初三数学下学期期末考试试卷
闽教版初三下数学期末试卷

一、选择题(每题4分,共40分)1. 已知函数f(x) = 2x - 3,则f(2)的值为()A. 1B. 1C. 3D. 52. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 75°C. 105°D. 105°3. 下列哪个数是正实数?()A. -3B. 0C. 1D. -14. 已知方程2x^2 - 5x + 2 = 0,则x的值为()A. 1或2B. 1或2C. 1或1/2D. 1或1/25. 若a、b、c是等差数列,且a + b + c = 12,a + c = 8,则b的值为()A. 4B. 4C. 2D. 26. 下列哪个图形是中心对称图形?()A. 等腰三角形B. 等边三角形C. 矩形D. 正方形7. 已知函数f(x) = x^2 + 2x - 3,若f(x) = 0,则x的值为()A. -3或1B. -3或1C. -1或3D. -1或38. 在平面直角坐标系中,点A(-2, 3),点B(4, 1),则线段AB的中点坐标为()A. (1, 2)B. (1, 2)C. (2, 1)D. (2, 1)9. 下列哪个数是偶数?()A. 5B. 6C. 7D. 810. 若x + y = 5,x - y = 1,则x和y的值分别为()A. 3和2B. 3和2C. 2和3D. 2和3二、填空题(每题4分,共40分)11. 若x^2 - 4x + 3 = 0,则x的值为______。
12. 在△ABC中,∠A = 90°,∠B = 30°,则BC的长度为______。
13. 若a、b、c是等比数列,且a = 2,b = 6,则c的值为______。
14. 下列函数中,f(x) = x^3是______函数。
15. 若函数f(x) = 2x - 1在x = 3时取得最小值,则f(x)的最小值为______。
海淀区2024届初三二模数学试题及答案

海淀区九年级第二学期末练习数 学2024.05学校_____________ 姓名______________ 准考证号______________第一部分 选择题一、选择题(共16分,每题2分)第1 - 8题均有四个选项,符合题意的选项只有一个.1.截至2023年底,我国人工智能核心产业规模接近5800亿元,形成了京津冀、长三角、珠三角三大集聚发展区.将580000000000 用科学记数法表示应为 (A )105810⨯(B )115.810⨯(C )125.810⨯(D )120.5810⨯2.右图是一张长方形纸片,用其围成一个几何体的侧面,这个几何体可能是 (A )圆柱 (B )圆锥 (C )球(D )三棱锥3.五边形的内角和为 (A )900︒(B )720︒(C )540︒(D )360︒4.若a b >,则下列结论正确的是 (A )0a b +>(B )0a b −>(C )0ab >(D )0ab> 5.如图,实数5在数轴上对应的点可能是(A )点A(B )点B(C )点C(D )点D6.如图,12l l ,点A 在1l 上,以点A 为圆心,适当长度为半径画弧,分别交1l ,2l 于点B ,C ,连接AC ,BC .若140∠=︒,则ABC ∠的大小为 (A )80︒ (B )75︒ (C )70︒(D )65︒考生须知1.本试卷共7页,共两部分,28道题,满分100分。
考试时间120分钟。
2.在试卷和答题纸上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题纸和草稿纸一并交回。
ABC1l 1l 20 1 2 3–1 A B CD7.九年级(1)班羽毛球小组共有4名队员,其中两名男生,两名女生.从中随机选取两人,恰好能组成一组混双搭档的概率是 (A)14(B )13(C )12(D )238.某种型号的纸杯如图1所示,若将n 个这种型号的杯子按图2中的方式叠放在一起,叠在一起的杯子的总高度为H .则H 与n 满足的函数关系可能是 (A )0.3H n = (B )100.3H n=(C )100.3H n =−(D )100.3H n =+第二部分 非选择题二、填空题(共16分,每题2分) 9. 若代数式12x −有意义,则实数x 的取值范围是 . 10.若1x =是方程230x x m −+=的一个根,则实数m 的值为 . 11.如图,在△ABC 中,D ,E 分别在边AB ,BC 上,DEAC .若2AD =,4BD =,则DEAC的值为 .12.在平面直角坐标系xOy 中,点1(1)A y ,,2(2)B y ,在反比例函数ky x=(0k ≠) 的图象上. 若12y y <,则满足条件的k 的值可以是 (写出一个即可).13.如图所示的网格是正方形网格,A ,B ,C 是网格线的交点,C 在以AB 为直径的半圆上.若点D 在BC 上,则BDC ∠= ︒.14.一组数据3,2,4,2,6,5,6的平均数为4,方差为20s .再添加一个数据4,得到一组新数据.若记这组新数据的方差为21s ,则21s 20s (填“>”“=”或“<”).A DBE C图1图2D CBA15.下表是n 与2n (其中n 为自然数)的部分对应值表:n5 10 15 20 25 30 35 2n321 02432 7681 048 57633 554 4321 073 741 82434 359 738 368根据表格提供的信息,计算102432768⨯的结果为 . 16.在ABC 中,D 为边AB 的中点,E 为边AC 上一点,连接DE .给出下面三个命题:①若AE EC =,则12DE BC =; ②若12DE BC =,则DE BC ∥; ③若DE BC ∥,则AE EC =.上述命题中,所有真命题的序号是 .三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分) 解答写出文字说明、演算步骤或证明过程.17.计算:020242sin 45|3|8−︒+−+.18.解不等式组:532342(1).x x x x +⎧<⎪⎨⎪−>+⎩,19.已知2230m n −−=,求代数式2()2()m n n m n +−+的值.20.如图,点A ,B ,C ,D 在一条直线上,AB BC CD ==,AE EC =,四边形ECDF 是平行四边形. (1)求证:四边形EBCF 是矩形; (2)若12AD =,4cos 5A =,求BF 的长.21.我国古代著作《管子·地员篇》中介绍了一种用数学运算获得“宫商角徵羽”五音的方法.研究发现,当琴弦的长度比满足一定关系时,就可以弹奏出不同的乐音.例如,三根弦按长度从长到短排列分别奏出乐音“do ,mi ,so ”,需满足相邻弦长的倒数差相等.若最长弦为15个单位长,最短弦为10个单位长,求中间弦的长度.ODACBFE22.在平面直角坐标系xOy 中,一次函数0y kx b k =+≠()的图象由函数12y x =的图象平移得到,且经过点(24),.(1)求这个一次函数的解析式;(2)当2x >时,对于x 的每一个值,函数y x n =+的值与一次函数0y kx b k =+≠()的值的差大于1,直接写出n 的取值范围.23.一本图鉴中的照片由1开始连续编号,由于装订线脱落,照片散落一地.小云想利用统计学知识估计照片总数,于是从中随机抽取20张照片,将其编号作为样本,数据整理如下: a .20张照片的编号:4,8,15,25,34,39,41,48,68,79,85,86,89,91,102,104,110,121,144,147 b .20张照片编号的最小值、最大值、平均数和中位数:最小值 最大值 平均数 中位数 414772m(1)写出表中m 的值;(2)设照片总数为n ,所有照片编号分别为1,2,…,n ,这n 个数的平均数和中位数均为12n +. ①利用样本平均数估计全体平均数,可估算出照片的总数1n 为_________, ②利用样本中位数估计全体中位数,可估算出照片的总数2n 为_________,小云发现,有一个估算结果不合理,这个不合理的结果是_________(填“1n ”或“2n ”); (3)小云想到还可使用样本数据的“平均间隔长度”进行估计.