,求出a 1+b 1=1,根据完全平方公式求出即可. 【详解】解:∵关于x 的方程x 1+1ax-b 1+1=0有两个相等的实数根, ∴△=(1a )1-4×1×(-b 1+1)=0, 即a 1+b 1=1,∵常数a 与b 互为倒数, ∴ab=1,∴(a+b )1=a 1+b 1+1ab=1+3×1=4, ∴a+b=±1, 故答案为±1. 【点睛】本题考查了根的判别式和解高次方程,能得出等式a 1+b 1=1和ab=1是解此题的关键. 三、解答题(本题包括8个小题)19.先化简,再求值:2441x x x +++÷(31x +﹣x+1),其中x=sin30°+2﹣1.【答案】-5【解析】根据分式的运算法则以及实数的运算法则即可求出答案.【详解】当x=sin30°+2﹣1时,∴x=12+12+2=3, 原式=2(x 2)x 1++÷24x x 1-+=x 2x 2+--=﹣5. 【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.A 粮仓和B 粮仓分别库存粮食12吨和6吨,现决定支援给C 市10吨和D 市8吨.已知从A 粮仓调运一吨粮食到C 市和D 市的运费分别为400元和800元;从B 粮仓调运一吨粮食到C 市和D 市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?【答案】(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C 市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.【解析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w=200x+8600k>0,所以当x=0时,总运费最低.也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.21.某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA 1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.【答案】(1)13;(2)13. 【解析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA 1的概率是=13; (2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是3193=. 22.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB(结果保留根号).【答案】332【解析】如下图,过点C 作CF ⊥AB 于点F ,设AB 长为x ,则易得AF=x-4,在Rt △ACF 中利用∠α的正切函数可由AF 把CF 表达出来,在Rt △ABE 中,利用∠β的正切函数可由AB 把BE 表达出来,这样结合BD=CF ,DE=BD-BE 即可列出关于x 的方程,解方程求得x 的值即可得到AB 的长.【详解】解:如图,过点C 作CF ⊥AB ,垂足为F ,设AB=x ,则AF=x-4,∵在Rt △ACF 中,tan ∠α=AF CF , ∴CF=4tan30x -︒=BD , 同理,Rt △ABE 中,BE=tan60x ︒, ∵BD-BE=DE ,∴4tan30x -︒-tan60x ︒=3, 解得x=6+332. 答:树高AB 为(6+332)米 . 【点睛】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键. 23.如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上.求证:△ABC ≌△ADE ;(2)求证:∠EAC =∠DEB .【答案】(1)详见解析;(2)详见解析.【解析】(1)用“SSS”证明即可;(2)借助全等三角形的性质及角的和差求出∠DAB =∠EAC ,再利用三角形内角和定理求出∠DEB =∠DAB ,即可说明∠EAC =∠DEB .【详解】解:(1)在△ABC 和△ADE 中AB AD AC AE BC DE ⎧⎪⎨⎪⎩=,=,=, ∴△ABC ≌△ADE (SSS );(2)由△ABC ≌△ADE ,则∠D =∠B ,∠DAE =∠BAC .∴∠DAE﹣∠ABE=∠BAC﹣∠BAE,即∠DAB=∠EAC.设AB和DE交于点O,∵∠DOA=BOE,∠D=∠B,∴∠DEB=∠DAB.∴∠EAC=∠DEB.【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是利用全等三角形的性质求出相等的角,体现了转化思想的运用.24.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.求证:△AED≌△EBC;当AB=6时,求CD的长.【答案】(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA 判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= 12AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D 作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.【答案】(1)详见解析;(2)1.【解析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=22=6,于是得到结论.BE BD【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE =2BC =10,∵BD =8,∴DE=6,∵四边形ABCD 是菱形,∴AD =AB =BC =5,∴四边形ABED 的周长=AD+AB+BE+DE =1.