2014届高中数学步步高大一轮复习讲义第七章7.4

合集下载

步步高大一轮复习讲义

步步高大一轮复习讲义

§2.9 函数的应用2014高考会这样考 1.综合考查函数的性质;2.考查一次函数、二次函数、分段函数及基本初等函数的建模问题;3.考查函数的最值.复习备考要这样做 1.讨论函数的性质一定要先考虑定义域;2.充分搜集、应用题目信息,正确建立函数模型;3.注重函数与不等式、数列、导数等知识的综合.1. 几类函数模型及其增长差异(1)几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a 、b 为常数,a ≠0) 反比例函数模型f (x )=kx+b (k ,b 为常数且k ≠0)二次函数模型f (x )=ax 2+bx +c(a ,b ,c 为常数,a ≠0)指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)幂函数模型f (x )=ax n +b (a ,b 为常数,a ≠0)函数性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0)在(0,+∞)上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图像的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n<a x(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:[难点正本疑点清源]1.要注意实际问题的自变量的取值范围,合理确定函数的定义域.2.解决函数应用问题重点解决以下问题(1)阅读理解、整理数据:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;(2)建立函数模型:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;(3)求解函数模型:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图像的作用;(4)回答实际问题结果:将函数问题的结论还原成实际问题,结果明确表述出来.1.某物体一天中的温度T(单位:℃)是时间t(单位:h)的函数:T(t)=t3-3t+60,t=0表示中午12∶00,其后t取正值,则下午3时的温度为________.答案78℃解析T(3)=33-3×3+60=78(℃).2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.答案 2 500解析L(Q)=40Q-120Q2-10Q-2 000=-120Q2+30Q-2 000=-120(Q-300)2+2 500当Q=300时,L(Q)的最大值为2 500万元.3. (2011·湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M02-t30,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率...是-10ln 2(太贝克/年),则M(60)等于( ) A.5太贝克B.75ln 2太贝克C.150ln 2太贝克D.150太贝克答案D解析∵M′(t)=-130M02-t30·ln 2,∴M′(30)=-130×12M0ln 2=-10ln 2,∴M0=600.∴M(t)=600×2-t30,∴M(60)=600×2-2=150(太贝克).4.某企业第三年的产量比第一年的产量增长44%,若每年的平均增长率相同(设为x),则以下结论正确的是( ) A.x>22%B.x<22%C.x=22%D.x的大小由第一年的产量确定答案B解析设第一年的产量为a,则a(1+x)2=a(1+44%),∴x=20%.5.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( ) A.5千米处B.4千米处C.3千米处D.2千米处答案 A解析 由题意得,y 1=k 1x,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x=45x ,即x =5时取等号,故选A.题型一 二次函数模型例1 某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?思维启迪:(1)根据函数模型,建立函数解析式.(2)求函数最值. 解 (1)每吨平均成本为y x(万元).则y x =x 5+8 000x -48≥2x 5·8 000x-48=32, 当且仅当x 5=8 000x,即x =200时取等号.∴年产量为200吨时,每吨平均成本最低,最低为32万元. (2)设可获得总利润为R (x )万元, 则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680 (0≤x ≤210).∵R (x )在[0,210]上是增函数,∴x =210时,R (x )有最大值为-15(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.探究提高二次函数是常用的函数模型,建立二次函数模型可以求出函数的值域或最值.解决实际中的优化问题时,一定要分析自变量的取值范围.利用配方法求最值时,一定要注意对称轴与给定区间的关系:若对称轴在给定的区间内,可在对称轴处取最值,在离对称轴较远的端点处取另一最值;若对称轴不在给定的区间内,最值都在区间的端点处取得.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( )A .100台B .120台C .150台D .180台答案 C解析 设利润为f (x )万元,则f (x )=25x -(3 000+20x -0.1x 2)=0.1x 2+5x -3 000 (0<x <240,x ∈N *). 令f (x )≥0,得x ≥150,∴生产者不亏本时的最低产量是150台. 题型二 指数函数模型例2 诺贝尔奖发放方式为每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r =6.24%.资料显示:1999年诺贝尔奖金发放后基金总额约为19 800万美元.设f (x )表示第x (x ∈N *)年诺贝尔奖发放后的基金总额(1999年记为f (1),2000年记为f (2),…,依次类推).(1)用f (1)表示f (2)与f (3),并根据所求结果归纳出函数f (x )的表达式;(2)试根据f (x )的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29=1.32)思维启迪:从所给信息中找出关键词,增长率问题可以建立指数函数模型. 解 (1)由题意知,f (2)=f (1)(1+6.24%)-12f (1)·6.24%=f (1)(1+3.12%),f (3)=f (2)(1+6.24%)-12f (2)·6.24%=f (2)(1+3.12%)=f (1)(1+3.12%)2, ∴f (x )=19 800(1+3.12%)x -1(x ∈N *).(2)2008年诺贝尔奖发放后基金总额为f (10)=19 800(1+3.12%)9=26 136,故2009年度诺贝尔奖各项奖金为16·12f (10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.探究提高 此类增长率问题,在实际问题中常可以用指数函数模型y =N (1+p )x(其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y =a (1+x )n(其中a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律:θ=m ·2t+21-t(t ≥0,并且m >0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. 