在下面的示意图中,用1220x x x ,,…,表示随机抽取的20张照片编号从小到大排序,则从0到20x 的平均间隔长度为2020x ,从0到n 的平均间隔长度为21n,直接写出此时估算出照片的总数3n (结果取整数).24.如图,P 是⊙O 外一点,P A ,PB 分别切⊙O 于点A ,B ,PO 与⊙O 交于点H ,AH OH =. (1)求证:△ABP 是等边三角形;(2)过点A 作PO 的平行线,与⊙O 的另一个交点为C ,连接CP .若6AB =,求⊙O 的半径和tan CPB ∠的值.HBAOPnx 20x 19 …x3 x 2x 125.生活垃圾水解法是一种科学处理生活垃圾的技术.有研究表明,在生活垃圾水解过程中添加一些微生物菌剂能够加快原料的水解.某小组为研究微生物菌剂添加量对某类生活垃圾水解率的影响,设置了六组不同的菌剂添加量,分别为0%,2%,4%,6%,8%,10%,每隔12h 测定一次水解率,部分实验结果如下:a .不同菌剂添加量的生活垃圾,在水解48 h 时,测得的实验数据如下图所示:为提高这类生活垃圾在水解48 h 时的水解率,在这六组不同的菌剂添加量中,最佳添加量 为 %;b .当菌剂添加量为p %时,生活垃圾水解率随时间变化的部分实验数据记录如下:时间t (h )1224364860728496108120水解率y (%)0 28.0 35.1 39.4 42.5 44.9 46.8 48.5 50.0 51.2 52.3通过分析表格中的数据,发现当菌剂添加量为p %时,可以用函数刻画生活垃圾水解率y 和时间t 之间的关系,在平面直角坐标系中画出此函数的图象.结合实验数据,利用所画的函数图象可以推断,当水解132 h 时,生活垃圾水解率超过54%(填“能”或“不能”).根据以上实验数据和结果,解决下列问题: (1)直接写出p 的值;(2)当菌剂添加量为6%时,生活垃圾水解率达到50%所需的时间为0t 小时,当菌剂添加量为p %时,生活垃圾水解0(48)t +小时的水解率 50%(填“大于”“小于”或“等于”).t (h)1224364860728496108120132O菌剂添加量 (%)水解率 (%)25 30 35 40 4550 55 46810220 O26.在平面直角坐标系xOy 中,抛物线2y ax bx c =++(0a >)的对称轴为x t =,点1()2A t m ,,(2)B t n ,,00()C x y ,在抛物线上.(1)当2t =时,直接写出m 与n 的大小关系;(2)若对于067x <<,都有0m y n <<,求t 的取值范围.27.在ABC △中,AB AC =,60A ∠<︒,点D 在边AC 上(不与点A ,C 重合),连接BD ,平移线段BD ,使点B 移到点C ,得到线段CE ,连接DE .(1)在图1中补全图形,若2BAC E ∠=∠,求证:CBD ∠与CDE ∠互余;(2)连接AE ,若AC 平分BAE ∠,用等式表示CBD ∠与BAE ∠之间的数量关系,并证明.图1 备用图28.在平面直角坐标系xOy 中,⊙O 的半径为1,AB 是⊙O 的一条弦,以AB 为边作平行四边形ABCD .对于平行四边形ABCD 和弦AB ,给出如下定义:若边CD 所在直线是⊙O 的切线,则称四边形ABCD 是弦AB 的“弦切四边形”.(1)若点(01)A −,,(10)C ,,四边形ABCD 是弦AB 的“弦切四边形”,在图中画出“弦切四边形”ABCD ,并直接写出点D 的坐标;(2)若弦AB 的“弦切四边形”为正方形,求AB 的长;(3)已知图形M 和图形N 是弦AB 的两个全等的“弦切四边形”,且均为菱形,图形M 与N 不重合.P ,Q 分别为两个“弦切四边形”对角线的交点,记PQ 的长为t ,直接写出t 的取值范围.海淀区九年级第二学期期末练习数学试卷参考答案第一部分选择题一、选择题(共16分,每题2分)第二部分非选择题二、填空题(共16分,每题2分)9.2x≠10.211.2312.答案不唯一,0k<即可13.135 14.<15.33 554 432 16.①③三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:原式1232=−⨯++………………………………………………………………..4分13=+4=+…………………………………………………………………5分18. 解:原不等式组为56342 2.x xx x+<⎧⎨−>+⎩,①②解不等式①,得1x>. ………………………………………………………………….2分解不等式②,得6x>. …………………………………………………………………..4分∴原不等式组的解集为6x>. ……………………………………………………………..5分19. 解:原式222222m mn n mn n=++−−22m n=−. ……………………………………………………………………….3分∵2230m n −−=,∴223m n −=. …………………………………………………………………………4分∴原式3=. ………………………………………………………………………… 5分 20.(1)证明:∵四边形ECDF 为平行四边形,∴EF // CD ,EF CD =. …………………………………………………………1分 ∵B ,C ,D 在一条直线上,BC CD =, ∴EF // BC ,EF =BC .∴四边形EBCF 为平行四边形. ……………………………………………………2分 ∵AE EC =,AB BC =, ∴EB AC ⊥.∴90EBC ∠=.∴四边形EBCF 为矩形. …………………………………………………………3分(2)解:∵A ,B ,C ,D 在一条直线上,AB BC CD ==,12AD =,∴4AB =. …………………………………………………………………….4分 ∵EB AC ⊥. ∴90EBA ∠=. ∵4cos 5A =. ∴5cos ABAE A==. …………………………………………………………………….5分 ∵AE EC =, ∴5EC =.∵四边形EBCF 为矩形, ∴5BF EC ==.∴BF 的长为5. ………………………………………………………………….6分21. 解:设中间弦的长度为x 个单位长. …………………………. ………………. ………………..1分由题意可得11111510x x−=−. …………………………………………………………….3分 解得 12x =. ……………………………………………………………………………. 4分 经检验,12x =是原方程的解且符合题意. ………………………………………………. 5分 答:中间弦的长度为12个单位长. ……………………………………………………….6分22.解:(1)∵一次函数(0)y kx b k =+≠的图象由函数12y x =的图象平移得到, ∴12k =. .…..…..……………………………………………………………………..1分 ∵一次函数(0)y kx b k =+≠的图象经过点(24),,∴1242b ⨯+=. ∴3b =. .…..…..……………………………………………………………………..2分 ∴该一次函数的解析式为132y x =+. …………………...………………………..3分 (2)3n ≥. ….