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.26.观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯= ⋯⋯2222211111(1)(1)(1)(1)(1)2345n -----=______(用含n 的代数式表示,n 是正整数,且 n ≥ 2) 【答案】12n n + 【解析】由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣12)和(1+1n )相乘得出结果. 【详解】2222211111111112345n -----()()()()() =1111111111111111223344n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132431...22334n n+⨯⨯⨯⨯⨯⨯ =12n n+. 故答案为:12n n+. 【点睛】本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( )A .1201806x x =+B .1201806x x =-C .1201806x x =+D .1201806x x=- 【答案】C【解析】解:因为设小明打字速度为x 个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x =+, 故选C .【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.2.如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC 的正切值是( )A .12B .2C .5D .25 【答案】A【解析】分析:连接AC ,根据勾股定理求出AC 、BC 、AB 的长,根据勾股定理的逆定理得到△ABC 是直角三角形,根据正切的定义计算即可.详解:连接AC ,由网格特点和勾股定理可知,2,22,10AB BC ==AC 2+AB 2=10,BC 2=10,∴AC 2+AB 2=BC 2,∴△ABC 是直角三角形,∴tan ∠ABC=21222AC AB ==.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.3.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)【答案】A【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.4.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.5.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A .方差B .中位数C .众数D .平均数【答案】A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差6.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,CH ┴AF 与点H ,那么CH 的长是( )A .22B .5C .32D .355【答案】D【解析】连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,最后由直角三角形面积的两种表示法即可求得CH 的长.【详解】如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2 ,2,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,2222(2)(32)25AC CF +=+=∵CH ⊥AF , ∴1122AC CF AF CH ⋅=⋅, 112222522CH =⨯,∴CH=5.故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.7.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,6【答案】A【解析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥4【答案】A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.9.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【答案】C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.10.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【答案】B【解析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.二、填空题(本题包括8个小题)11.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.【答案】(-23,6)【解析】分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=23,得到答案.详解:连接OB1,作B1H⊥OA于H,由题意得,OA=6,3则tan∠BOA=33 ABOA,∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,111B HO BAO B OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△HB 1O ,∴B 1H=OA=6,∴点B 1的坐标为(,6),故答案为(6).点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.12.