….….….…………………………………………………………………..5分23.解:(1)82; ….…….……………………………………..…………………………………..1分(2)143,163,1n ; ………………………………………………………………………... 4分 (3)154. ………………………………………………………………………….…..5分24.(1)证明:连接OA ,如图.∵OA OH =,AH OH =, ∴OA OH AH ==. ∴△AOH 为等边三角形.∴60AOH ∠=︒. …………………………………………………………………..….1分 ∵P A 切O 于点A , ∴PA AO ⊥. ∴90PAO ∠=︒.∴30APO ∠=︒. ………………………………………………………………..….2分 ∵P A ,PB 分别切O 于点A ,B , ∴PA PB =,30APO BPO ∠=∠=︒. ∴60APB ∠=︒.∴△ABP 为等边三角形. …………………………………………………………….3分(2)解:如图,连接BC .∵△ABP 为等边三角形,6AB =, ∴6PA PB AB ===.由(1)得,在Rt △P AO 中,90PAO ∠=︒,30APO ∠=︒.P∴tan 3063OA PA =︒=⨯= ∴O的半径为. ……………………………..…………………………4分 ∵△AOH 为等边三角形. ∴60HAO HOA ∠=∠=︒.由(1)得PA PB =,APO BPO ∠=∠, ∴PO AB ⊥. ∵AC // PO , ∴AC AB ⊥. ∴90BAC ∠=︒.∴BC 是O 的直径. ………………………..…………………………5分∴BC = ∵PB 切O 于点B , ∴PB BC ⊥. ∴90PBC ∠=︒.∴tan BC CPB PB ∠===………………………..…………………………6分 25.解:a . 6; ………………………………………………………..……………………………..1分b . 图象如下图.………………………………………..…………………………………....2分 不能. ……………………………………………………..……………………………..3分y(h )P(1) 4; …………………………………………………………..……………………………..4分 (2) 小于. ……………………………………………..……………………………..……..5分 26.解:(1) <; ………………………………………………………………………………………2分(2)∵0a >, 抛物线的对称轴为x t =,∴ 当x t ≥时,y 随x 的增大而增大;当x t ≤时,y 随x 的增大而减小. ① 当7t ≥时,122t t t <<.点(2)B t n ,关于抛物线对称轴x t =的对称点为'(0)B n ,, 此时点,',A B C 均在抛物线对称轴左侧. ∵对于067x <<,都有0m y n <<,∴06,17.2t ≤⎧⎪⎨≥⎪⎩解得 14t ≥. ② 当67t <<时,取0x t =,此时0y 为最小值,与0m y <矛盾,不符合题意. ③ 当06t <≤时,122t t t <<.点1()2A t m ,关于抛物线对称轴x t =的对称点为3'()2A t m ,, 此时点',,ABC 均在抛物线对称轴右侧. ∵对于067x <<,都有0m y n <<, ∴36,227.t t ⎧≤⎪⎨⎪≥⎩解得742t ≤≤. ④ 当0t =时,122t t t ==,m n =,不符合题意. ⑤ 当0t <时,122t t t <<.点(2)B t n ,关于抛物线对称轴x t =的对称点为'(0)B n ,, 此时点',B C 在抛物线对称轴右侧. ∵'06B x x <<, ∴0n y <,不符合题意.综上所述,t 的取值范围是742t ≤≤或14t ≥. …………………………………………6分 27.(1)补全图形如图1:图1…………………………………………………………………………………………1分 证明:设E α∠=,则22BAC E α∠=∠=.∵AB AC =, ∴180902BACABC ACB α︒−∠∠=∠==︒−.由平移可知,BC // DE ,BC DE =.∴四边形BCED 为平行四边形. ……………………………………………………2分 ∴CBD E α∠=∠=. ∵BC // DE ,∴90CDE ACB α∠=∠=︒−. ∴90CBD CDE ∠+∠=︒.∴CBD ∠与CDE ∠互余. ………………………………………………………3分(2)CBD ∠与BAE ∠之间的数量关系为12CBD BAE ∠=∠. …………………4分解:如图2,连接BE ,交AC 于点O ,延长AC 至F ,使OF OA =,连接EF .图2BB由(1)可得,四边形BCED 为平行四边形.∴OB OE =.∵OA OF =,BOA EOF ∠=∠,∴△BOA ≌△EOF .∴AB FE =,BAO EFO ∠=∠. ∵AC 平分BAE ∠,∴12BAO EAO BAE ∠=∠=∠.∴EFO EAO ∠=∠. ∴AE FE =.∴AB AE =. ………………………………………………………………………5分 ∵OB OE =, ∴AC BE ⊥.∴四边形BCED 为菱形.∴BD BC =. ……………………………………………………………………………6分 ∴BDC BCD ∠=∠.∴在△BCD 中,2180CBD BCD ∠+∠=︒. ∵在△ABC 中,2180BAC BCD ∠+∠=︒. ∴BAC CBD ∠=∠.∴12CBD BAE ∠=∠. ………………………………………………………………7分28.(1)如图,四边形ABCD 即为所求.……………………………………………………………………………………………….1分x点D 的坐标为(1,2)D −. …………………………………………………………………..2分 (2)如图,弦AB 的弦切四边形为正方形ABCD ,设正方形ABCD 的边长为a ,CD 与O 的切点为E ,连接EO 并延长交AB 于点F . ∵CD 与O 的切点为E ,EF 经过圆心O , ∴EF CD ⊥.∵四边形ABCD 为正方形, ∴AB // CD ,AB BC a ==. ∴EF AB ⊥. ∴1122AF AB a ==,EF BC a ==. ∵1OE =, ∴1OF a =−.在Rt △OAF 中,由勾股定理得,222OA OF AF =+.∴22211(1)()2a a =−+.解得 85a =. ∴AB 的长为85. ………………………………………………………………………..5分(3)05t <≤或2t =. ………………………………………………………………………..2分。
2022朝阳初三数学期末试题及答案

2022朝阳初三数学期末试题及答案朝阳区2022~2022学年九年级第一学期期末统一考试一、选择题(共8个小题,每小题4分,共32分)1.下列图形是中心对称图形的是A.B.C.D.2.已知⊙O1和⊙O2的半径分别为4cm和2cm,圆心距O1O2为6cm,则这两个圆的位置关系是A.外离B.外切C.相交D.内切A3.如图,已知△ABC中,AB=AC,∠ABC=70°,点I是△ABC的内心,则∠BIC的度数为A.40°B.70°C.110°D.140°4.抛物线y(某2)1是由抛物线y某平移得到的,下列对于抛物线y某的平移过程叙述正确的是A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位D.先向左平移2个单位,再向下平移1个单位222IBC5.如图,⊙O的半径OC垂直于弦AB,D是优弧AB上的一点(不与点A、B重合),若∠AOC=50°,则∠CDB等于A.25°B.30°C.40°D.50°ACBDOA40mm60mmy43AB12C34某CE2m21-4-3-2-1O-1-2BD-3-46.如图是一个照相机成像的示意图,如果底片AB宽40mm,焦距是60mm,所拍摄的2m外的景物的宽CD为34mD.m237.△ABC在平面直角坐标系中的位置如图所示,其中A(1,2),B(1,1),C(3,1),将△ABCA.12mB.3mC.绕原点O顺时针旋转90后得到△A'B'C',则点A旋转到点A'所经过的路线长为A.52B.55C.D.5242B8.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB 上一动点(不与点A、B重合),PQ⊥AB交△ABC的直角边于点Q,设AP 为某,△APQ的面积为y,则下列图象中,能表示y关于某的函数关系的图象大致是yyyyOO某O某某OA.B.C.D.55PCQA55某二、填空题(共4个小题,每小题4分,共16分)9.如图,△ABC为等边三角形,D是△ABC内一点,且AD=3,将△ABD绕点A旋转到△ACE的位置,连接DE,则DE的长为.BDCAE(第9题图)(第10题图)(第11题图)10.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若该圆的半径为1,扇形的圆心角等于60°,则这个扇形的半径R的值是.11.如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则这个扇形的面积是.12.古希腊著名的毕达哥拉斯学派把1,3,6,10,这样的数称为“三角形数”(如图①),而把1,4,9,16,这样的数称为“正方形数”(如图②).如果规定a11,a23,a36,a410,;b11,b24,b39,b416,;y12a1b1,y22a2b2,y32a3b3,y42a4b4,,那么,按此规定,y6,yn=(用含n的式子表示,n为正整数).13图①610149图②16三、解答题(共13个小题,共72分)13.(本小题满分5分)计算:tan60in2452co30.14.(本小题满分5分)如图,已知AC4,求AB和BC的长.15.(本小题满分5分)如图,□ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CD F;(2)若BC=8,CD=3,AE=1,求AF的长.16.(本小题满分4分)如图,在平面直角坐标系中,△ABC和△A'B'C'是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).(1)若点A(52,3),则A′的坐标为;(2)若△ABC的面积为m,则△A′B′C′的面积=.C105°30°ABEAFDBCyA'AC'CB'BO1某17.(本小题满分5分)二次函数ya某2b某c的部分图象如图所示,其中图象与某轴交于点A(-1,0),与y轴交于点C(0,-5),且经过点D(3,-8).(1)求此二次函数的解析式;(2)将此二次函数的解析式写成ya(某h)2k的形式,并直接写出此二次函数图象的顶点坐标以及它与某轴的另一个交点B的坐标.18.(本小题满分5分)经过18个月的精心酝酿和290多万首都市民投票参与,2022年11月1日,“北京精神”表述语“爱国、创新、包容、厚德”正式向社会发布.为了更好地宣传“北京精神”,小明同学参加了由街道组织的百姓宣讲小分队,利用周末时间到周边社区发放宣传材料.第一周发放宣传材料300份,第三周发放宣传材料363份.求发放宣传材料份数的周平均增长率.19.(本小题满分5分)如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB 于点E,CE=5,连接AC、BD.CA5(1)若inD,则coA=;13(2)在(1)的条件下,求BE的长.OEBD20.(本小题满分5分)小红在学习了教科书上相关内容后自制了一个测角仪(图①),并尝试用它来测量校园内一座教学楼CD的高度(如图②).她先在A处测得楼顶C的仰角30°,再向楼的方向直行10米到达B处,又测得楼顶C的仰角60°,若小红的目高(眼睛到地面的高度)AE为1.60米,请你帮助她计算出这座教学楼CD的高度(结果精确到0.1米,参考数据:21.41,31.73,52.24).21.(本小题满分5分)已知抛物线y1某(m1)某m4与某轴交于A、B两点(点A在点B左侧),且对称轴为某=-1.(1)求m的值;(2)画出这条抛物线;(2)若直线y2k某b过点B且与抛物线交于点-4-3-2CEAαFBβGD 图①图②2y54321-1O1-1-2-3234某P(-2m,-3m),根据图象回答:当某取什么值时,y1≥y2.-4-522.(本小题满分6分)某超市销售一款进价为50元/个的书包,物价部门规定这款书包的售价不得高于70元/个,市场调查发现:以60元/个的价格销售,平均每周销售书包100个;若每个书包的销售价格每提高1元,则平均每周少销售书包2个.(1)求该超市这款书包平均每周的销售量y(个)与销售价某(元/个)之间的函数关系式;(2)求该超市这款书包平均每周的销售利润w(元)与销售价某(元/个)之间的函数关系式;(3)当每个书包的销售价为多少元时,该超市这款书包平均每周的销售利润最大?最大利润是多少元?23.(本小题满分6分)如图,在△ABC中,∠ACB=90°,O为BC边上一点,以O为圆心,OB 为半径作半圆与AB边和BC边分别交于点D、点E,连接CD,且CD=CA,BD=65,tan∠ADC=2.(1)求证:CD是半圆O的切线;(2)求半圆O的直径;(3)求AD的长.ADCEOB24.(本小题满分8分)已知,在△ABC中,∠BAC=90°,AB=AC,BC=22,点D、E在BC边上(均不与点B、C重合,点D始终在点E左侧),且∠DAE=45°.(1)请在图①中找出两对相似但不全等的三角形,写在横线上,;(2)设BE=m,CD=n,求m与n的函数关系式,并写出自变量n的取值范围;(3)如图②,当BE=CD时,求DE的长;(4)求证:无论BE与CD是否相等,都有DE2=BD2+CE2.AAABDECBDECBDEC图①图②备用图25.(本小题满分8分)已知抛物线y=a某2+b某+6与某轴交于A、B两点(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,且OB=11OC,tan∠ACO=,顶点为D.26(1)求点A的坐标.(2)求直线CD与某轴的交点E的坐标.(3)在此抛物线上是否存在一点F,使得以点A、C、E、F为顶点的四边形是平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(4)若点M(2,y)是此抛物线上一点,点N是直线AM上方的抛物线上一动点,当点N运动到什么位置时,四边形ABMN的面积S最大请求出此时S的最大值和点N的坐标.(5)点P为此抛物线对称轴上一动点,若以点P为圆心的圆与(4)中的直线AM及某轴同时相切,则此时点P的坐标为.yy8877665544332211-5-4-3-2-1O12345某-1-5-4-3-2-1O12345某-1-2-2-3-4-5-6-3-4-5-618.朝阳区2022~2022学年九年级第一学期期末统一考试数学试卷参考答案及评分标准一、选择题(共8个小题,每小题4分,共32分)题号答案二、填空题(共4个小题,每小题4分,共16分)9.310.611.412.78,2nn(每空2分)三、解答题(共13个小题,共72分)13.(本小题满分5分)21D2B3C4A5A6D7A8C232解:原式3,3分221.5分214.