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 【答案】1 【解析】根据白球的概率公式44n +=13列出方程求解即可. 【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个, 根据古典型概率公式知:P (白球)=44n +=13. 解得:n=1,故答案为1.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 13.计算1x x +﹣11x +的结果为_____. 【答案】11x x -+. 【解析】根据同分母分式加减运算法则化简即可. 【详解】原式=11x x -+, 故答案为11x x -+. 【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键.14.如图,在矩形ABCD 中,E 、F 分别是AD 、CD 的中点,沿着BE 将△ABE 折叠,点A 刚好落在BF 上,若AB=2,则AD=________.【答案】22 【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt △BCF 中,BC=22223122BF CF -=-=.∴AD=BC=22 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.15.已知A (0,3),B (2,3)是抛物线上两点,该抛物线的顶点坐标是_________. 【答案】(1,4).【解析】试题分析:把A (0,3),B (2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.16.关于x 的方程2230mx x -+=有两个不相等的实数根,那么m 的取值范围是__________.【答案】13m<且0m≠【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<13且m≠1,故答案为:m<13且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.17.如果某数的一个平方根是﹣5,那么这个数是_____.【答案】25【解析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.18.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.【答案】1 2【解析】用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解.【详解】解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图:共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,所以抽到卡片上印有图案都是轴对称图形的概率61 122 ==.故答案为.1 2【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件。
2019年上海市普陀区中考数学一模考试卷含逐题详解

2019年上海市普陀区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.(4分)已知二次函数y=(a﹣1)x2+3的图象有最高点,那么a的取值范围是()A.a>0B.a<0C.a>1D.a<12.(4分)下列二次函数中,如果图象能与y轴交于点A(0,1),那么这个函数是()A.y=3x2B.y=3x2+1C.y=3(x+1)2D.y=3x2﹣x3.(4分)如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使△ADE与△ABC相似,那么这个条件是()A.∠AED=∠B B.∠ADE=∠C C.=D.=4.(4分)已知、、都是非零向量,如果=2,=﹣2,那么下列说法中,错误的是()A.∥B.||=||C.=0D.与方向相反5.(4分)已知⊙O1和⊙O2,其中⊙O1为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于()A.1B.4C.5D.86.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE经过重心G,在下列四个说法中①=;②=;③=;④=,正确的个数是()A.1个B.2个C.3个D.4个二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果=,那么的值是.8.(4分)化简:3()﹣2()=.9.(4分)如果抛物线y=2x2+x+m﹣1经过原点,那么m的值等于.10.(4分)将抛物线y=(x+3)2﹣4先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是.11.(4分)已知抛物线y=2x2+bx﹣1的对称轴是直线x=1,那么b的值等于.12.(4分)已知△ABC三边的比为2:3:4,与它相似的△A′B′C′最小边的长等于12,那么△A′B′C′最大边的长等于.13.(4分)在Rt△ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是.14.(4分)正八边形的中心角为度.15.(4分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,tan∠ABD=,BC=5,那么DC的长等于.16.(4分)如图,AB∥CD,AD、BC相交于点E,过E作EF∥CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于.17.(4分)已知二次函数y=ax2+c(a>0)的图象上有纵坐标分别为y1、y2的两点A、B,如果点A、B到对称轴的距离分别等于2、3,那么y1y2(填“<”、“=”或“>”)18.