(本小题满分5分)解:作CD⊥AB于点D,在Rt△ACD中,∵∠A=30°,∴∠ACD=90°-∠A=60°,CD30°2C1AC2,2ADBADACcoA23.3分在Rt△CDB中,∵∠DCB=∠ACB-∠ACD=45°,∴BDCD2,CD22.4分in45∴ABADBD223.5分BC15.(本小题满分5分)(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.∴△EAF∽△EBC,△EAF∽△CDF.2分∴△EBC∽△CDF.3分(2)解:∵△EAF∽△EBC,∴EAAF1AF,即.解得AF2.5分EBBC13816.(本小题满分4分)(1)(5,6);2分(2)4m.4分17.(本小题满分5分)解:(1)由题意,有a1,b4,c5.∴此二次函数的解析式为y某24某5.2分(2)y(某2)29,顶点坐标为(2,-9),B(5,0).5分18.(本小题满分5分)解:设发放宣传材料份数的周平均增长率为某,由题意,有300(1某)2363.3分解得某10.1,某22.1.4分∵某2.1<0,不符合题意,舍去,∴某0.110%.5分答:这两次发放材料数的平均增长率为10%.19.(本小题满分5分)(1)abc0,解得c5,9a3bc8.12.2分13C(2)解:如图,连接BC.∵AB为⊙O的直径,∴∠ACB=90°.∴由(1)知AC=13,AE12,coA在Rt△ACB中,coA∴AB12.13AOEBAC,ABD169.4分1225∴BEABAE.5分1220.(本小题满分5分)解:∵30°,60°,∴∠ECF==30°.∴CFEF10.在Rt△CFG中,CGCFco53.3分∴CDCGGD531.610.3.5分答:这座教学楼的高度约为10.3米.21.(本小题满分5分)解:(1)由题意,有m11,解得m=1.2分2(2)如图1;3分图1图2(3)如图2,某≤-2或某≥1.5分22.(本小题满分6分)解:(1)由题意,有y1002(某60),即y2某220;2分(2)由题意,有w(某50)(2某220),即w2某320某11000;4分(3)∵抛物线w2某320某11000的开口向下,在对称轴某80的左侧,w随22ABP某的增大而增大.由题意可知60某70,5分∴当某70时,w最大为1600.6分因此,当每个书包的销售价为70元时,该超市可以获得每周销售的最大利润1600元.23.(本小题满分6分)(1)证明:如图,连接OD,∵OD=OB,∴∠1=∠2.∵CA=CD,∴∠ADC=∠A.在△ABC中,∵∠ACB=90°,∴∠A+∠1=90°.∴∠ADC+∠2=90°.∴∠CDO=90°.∵OD为半圆O的半径,∴CD为半圆O的切线.2分3AFD21CEOB(2)解:如图,连接DE.∵BE为半圆O的直径,∴∠EDB=90°.∴∠1+∠3=90°.∴∠ADC =∠3.∴tan3∴EBBD2.∴ED35.EDBD2DE215.4分(3)解:作CF⊥AD于点F,∴AF=DF.设DF某,∵tanADC2,∴CF=2某.∵∠1+∠FCB=90°,∴FCBADC.∴tanFCB2.∴FB=4某.∴BD=3某=65.解得某25.∴AD=2DF=2某=45.6分24.(本小题满分8分)解:(1)△ADE∽△BAE,△ADE∽△CDA,△BAE∽△CDA;(写出任意两对即可)(2)∵∠BAC=90°,AB=AC,BC=22,由(1)知△BAE∽△CDA,∴BABE2m4.∴.∴m(2n22).4分CDCAn2n(3)由(2)只BE·CD=4,∴BE=CD=2.∴BD=BC-CD=222.∴DE=BE-BD=422.5分(4)如图,依题意,可以将△AEC绕点A顺时针旋转90°至△AFB的位置,则FB=CE,AF=AE,∠1=∠2,∴∠FBD=90°.∴DFBDFBBDCE.6分∵∠3+∠1=∠3+∠2=45°,∴∠FAD=∠DAE.又∵AD=AD,AF=AE,∴△AFD≌△AED.22222222AF4132BDEC∴DE=DF.7分∴DEBDCE.8分25.(本小题满分8分)解:(1)根据题意,得C(0,6).在Rt△AOC中,tanACO1,OC=6,6∴OA=1.∴A(-1,0).1分(2)∵OB1OC,∴OB=3.∴B(3,0).2ab60,由题意,得解得9a3b60.a2,b4.∴y2某24某6.∴D(1,8).2分可求得直线CD的解析式为y2某6.∴E(-3,0).3分(3)假设存在以点A、C、F、E为顶点的平行四边形,则F1(2,6),F2(-2,6),F3(-4,-6).经验证,只有点(2,6)在抛物线y2某24某6上,∴F(2,6).4分(4)如图,作NQ∥y轴交AM于点Q,设N(m,2m4m6).当某=2时,y=6,∴M(2,6).可求得直线AM的解析式为y2某2.∴Q(m,2m+2).∴NQ=2m24m6(2m2)2m22m4.∵SSABMSAMN,其中SABM∴当SAMN最大时,S值最大.∵SAMNSANQSMNQ214612,213(2m22m4),23m23m6,1273(m)2.24127∴当m时,SAMN的最大值为.24∴S的最大值为当m∴N(75.6分41152时,2m4m6.22115,).7分22(5)P1(1,51),P2(1,51).8分说明:写成P1(1,44),P2(1,)不扣分.5151。
北京二中教育集团2023—2024学年度第一学期初三数学期末模拟考试试卷

北京二中教育集团2023—2024学年度第一学期初三数学期末模拟考试试卷命题人:初三数学备课组审核人:初三数学备课组考查目标1.知识:人教版九年级上册《一元二次方程》、《二次函数》、《旋转》、《圆》、《概率》的全部内容.2.能力:数学运算能力,逻辑推理能力,阅读理解能力,实际应用能力,数形结合能力,分类讨论能力.A卷面成绩90% (满分90分)B过程性评价(满分10分)学业成绩总评=A+B(满分100分)考生须知1.本试卷分为第Ⅰ卷、第Ⅱ卷和答题卡,共16页;其中第Ⅰ卷2页,第Ⅱ卷6页,答题卡8页。
全卷共三大题,28道小题。
2.本试卷满分100分,考试时间120分钟。
3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号。
4.考试结束,将答题卡交回。
第Ⅰ卷(选择题共16分)一、选择题(共16分,每题2分,以下每题只有一个....正确的选项) 1.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,下列航天图标是中心对称图形的是()A.B.C.D.班级姓名考号座位号密封线----------------------------------------------------------------------------------------------------------------------2.抛物线先向左平移2个单位,再向下平移1个单位长度,所得新 抛物线的解析式为( ) A . B . C . D .3.用配方法解方程时,原方程变形正确的是( ) A . B . C . D .4.下列语句所描述的事件是随机事件的是( ) A .经过任意两点画一条直线B .任意画一个五边形,其外角和为C .过平面内任意三个点画一个圆D .任意画一个平行四边形,是中心对称图形 5.已知点,、,在二次函数的图象上.若, 则与的大小关系是( ) A . B . C . D .6.刘徽在《九章算术注》中首创“割圆术”,利用圆的内接正多边形来确定 圆周率,开创了中国数学发展史上圆周率研究的新纪元.某同学在学习“割 圆术”的过程中,作了一个如图所示的圆内接正八边形.若的半径为1, 则这个圆内接正八边形的面积为( ) A . B .C .D .7.如图,将绕点逆时针旋转,旋转角为,得到, 这时点旋转后的对应点恰好在直线上,则下列结论不一定正确的是 ( )A .B .C .D .8.如果x =5是关于的一元二次方程的一个根,那么关于 的一元二次方程的解为( ) A .x 1=-4,x 2=2 B .x 1=-2,x 2=4 C .x 1=-1,x 2=3 D . x 1=-3,x 2=121y x =-+2(2)2y x =-++2(2)y x =--2(2)y x =-+2(2)2y x =--+2250x x --=2(1)6x -=2(2)9x -=2(1)6x +=2(2)9x +=360°1(A x 1)y 2(B x 2)y 224y x x =-++121x x >>1y 2y y 1!y 212y y =12y y >12y y <O !p 2p 4ABC D A (0180)a a °<<°ADE D B D BC ACD EAD Ð=ÐABC ADC Ð=ÐEAC a Ð=180EDC a Ð=°-x ()(4)x m x m n --+=x (1)(3)x m x m n +-+-=第Ⅱ卷(非选择题 共84分)二、填空题(共16分,每题2分)9.请你写出一个开口向上,且经过(1,0)的抛物线的解析式_______.10.抛物线的顶点坐标是_______.11.若是关于的方程的解,则的值为_______.12.若抛物线与轴的一个交点坐标为,则该抛物线的对称轴 为直线_______.13.如图,在中是直径,,,,那么的长 等于_______.第13题图第14题图14.如图,为的直径,,点为上一点,,则 图中阴影部分的面积为_______.(结果保留π)15.手卷是国画装裱中横幅的一种体式,以能握在手中顺序展开阅览得名,它主要由“引首”、“画心”、“拖尾”三部分组成(这三部分都是矩形 形状),分隔这三部分的其余部分统称为“隔水”.图中手卷长1000 cm , 宽40 cm ,引首和拖尾完全相同,其宽度都为100 cm ,若隔水的宽度为 x cm ,画心的面积为15200 cm 2,根据题意,可列方程是_______.2(2)1y x =--3x =x 26ax bx -=6a −2b +20232y ax bx =+x (3,0)-O !AB CD AB ^30BAC Ð=°2OD =DC AB O !4AB =C O !30ABC Ð=°16.某工厂用甲、乙两种原料制作,,三种型号的工艺品,三种型号 工艺品的重量及所含甲、乙两种原料的重量如下:工艺品型号含甲种原料的重量/kg 含乙种原料的重量/kg工艺品的重量/kg3 4 7 3 2 5235现要用甲、乙两种原料共31 kg ,制作5个工艺品,且每种型号至少 制作1个.(1)若31 kg 原料恰好全部用完,则制作型工艺品的个数为_______;(2)若使用甲种原料不超过13 kg ,同时使用乙种原料最多,则制作方案中,,三种型号工艺品的个数依次为_______.三、解答题(共68分,其中第17-21、25题每题5分,第22-24、26题每题 6分,第27-28题7分) 17.解下列方程:.18.根据江心洲地质水文条件量身打造的“新时代号”泥水平衡盾构机,是目前世界上最先进的盾构设备之一,被誉为“国之重器”.如图1,盾构 机核心部件——刀盘的形状是一个圆形.如图2,当机器暂停时,刀盘露 在地上部分的跨度AB =12米,拱高(弧的中点到弦的距离CD )3米,求 盾构机刀盘的半径.19.下面是小明设计的“过圆上一点作这个圆的切线”的尺规作图过程. 已知:⊙O 及圆上一点A .求作:直线AB ,使得AB 为⊙O 的切线,A 为切点. 小明的作法如下:① 连接OA 并延长到点C ;② 分别以点A ,C 为圆心,大于长为半径作弧,两弧交于点D(点D 在直线OA 上方);A B C A B C A A B C x (x +3)=2x +612AC密 封 线 -----------------------------------------------------------------------------------------------------------------------③ 以点D 为圆心,DA 长为半径作⊙D ;④ 连接CD 并延长,交⊙D 于点B ,作直线AB . 则直线AB 就是所求作的直线.根据小明设计的尺规作图过程,完成下列问题: (1)使用直尺和圆规,完成作图;(保留作图痕迹) (2)完成下面的证明. 证明:连接AD .∵ _______=AD ,∴ 点C 在⊙D 上,CB 是⊙D 的直径. ∴ _______=90°.(_______) ∴ AB ⊥_______. ∵ OA 是⊙O 的半径, ∴ AB 是⊙O 的切线.(_______) 20.如图,在平面直角坐标系xOy 中,△OAB 的顶点坐标分别为O (0,0),A (5,0), B (4,-3).(1)作出△OAB 关于原点O 成中心对称的图形△OA 1B 1(点A 与点A 1 对应),并写出点B 1的坐标;(2)将△OAB 绕点O 顺时针旋转90°得到△OA 2B 2,点B 旋转后的对应 点为B 2,画出旋转后的图形△OA 2B 2,并写出点B 2的坐标;(3)在(2)的条件下,求点B 经过的路径的长.21.已知关于x 的一元二次方程. (1)利用判别式判断方程实数根的情况;(2)若该方程只有一个根小于2,求m 的取值范围.BB2!x 2−(m −1)x −(3m +6)=0班级姓名 考号 座位号 密 封 线 ----------------------------------------------------------------------------------------------------------------------22.已知抛物线图象上部分点的横坐标x 与纵坐标y 的 对应值,如下表:x … -2 -1 0 1 2 3 … y…-5343…(1)求此抛物线的解析式,并画出其图象;(2)结合图象,直接写出不等式的解集;(3)结合图象,直接写出当时,y 的取值范围.23.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小明购买了“二十四节气”主题邮票,他将“立春”、 “清明”、“雨水”三张纪念邮票(除正面内容不同外,其余均相同)背 面朝上,洗匀放好.(1)小明从中随机抽取一张邮票是“立春”的概率是_______;(2)小明从中随机抽取一张邮票,记下内容后,正面向下放回,洗匀后 再从中随机抽取一张邮票.请用列举法求出小明两次抽取的邮票中 至少有一张是“雨水”的概率(这三张邮票依次分别用字母A ,B , C 表示).y =ax 2+bx +c (a ≠0)ax 2+bx +c <3x <224.已知:如图,在△ABC 中,D 是AB 边上一点,圆O 过D 、B 、C 三点, ∠DOC =2∠ACD .(1)求证:直线AC 是圆O 的切线; (2)若OD ⊥OC ,∠ACB =75°,圆O 的半径为4,求BC 的长.25.2023年4月16日,在世界泳联跳水世界杯首站比赛中,中国队共收获9金2银,位列奖牌榜第一.赛场上运动员优美的翻腾、漂亮的入水令人赞叹不已.在10米跳台跳水训练时,运动员起跳后在空中的运动路线 可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到 入水的过程中,运动员的竖直高度y (单位:米)与水平距离x (单位: 米)近似满足函数关系. 某跳水运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的数据如下:水平距离x /m 0 0.2 0.4 0.6 0.8 1.6 2 竖直高度y /m10.0010.4510.6010.4510.005.201.00① 根据上述数据,直接写出该运动员竖直高度的最大值,并求出 满足的函数关系;② 运动员必须在距水面5 m 前完成规定的翻腾动作并调整好入水 姿势,否则就会出现失误.