(4分)如图,△ABC中,AB=AC=8,cos B=,点D在边BC上,将△ABD沿直线AD翻折得到△AED,点B的对应点为点E,AE与边BC相交于点F,如果BD=2,那么EF=.三、解答题:(本大题共7题,满分78分)19.(10分)计算:4sin45°+cos230°﹣.20.(10分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在边BC上,AE与BD相交于点G,AG:GE=3:1.(1)求EC:BC的值;(2)设=,=,那么=,=(用向量、表示)21.(10分)如图,⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,O2A的延长线交⊙O1于点D,点E为AD的中点,AE=AC,联结OE.(1)求证:O1E=O1C;(2)如果O1O2=10,O1E=6,求⊙O2的半径长.22.(10分)如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)23.(12分)已知:如图,△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,AE2=AF•AB,∠DAF=∠EAC.(1)求证:△ADE∽△ACB;(2)求证:=.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为点D.(1)求抛物线的表达式及点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;(3)如果点F是抛物线上的一点.且∠FBD=135°,求点F的坐标.25.(14分)如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求AQ:OQ的值.2019年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.(4分)已知二次函数y=(a﹣1)x2+3的图象有最高点,那么a的取值范围是()A.a>0B.a<0C.a>1D.a<1【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由题意可知:a﹣1<0,∴a<1,故选:D.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.2.(4分)下列二次函数中,如果图象能与y轴交于点A(0,1),那么这个函数是()A.y=3x2B.y=3x2+1C.y=3(x+1)2D.y=3x2﹣x【分析】根据y轴上点的坐标特征,分别计算出x=0时四个函数对应的函数值,然后根据函数值是否为1来判断图象能否与y轴交于点A(0,1).【解答】解:当x=0时,y=3x2=0;当x=0时,y=3x2+1=1;当x=0时,y=3(x+1)2=9;当x=0时,y =3x2﹣x=0,所以抛物线y=3x2+1与y轴交于点(0,1).故选:B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.3.(4分)如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使△ADE与△ABC相似,那么这个条件是()A.∠AED=∠B B.∠ADE=∠C C.=D.=【分析】由已知及三角形相似的判定方法,对每个选项分别分析、判断解答出即可.【解答】解:由题意得,∠A=∠A,A、当∠ADE=∠B时,△ADE∽△ABC;故本选项不符合题意;B、当∠ADE=∠C时,△ADE∽△ABC;故本选项不符合题意;C、当=时,△ADE∽△ABC;故本选项不符合题意;D、当=时,不能推断△ADE与△ABC相似;故选项符合题意;故选:D.【点评】本题考查了直角三角形相似的判定:①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.4.(4分)已知、、都是非零向量,如果=2,=﹣2,那么下列说法中,错误的是()A.∥B.||=||C.=0D.与方向相反【分析】根据平面相等向量的定义、共线向量的定义以及向量的模的计算方法解答.【解答】解:A、因为=2,=﹣2,所以∥,且与方向相反,故本选项说法正确;B、因为=2,=﹣2,所以||=||=|2|,故选项说法正确;C、因为=2,=﹣2,所以∥,则•=0,故本选项说法错误;D、因为=2,=﹣2,所以∥,且与方向相反,故本选项说法正确;故选:C.【点评】考查了向量,向量是既有方向又有大小的.5.(4分)已知⊙O1和⊙O2,其中⊙O1为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于()A.1B.4C.5D.8【分析】根据两圆位置关系是内切,则圆心距=两圆半径之差,以及外切时,r+R=d,分别求出即可.【解答】解:∵两圆相内切,设小圆半径为x,圆心距为2,∴3﹣x=2,∴x=1,∴小圆半径为1,这两圆外切时,圆心距为:1+3=4.故选:B.【点评】此题主要考查了两圆的位置关系,用到的知识点为:两圆内切,圆心距=两圆半径之差,外切时,r+R =d.6.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE经过重心G,在下列四个说法中①=;②=;③=;④=,正确的个数是()A.1个B.2个C.3个D.4个【分析】连接AG并延长,交BC于F,依据DE∥BC,且DE经过重心G,即可得到△ADE∽△ABC,且相似比为2:3,依据相似三角形的性质,即可得到正确结论.【解答】解:如图所示,连接AG并延长,交BC于F,∵DE∥BC,且DE经过重心G,∴△ADE∽△ABC,∴===,故①正确;∴=,故③正确;∵DG∥BF,∴==,故②错误;∵△ADE∽△ABC,=,∴=,∴=,故④正确;故选:C.【点评】本题考查相似三角形的判定和性质以及三角形重心的性质的运用,解决问题的关键是知道相似三角形的对应边对应成比例.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果=,那么的值是.【分析】直接根据已知用同一未知数表示出各数,进而得出答案.【解答】解:∵=,∴设x=7a,则y=2a,那么==.故答案为:.【点评】此题主要考查了比例的性质,正确表示出x,y的值是解题关键.8.(4分)化简:3()﹣2()=.【分析】平面向量的运算法则也符合实数的运算法则.【解答】解:3()﹣2()=3+﹣2+2=(3﹣2)+(+2)=.故答案是:.【点评】考查了平面向量,解题的关键是掌握平面向量的计算法则.9.(4分)如果抛物线y=2x2+x+m﹣1经过原点,那么m的值等于1.【分析】把原点坐标代入抛物线解析式即可得到对应m的值.【解答】解:把(0,0)代入y=2x2+x+m﹣1得m﹣1=0,解得m=1,故答案为1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.10.(4分)将抛物线y=(x+3)2﹣4先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是(x+1)2﹣1.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=(x+3)2﹣4向右平移2个单位所得直线解析式为:y=(x+3﹣2)2﹣4=(x+1)2﹣4;再向上平移3个单位为:y=(x+1)2﹣4+3,即y=(x+1)2﹣1.故答案是:y=(x+1)2﹣1.【点评】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.11.(4分)已知抛物线y=2x2+bx﹣1的对称轴是直线x=1,那么b的值等于﹣4.【分析】由对称轴公式可得到关于b的方程,可求得答案.【解答】解:∵y=2x2+bx﹣1,∴抛物线对称轴为x=﹣=﹣,∴﹣=1,解得b=﹣4,故答案为:﹣4.【点评】本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键,即y=ax2+bx+c的对称轴为x=﹣.12.(4分)已知△ABC三边的比为2:3:4,与它相似的△A′B′C′最小边的长等于12,那么△A′B′C′最大边的长等于24.【分析】由于△A′B′C′∽△ABC,因此它们各对应边的比都相等,可据此求出△A′B′C′的最大边的长.【解答】解:设△A′B′C′的最大边长是x,根据相似三角形的对应边的比相等,可得:=,解得:x=24,∴△A′B′C′最大边的长等于24.故答案为:24.【点评】本题主要考查了相似三角形的性质:相似三角形的对应边成比例.13.(4分)在Rt△ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是.【分析】我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.代入数据直接计算得出答案.【解答】解:∵∠ACB=90°,AB=3,BC=1,∴∠A的正弦值sin A==,故答案为:.【点评】本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.(4分)正八边形的中心角为45度.【分析】根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.【点评】本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.(4分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,tan∠ABD=,BC=5,那么DC的长等于2.【分析】根据垂直的定义得到∠ABD=∠C,根据正切的定义得到BD=CD,根据勾股定理计算即可.【解答】解:∵AB⊥BC,∴∠ABD+∠DBC=90°,∵BD⊥DC,∴∠C+∠DBC=90°,∴∠ABD=∠C,∴tan C==,∴BD=CD,由勾股定理得,BD2+CD2=BC2,即(CD)2+CD2=52,解得,CD=2,故答案为:2.【点评】本题考查的是梯形的性质,正切的定义,勾股定理,掌握梯形的性质,正切的定义是解题的关键.16.(4分)如图,AB∥CD,AD、BC相交于点E,过E作EF∥CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于15.【分析】由△ABE∽△DCE,推出==,可得=,再证明△BEF∽△BCD,可得==,由此即可解决问题.【解答】解:∵AB∥CD,∴△ABE∽△DCE,∴==,∴=,∵EF∥CD,∴△BEF∽△BCD,∴==,∵EF=6,∴CD=15,故答案为15.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(4分)已知二次函数y=ax2+c(a>0)的图象上有纵坐标分别为y1、y2的两点A、B,如果点A、B到对称轴的距离分别等于2、3,那么y1<y2(填“<”、“=”或“>”)【分析】由于二次函数y=2(x﹣1)2+k的图象的开口向上,然后根据点A和点B离对称轴的远近可判断y1与y2的大小关系.【解答】解:∵二次函数y=ax2+c(a>0),∴抛物线开口向上,∵点A、B到对称轴的距离分别等于2、3,∴y1<y2.故答案为<.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足解析式y=ax2+bx+c(a、b、c为常数,a≠0).18.(4分)如图,△ABC中,AB=AC=8,cos B=,点D在边BC上,将△ABD沿直线AD翻折得到△AED,点B的对应点为点E,AE与边BC相交于点F,如果BD=2,那么EF=.【分析】过A作AH⊥BC于H,依据等腰三角形的性质即可得到BH=6=CH,由折叠可得,BD=DE=2,∠E =∠ABC=∠C,AB=AE=6,依据△AFC∽△DFE,即可得到===,设EF=x,则CF=4x,AF =8﹣x,DF=AF=2﹣x,依据BD+DF+CF=BC,可得x的值,进而得出EF的长.