在这次训练中,测得运动员在空中 调整好入水姿势时,水平距离为1.6 m ,判断此次跳水会不会出现失误,并说明理由;(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数 关系.如图,记该运动员第一次训练的 入水点为A ,若运动员在区域AB 内(含A ,B )入水能达到压水花 的要求,则第二次训练_______达到要求(填“能”或“不能”).y =a (x −h )2+k (a <0)y =a (x −h )2+k (a <0)y =−4.16(x −0.38)2+10.60图226.在平面直角坐标系xOy 中,点,在抛物线上. (1)当,时,比较m 与n 的大小,并说明理由;(2)若存在,使得,求的取值范围.27.如图1,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,D 为AB 边上一点,DE ⊥AB 于D ,连接BE ,P 为BE 中点.(1)连接PD 、PC ,判断PD 与PC 的数量关系,并直接写出∠DPC 的 度数;(2)如图2,将△ADE 绕点A 顺时针旋转α度(0°<α<180°). ① 请你依据题意补全图形; ② 在旋转过程中,∠DPC 的度数是否发生改变?若不变,写出它的 度数,并证明;若变化,请说明理由.28.对于平面内任意一点P ,过P 作PM ⊥l 1于点M ,PN ⊥l 2于点N ,连接MN ,则称MN 的长度为点P 关于l 1和l 2的垂点距离.特别地,点P 在两相交 直线l 1、l 2的交点时,记垂点距离为0.(1)已知A (1,2),则点A 关于x 轴和y 轴的垂点距离为_______; (2)若点P 在直线上运动,则点P 关于x 轴和y 轴的垂点距离 的最小值为________;(3)若点P 在以Q (0,1)为圆心,半径为1的⊙Q 上运动,求点P 关于 x 轴和直线的垂点距离h 的取值范围.A (x 0,m )B (x 0+2,n )y =x 2−2bx +1b =5x 0=4−3<x 0<1m >n >1b y =34x +3y =3x +3图1密 封 线 -----------------------------------------------------------------------------------------------------------------------。
2024年北京密云区初三九年级上学期期末数学试题和答案

北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。
1丰台区初三期末考试数学试卷及答案(word版)

本文由一线教师精心整理/word可编辑
2021.1丰台区初三期末考试数学试卷及答案
(word版)
2021年1月丰台初三期末试题:
2021.1丰台初三期末语文试卷及答案(图片版)
2021.1丰台初三期末数学试卷及答案(图片版)
2021.1丰台初三期末英语试卷及答案(图片版)
2021.1丰台初三期末物理试卷及答案(word版)
2021.1丰台初三期末化学试卷及答案(图片版)
2021年1月丰台初三期末试题:
2021丰台区初三期末考试语文试卷及答案
2021丰台区初三期末考试数学试卷及答案
2021丰台区初三期末考试英语试卷及答案
2021丰台区初三期末考试物理试卷及答案
2021丰台区初三期末考试化学试卷及答案
2021年1月丰台初三期末试题:
2021-2021北京市丰台区初三第一学期数学期末试卷与答案2021-2021北京市丰台区初三第一学期物理期末试卷与答案2021-2021北京市丰台区初三第一学期化学期末试卷与答案2021-2021北京市丰台区初三第一学期语文期末试卷与答案
2021-2021北京市丰台区初三第一学期英语期末试卷与答案
1 / 1。
上海市高中初中试卷下载地址列表一

2.答答题要求,所有答题必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分。
3.答2.答题前,务必在答题纸上填写准考证号和姓名,并将核对后的条形码贴在指定位置上。
4.考试时间150分3.答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。
笔 墨 的 超 越
阅读下文,完成第1—6题。
(16分)
一 阅读80分
间150分钟。
试卷满分150分。
①毛笔、墨是中国书法和绘画的主要工具,原本并无奇特之处,不过分别是由兽毛与熏烧的越
熏烧的烟灰制作而成的。
但是,在中国的书画艺术史上,它们始终扮演着不可或缺的角色。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学下学期期末考试试卷班级 姓名 学号 成绩 .一、填空题:(每空3分,共42分)1. 抛物线22(1)2y x =-++的对称轴是 ;顶点的坐标是 ;2. 已知正比例函数y =kx 与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数的解析式是 ;3. 一个植树小组共有6名同学,其中有2人各植树20棵,有3人各植树16棵,有1人植树14棵,平均每人植树 ;4. 一条弦把圆分为2∶3的两部分,那么这条弦所对的圆周角度数为 ;(第8题) (第9题) (第11题)5. 如果两圆的半径分别为1和2,那么一条外公切线的长是 ; 6. 若正多边形的一个内角等于140°,则它是正 边形;7. 如果半径为5的一条弧的长为3π,那么这条弧所对的圆心角为 ;8. 如图,三个半径为r 的等圆两两外切,且与△ABC 的三边分别相切,则△ABC 的边长是 ;9. 某人清晨在公路上跑步,他距某标志牌的距离S (千米)是跑步时间t (小时)的一次函数如图。
若该函数的图象是图中的线段BA ,该一次函数的解析式是 ; 10. 与半径为R的定圆O外切,且半径为r的圆的圆心的轨迹是 ;11. 如图,有两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,两圆组成的圆环的面积是 ;12. 统计某校初三年级期中考试数学成绩的频率分布直方图如图所示,从该图可以看出这次考试数学成绩的及格率等于 。
(学生分数都取整数,60分以下为不及格)。
二、选择题:(每题2分,共22分)13. 若圆锥的母线长为4cm ,底面半径为3cm ,则圆锥的侧面展开图的面积是( )(A )2cm 6π; (B )2cm 12π; (C )2cm 18π; (D )2cm 24π;CBA . ...ABCDO时)分数第12题14. 一个正方形的内切圆半径,外接圆半径与这个正方形边长的比为( )(A )1∶2∶2; (B )1∶2∶2; (C )1∶2∶4; (D )2∶2∶4; 15. 函数y =kx 和ky x=的图象是( )(A ) (B ) (C ) (D )16. 某部队一位新兵进行射击训练,连续射靶5次,命中的环数分别是0,2,5,2,7。