【解答】解:如图所示,过A作AH⊥BC于H,∵AB=AC=8,cos B=,∴BH=6=CH,BC=12,由折叠可得,BD=DE=2,∠E=∠ABC=∠C,AB=AE=6,又∵∠AFC=∠DFE,∴△AFC∽△DFE,∴===,设EF=x,则CF=4x,AF=8﹣x,∴DF=AF=2﹣x,∵BD+DF+CF=BC,∴2+2﹣x+4x=12,解得x=,∴EF=,故答案为:.【点评】本题主要考查了相似三角形的判定与性质,等腰三角形的性质的运用,解决问题的关键是利用相似三角形的对应边成比例,列方程求解.三、解答题:(本大题共7题,满分78分)19.(10分)计算:4sin45°+cos230°﹣.【分析】直接利用特殊角的三角函数值分别代入求出答案.【解答】解:原式=4×+()2﹣=2+﹣2(+)=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.(10分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在边BC上,AE与BD相交于点G,AG:GE=3:1.(1)求EC:BC的值;(2)设=,=,那么=+,=﹣﹣(用向量、表示)【分析】(1)根据平行四边形的性质,平行线分线段成比例定理即可解决问题;(2)利用三角形法则计算即可;【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴==3,∴=3,∴EC:BC=2:3.(2)∵=,AC=2AO,∴=2,∵=+=+2,EC=BC,∴=+,∵AD∥BE,∴==,∴BG=BD,∵=+=+=++2=2+2,∴=(2+2)=+,∴=﹣﹣故答案为+,﹣﹣.【点评】本题考查平行四边形的性质,平行线分线段成比例定理,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)如图,⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,O2A的延长线交⊙O1于点D,点E为AD的中点,AE=AC,联结OE.(1)求证:O1E=O1C;(2)如果O1O2=10,O1E=6,求⊙O2的半径长.【分析】(1)连接O1A,根据垂径定理得到O1E⊥AD,根据相交两圆的性质得到O1C⊥AB,证明Rt△O1EA≌Rt△O1CA,根据全等三角形的性质证明结论;(2)设⊙O2的半径长为r,根据勾股定理列出方程,解方程得到答案.【解答】(1)证明:连接O1A,∵点E为AD的中点,∴O1E⊥AD,∵⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,∴O1C⊥AB,在Rt△O1EA和Rt△O1CA中,,∴Rt△O1EA≌Rt△O1CA(HL)∴O1E=O1C;(2)解:设⊙O2的半径长为r,∵O1E=O1C=6,∴O2C=10﹣6=4,在Rt△O1EO2中,O2E==8,则AC=AE=8﹣r,在Rt△ACO2中,O2A2=AC2+O2C2,即r2=(8﹣r)2+42,解得,r=5,即⊙O2的半径长为5.【点评】本题考查的是相交两圆的性质,全等三角形的判定和性质,垂径定理,勾股定理的应用,掌握相交两圆的连心线,垂直平分两圆的公共弦是解题的关键.22.(10分)如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)【分析】延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,根据勾股定理得到EH=5,DH =12根据三角函数的定义列方程即可得到结论.【解答】解:延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,∵斜坡DE的坡长为13米,坡度i=1:2.4,∴设EH=5x,DH=12x,∵EH2+DH2=DE2,∴(5x)2+(12x)2=132,∴x=1,∴EH=5,DH=12,∵EB∥DC,∴∠ABE=∠AGH=90°,∵∠AEB=45°,∴AB=BE,∴HG=AB,∴FG=5+12+AB,AG=AB+5,∵∠F=31°,∴tan F=tan31°===0.6,∴AB=13米,答:铁塔AB的高度是13米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解直角三角形的应用﹣坡度坡角问题,矩形的性质,掌握的作出辅助线是解题的关键.23.(12分)已知:如图,△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,AE2=AF•AB,∠DAF=∠EAC.(1)求证:△ADE∽△ACB;(2)求证:=.【分析】(1)由AE2=AF•AB,推出△AEF∽△ABE,推出∠AEF=∠B,再证明∠DAE=∠BAC,即可解决问题;(2)由△ADE∽△ACB,推出=,∠D=∠C,再证明△ADF∽△ACE,可得=,由此即可解决问题;【解答】证明:(1)∵AE2=AF•AB,∴=,∵∠EAF=∠BAE,∴△AEF∽△ABE,∴∠AEF=∠B,∵∠DAF=∠EAC,∴∠DAE=∠BAC,∴△ADE∽△ACB.(2)∵△ADE∽△ACB,∴=,∠D=∠C,∵∠DAF=∠EAC,∴△ADF∽△ACE,∴=,∴=,∴=.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为点D.(1)求抛物线的表达式及点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;(3)如果点F是抛物线上的一点.且∠FBD=135°,求点F的坐标.【分析】(1)把点A、B的坐标代入二次函数表达式,即可求解;(2)设:OE=m,则EL=4﹣m,OB=3,DL=1,利用∠LED=∠OBE,即可求解;(3)延长BD交y轴于点H,将△BCH围绕点B顺时针旋转135°至△BC′H′的位置,延长BH′交抛物线于点F.确定直线BH′的表达式,即可求解.【解答】解:(1)OB=3OA=3,则点B的坐标为(3,0),点A(﹣1,0),则函数的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),则﹣3a=﹣3,解得:a=1,则抛物线的表达式为:y=x2﹣2x﹣3…①函数对称轴为x=﹣=1,则点D的坐标为(1,﹣4);(2)如图,过点D作DL⊥y轴,交于点L,设:OE=m,则EL=4﹣m,OB=3,DL=1,∵∠LED+∠OEB=90°,∠OEB+∠OBE=90°,∴∠LED=∠OBE,∴tan∠LED=tan∠OBE,即:=,=,解得:m=1或3(舍去x=3),则点E的坐标为(0,﹣1);(3)延长BD交y轴于点H,将△BCH围绕点B,顺时针旋转135°至△BC′H′的位置,延长BH′交抛物线于点F,∵OB=OC=3,∴∠OCB=∠OBC=45°,则∠FBD=135°,BC′⊥x轴,则点C′(3,3),∠H′C′B=∠HCB=180°﹣45°=135°,tan∠ABD===2,OH=OB•tan∠ABD=2×3=6,则:HC=6﹣3=3=H′C′,过点C′作C′G⊥GH′交于点G,在△BGH′中,GC′=H′C′cos45°==GH′,则点H′的坐标为(3﹣,),将点H′、B的坐标代入一次函数表达式y=kx+b得:,解得:,则直线BH′的表达式为:y=﹣3x+9…②,联立①②并解得:x=3或﹣4(x=3舍去),故点F的坐标为(﹣4,21).【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、图形旋转等知识,其中(3)用图形旋转的方法,确定旋转后图形的位置时本题的难点.25.(14分)如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求AQ:OQ的值.【分析】(1)如图①中,作CH⊥AB于H.证明△ACH∽△CBH,可得=,由此构建方程即可解决问题.(2)如图②中,设OC=x.作CH⊥AB于H,则OH=,CH=x.在Rt△ACH中,根据AC2=AH2+CH2,构建方程即可解决问题.(3)如图②﹣1中,延长QC交CB的延长线于K.利用相似三角形的性质证明=,即可解决问题.【解答】解:(1)如图①中,作CH⊥AB于H.∵CH⊥AB,∴∠AHC=∠BHC=90°,∵∠ACB=90°,∴∠ACH+∠BCH=90°,∵∠ACH+∠A=90°,∴∠BCH=∠A,∴△ACH∽△CBH,∴=,∵OC=2,∠COH=60°,∴∠OCH=30°,∴OH=OC=1,CH=,∴=,整理得:2a2﹣a﹣4=0,解得a=或(舍弃).经检验a=是分式方程的解.∴a=.(2)如图②中,设OC=x.作CH⊥AB于H,则OH=,CH=x.在Rt△ACH中,∵AC2=AH2+CH2,∴(3a)2=(x)2+(2a+x)2,整理得:x2+ax﹣5a2=0,解得x=(﹣1)a或(﹣﹣1)a(舍弃),∴OC=(﹣1)a,(3)如图②﹣1中,延长QC交CB的延长线于K.∵∠AOC=∠∠AOQ+∠QOC=∠ABC+∠OCB,∠QOC=∠ABC,∴∠AOQ=∠KCO,∵AQ∥BK,∴∠Q=∠K,∴△QOA∽△KCO,∴=,∴=,∵∠K=∠K,∠KOB=∠AOQ=∠KCO,∴△KOB∽△KCO,∴=,∴===【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普陀区2018学年度第一学期初三质量调研
数 学 试 卷
(时间:100分钟,满分:150分)
考生注意:
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]
1.已知二次函数2(1)3y a x =-+的图像有最高点,那么a 的取值范围是( ▲ ) (A )0a >; (B )0a <; (C )1a >; (D )1a <.
2.下列二次函数中,如果图像能与y 轴交于点A ()0,1,那么这个函数是( ▲ ) (A )23y x =; (B )231y x =+;
(C )23
1()y x =+; (D )23y x x =-. 3.如图1,在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,如果添加下列其中之一的条件,不一定能使△ADE 与△ABC 相似,那么这个条件是( ▲ ) (A )AED B ∠=∠; (B )ADE C ∠=∠; (C )
AD AE AC AB =; (D )AD DE
AB BC
=
. 4.已知a →
、b →
、c →
都是非零向量,如果2a c →→=,2b c →→
=-, 那么下列说法中,错误的是( ▲ )
(A )a →∥b →; (B )||||a b →→
=
; (C )0a b →
→
+=; (D )a →
与b →
方向相反.
图1
E
A
B
D
5.已知⊙1O 和⊙2O ,其中⊙1O 为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于( ▲ )
(A )1; (B )4; (C )5; (D )8.
6.如图2,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE //BC ,且DE 经过重心G ,在下列四个说法中,①23DE BC =;②1
3
BD AD =;③23△△ADE ABC C C =;④45△四边形ADE DBCE S S =,正确
的个数是( ▲ )
(A )1个; (B )2个; (C )3个; (D )4个.
二、填空题:(本大题共12题,每题4分,满分48分)
7.如果72x y =,那么2x y
y
-的值是 ▲ .
8.化简:1322
()()a b a b →
→
→→
+--= ▲ .
9.如果抛物线221y x x m =++-经过原点,那么m 的值等于 ▲ . 10.将抛物线21
342
()y x =
+-先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是 ▲ .