这组数据的中位数与众数分别是( )(A )2,2; (B )5,2; (C )5,7; (D )2,7; 17. 若二次函数2y ax bx c =++的图象如图所示,则点(a +b ,ac )在( )(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限; 18. 一个圆锥的底面半径为10,母线长30,则它的侧面展开图(扇形)的圆心角是( )(A )60° ; (B )90°; (C )120°; (D )150°;19. 如图,⊙O 中,弦AD ∥BC ,DA =DC ,∠AOC =160°,则∠BCO 等于( )(A )20°; (B )30°; (C )40°; (D )50°;(第17题) (第19题) (第20题) (第23题) 20. 如图,正比例函数)0(>=k kx y 与反比例函数x y 1=的图象相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC ,若△ABC 面积为S ,则( ) (A )S =1; (B )S =2; (C )S =3; (D )S =21; 21. 在面积相等的两块田里种植了甲、乙两种水稻,并记录到这两块田在连续10年中的年产量。
现在要比较这两种水稻产量的稳定性,为此应( )(A )比较它们的平均产量;(B )比较它们的方差;(C )比较它们的最高产量;(D )比较它们的最低产量;22. 同圆的内接正十边形和外切正十边形的周长之比等于( )(A )sin18° ;(B )cos18°;(C )sin36°;(D )cos36°;23. 设计一个商标图案:先作矩形ABCD ,使AB =2BC ,AB =8,再以点A 为圆心、AD的长为半径作半圆,交OCBADBA 的延长线于F ,连FC 。
图中阴影部分就是商标图案,该商标图案的面积等于( ) (A )4π+8;(B )4π+16;(C )3π+8;(D )3π+16; 24. 如图,正比例函数)0(>=k kx y 与反比例函数x y 1=的图象相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC ,若△ABC 面积为S ,则( ) (A )S =1; (B )S =2; (C )S =3; (D )S =21; 25. 在面积相等的两块田里种植了甲、乙两种水稻,并记录到这两块田在连续10年中的年产量。
现在要比较这两种水稻产量的稳定性,为此应( )(A )比较它们的平均产量;(B )比较它们的方差;(C )比较它们的最高产量;(D )比较它们的最低产量;26. 同圆的内接正十边形和外切正十边形的周长之比等于( )(A )sin18° ;(B )cos18°;(C )sin36°;(D )cos36°;27. 设计一个商标图案:先作矩形ABCD ,使AB =2BC ,AB =8,再以点A 为圆心、AD 的长为半径作半圆,交BA 的延长线于F ,连FC 。
图中阴影部分就是商标图案,该商标图案的面积等于( ) (A )4π+8;(B )4π+16;(C )3π+8;(D )3π+16;三、计算题或证明题:28. (本题9分)已知:直线1l 、2l 分别与x 轴交于点A 、C ,且都经过y 轴上一点B ,又1l 的解析式是y =-x -3,2l 与x 轴正半轴的夹角是60°。
求:⑴直线2l 的函数表达式; ⑵△ABC 的面积;29. (本题9分)已知:如图,⊙O 和⊙A 相交于C 、D ,圆心A 在⊙O 上,过A 的直线与CD 、⊙A 、⊙O 分别交于F 、E 、B 。
求证:⑴△AFC ∽△ACB ; ⑵2AE AF AB =⋅;四、综合题:30. (本题9分)已知:如图,在Rt △ABC 中,斜边AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2(1)40x m x m --++=的两根,⑴求a 和b 的值;⑵若△A ’B ’C ’与△ABC 开始时完全重合,然后让△ABC 固定不动,将△A ’B ’C ’以1厘米/秒的速度沿BC 所在的直线向左移动。
ⅰ)设x 秒后△A ’B ’C ’与△ABC 的重叠部分的面积为y 平方厘米,求y 与x 之间的函数关系式,,并写出x 的取值范围;ⅱ)几秒后重叠部分的面积等于38平方厘米?31. (本题9分)已知抛物线q px x y ++=221与x 轴相交于不同的两点A (1x ,0),B (2x ,0),(B 在A AM A'.ABC DE F O的右边)又抛物线与y 轴相交于C 点,且满足451121=+x x , ⑴求证:054=+q p ;⑵问是否存在一个⊙O ’,使它经过A 、B 两点且与y 轴相切于C 点,若存在,试确定此时抛物线的解析式及圆心O ’的坐标,若不存在,请说明理由。
[参考答案]一、填空题: 1、x=-1(-1,2)2、3y=31x 3、17棵4、72°或108°5、26、九7、108°8、r )13(2+9、S=3t+5(0≤t ≤5) 10、nS 0为圆心(R+r)为半径的圆 11、36π12、92% 二、13、B14、B15、C16、A17、D18、C 19、B20、A21、B22、B 23、A三、24、(1)∵1 :y=-x-3 2 与y 轴交于同一点B ∴B(0,-3)又∵2 与x 轴正半轴的夹角是60° ∴∠MCx=60° 即∠OCB=60°在Rt △BOC 中OB=3 ∴OC=B ·tg30°=3333=⨯ ∴C(3,0)令 :y=kx-3 ∴0=33-k k=3 ∴y=33-x(2)又∵1 与x 轴交于A ,∴对于y=-x-3中当y=0时x=-3 ∴A (-3,0) ∴AC=33)3(3+=-- ∴23393)33(21+=⨯+⋅=∆ABC S 25、证:连结AD(1)∵AC=AD=AE ∴AC=AD∴∠ACD=∠D ∵∠D=∠B ∴∠ACD=∠B ∵∠2=∠2 ∴△AFC ∽△ACB (2)ACAF AB AC =即AC 2=AF ·AB26、∵△ABC 是Rt △且BC=a ,AC=b ,AB=5 (a>b )又a 、b 是方程的两根∴⎪⎪⎩⎪⎪⎨⎧=+>+=⋅>-=+>+--=∆2504010)4(4)1(222b a m b a m b a m m ∴(a+b)2-2ab=25 (m-1)2-2(m+4)=25 (m-8)(m+4)=0 m 1=8 m 2=-4 经检验m=-4不合舍去 ∴m=8∴x 2-7x+12=0 x 1=3 x 2=4 ∴a=4,b=3(2) ∵△A ′B ′C ′以1厘米/秒的速度沿BC 所在直线向左移动。
∴x 秒后BB ′=x 则B ′C ′=4-x ∵C ′M ∥AC ∴△BC ′M ∽△BCA ∴ACC M BC C B '=' ∴)4(43x C M -=' ∴)4(23)4(21x x x y S M C B --=='∆ 即2)4(83x y -= ∴y=63832+-x x (0≤x ≤4) 当y=83时 2)4(83x -=83 x 1=3 x 2=5(不合舍去)∴经过3秒后重叠部分的面积等于83平方厘米。
27、(1)证明:∵抛物线y=q px x ++221与x 轴交于不同的两点A(x 1,0),B(x 2,0) (x 1<x 2) ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=⋅-=+>⋅⨯-=∆451122702142121212x x qx x x x q p 由④:452121=+x x x x ∴4522=-q p ∴-4p=5q 即4p+5q=0 (2)设抛物线与y 轴交于C(0,x 3) ∴x 3=q∵ ⊙O '经过A(x 1,0),B(x 2,0)且与y 轴相切于C 点。
a 、当x 1<0,x 2<0时∴⎪⎩⎪⎨⎧⋅=>=<-=+||||||020222121OB OA OC q x x p x x ∴⎩⎨⎧=+=05422q p q q ∴⎪⎩⎪⎨⎧=-=225q p∴抛物线y=225212+-x x ∴对称轴x=2521225=⨯--① ② ③ ④∴⊙O '的圆心:)2,25(O 'b 、当A 、B 在原点两侧时⊙O '经过A 、B 且与y 轴相切不可能 ∴⊙O '不存在 综上所述:当p 25-=,q=2时此时抛物线为:,⊙O '的圆心)2,25(为O '。