11.已知抛物线221y x bx =+-的对称轴是直线1x =,那么b 的值等于 ▲ . 12.已知△ABC 三边的比为2:3:4,与它相似的△A B C '''最小边的长等于12,那么△A B C '''最大边的长等于 ▲ .
13.在Rt △ABC 中,ACB ∠=90°,3AB =,1BC =,那么A ∠的正弦值是 ▲ . 14.正八边形的中心角为 ▲ 度.
15.如图3,在梯形ABCD 中,AD //BC ,AB ⊥BC ,BD ⊥DC ,1
tan 2
ABD ∠=,5BC =,那么DC 的长等于 ▲ .
16.如图4,AB //CD ,AD 、BC 相交于点E ,过E 作EF //CD 交BD 于点F ,如果
:2:3AB CD =,6EF =,那么CD 的长等于 ▲ .
图2
图3
A
B
C D
F
E 图4
A B
C
D
17.已知二次函数2y ax c =+0()a >的图像上有纵坐标分别为1y 、2y 的两点A 、B ,如果点A 、B 到对称轴的距离分别等于2、3,那么1y ▲ 2y .(填“<”、“=”或“>”) 18.如图5,△ABC 中,8AB AC ==,3
cos 4
B =
,点D 在边BC 上,将△ABD 沿直线AD 翻折得到△AED ,点B 的对应点为点E ,AE 与边BC 相交于点F ,如果2BD =,那么EF = ▲ .
三、解答题:(本大题共7题,满分78分)
19.(本题满分10分)
计算:
24sin 45cos 30602︒+︒-.
20.(本题满分10分)
如图6,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,点E 在边BC 上,AE 与BD 相交于点G ,:3:1AG GE =. (1)求:EC BC 的值;
(2)设BA a =,AO b =,那么EC = ▲ ,GB = ▲ (用向量a 、b 表示).
图5
A
B
C
D
A
B
C
D
O
E
G 图6
如图7,⊙1O 和⊙2O 相交于A 、B 两点,12O O 与AB 交于点C ,2O A 的延长线交⊙1
O 于点D ,点E 为AD 的中点,AE AC =,联结1O E . (1)求证:11O E O C =;
(2)如果1210O O =,16O E =,求⊙2O 的半径长.
22.(本题满分10分)
如图8,小山的一个横断面是梯形BCDE ,EB //DC ,其中斜坡DE 的坡长为13米,坡度1:2.4i =.小山上有一座铁塔AB ,在山坡的坡顶E 处测得铁塔顶端A 的仰角为45︒,在与山坡的坡底D 相距5米的F 处测得铁塔顶端A 的仰角为31︒(点F 、D 、C 在一直线上),求铁塔AB 的高度.
(参考数值:sin31052.︒≈,cos31086.︒≈,tan3106.︒≈)
D
A
F
图8
C
图7
A
B
C D
O 1
E
O 2
已知:如图9,△ADE 的顶点E 在△ABC 的边BC 上,DE 与AB 相交于点F ,
AE AF AB =⋅2,DAF EAC ∠=∠.
(1)求证:△ADE ∽△ACB ;
(2)求证:DF CE DE CB
=
.
24.(本题满分12分)
如图10,在平面直角坐标系xOy 中,抛物线23y ax bx =+-(0)a ≠与x 轴交于点
A ()1,0-和点
B ,且3OB OA =,与y 轴交于点
C ,此抛物线顶点为点
D .
(1)求抛物线的表达式及点D 的坐标;
(2)如果点E 是y 轴上的一点(点E 与点C 不重合),当BE DE ⊥时,求点E 的坐标; (3)如果点F 是抛物线上的一点,且135FBD ∠=,求点F 的坐标.
图10
F
图9
A
B
C
D
E
如图11,点O 在线段AB 上,22AO OB a ==,60BOP ∠=︒,点C 是射线OP 上的一个动点.
(1)如图11①,当90ACB ∠=︒,2OC =,求a 的值;
(2)如图11②,当AC =AB 时,求OC 的长(用含a 的代数式表示);
(3)在第(2)题的条件下,过点A 作AQ ∥BC ,并使∠QOC=∠B ,求:AQ OQ 的值.
A
B
C
P
O
A
B
C
P
O
图11①
图11②。