解 (1)若m =2,则θ=2·2t+21-t=2⎝⎛⎭⎪⎫2t +12t ,当θ=5时,2t +12t =52,令2t=x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度.(2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 亦m ·2t+22t ≥2恒成立,亦即m ≥2⎝ ⎛⎭⎪⎫12t -122t 恒成立.令12t =x ,则0<x ≤1,∴m ≥2(x -x 2), 由于x -x 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.题型三 分段函数模型例3 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =⎩⎪⎨⎪⎧13x 3-80x 2+5 040x ,x ∈[120,144,12x 2-200x +80 000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?思维启迪:题目中月处理成本与月处理量的关系为分段函数关系,项目获利和月处理量的关系也是分段函数关系.解(1)当x∈[200,300]时,设该项目获利为S,则S =200x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000 =-12x 2+400x -80 000=-12(x -400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5 000,所以国家每月至少补贴5 000元才能使该项目不亏损. (2)由题意,可知二氧化碳的每吨处理成本为 y x =⎩⎪⎨⎪⎧13x 2-80x +5 040,x ∈[120,144.12x +80 000x -200,x ∈[144,500].①当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240, 所以当x =120时,y x取得最小值240. ②当x ∈[144,500]时,y x =12x +80 000x -200≥212x ×80 000x-200=200, 当且仅当12x =80 000x ,即x =400时,yx取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低. 探究提高 本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.(2011·北京)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧c x ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16答案D解析由函数解析式可以看出,组装第A件产品所需时间为cA=15,故组装第4件产品所需时间为c4=30,解得c=60,将c=60代入cA=15,得A=16.函数建模问题典例:(12分)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?审题视角 (1)认真阅读题干内容,理清数量关系.(2)分析图形提供的信息,从图形可看出函数是分段的.(3)建立函数模型,确定解决模型的方法. 规范解答解 设该店月利润余额为L ,则由题设得L =Q (P -14)×100-3 600-2 000,① 由销量图易得Q =⎩⎪⎨⎪⎧-2P +50 14≤P ≤20,-32P +40 20<P ≤26,[2分]代入①式得L =⎩⎪⎨⎪⎧-2P +50P -14×100-5 600 14≤P ≤20,⎝ ⎛⎭⎪⎫-32P +40P -14×100-5 600 20<P ≤26,[4分](1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元.故当P =19.5元时,月利润余额最大,为450元.[8分] (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫.[12分]解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量 关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义.第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.温馨提醒(1)本题经过了三次建模:①根据月销量图建立Q与P的函数关系;②建立利润余额函数;③建立脱贫不等式.(2)本题的函数模型是分段的一次函数和二次函数,在实际问题中,由于在不同的背景下解决的问题发生了变化,因此在不同范围中,建立函数模型也不一样,所以现实生活中分段函数的应用非常广泛.(3)在构造分段函数时,分段不合理、不准确,是易出现的错误.方法与技巧1.认真分析题意,合理选择数学模型是解决应用问题的基础;2.实际问题中往往解决一些最值问题,我们可以利用二次函数的最值、函数的单调性、基本不等式等求得最值.失误与防范1.函数模型应用不当是常见的解题错误.所以,正确理解题意,选择适当的函数模型是正确解决这类问题的前提和基础.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 有一批材料可以围成200 m长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为 ( )A .1 000 m 2B .2 000 m 2C .2 500 m 2D .3 000 m 2答案 C解析 设围成的场地宽为x m ,面积为y m 2, 则y =3x (200-4x )×13=-4x 2+200x (0<x <50). 当x =25时,y max =25×100=2 500. ∴围成的矩形场地的最大面积为2 500 m 2.2. (2011·湖北改编)里氏震级M 的计算公式:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.( )A .6 1 000B .4 1 000C .6 10 000D .4 10 000答案 C解析 由M =lg A -lg A 0知,M =lg 1 000-lg 0.001=3-(-3)=6,∴此次地震的震级为6级.设9级地震的最大振幅为A 1,5级地震的最大振幅为A 2,则lg A 1A 2=lg A 1-lg A 2=(lg A 1-lg A 0)-(lg A 2-lg A 0)=9-5=4.∴A 1A 2=104=10 000,∴9级地震的最大振幅是5级地震最大振幅的10 000倍.3. 将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt ,假设5分钟后甲桶和乙桶的水量相等,若再过m 分钟后甲桶中的水只有a8升,则m的值为( )A .8B .10C .12D .15答案 B解析 由已知条件可得a e 5n=a 2,e 5n =12.由a e nt =a 8,得e nt=18,所以t =15,m =15-5=10.4. 某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如右图所示),则每辆客车营运多少年时,其营运的平均利润最大( ) A .3 B .4C .5D .6答案 C解析 由题图可得营运总利润y =-(x -6)2+11,则营运的年平均利润y x=-x -25x+12,∵x ∈N *,∴y x≤-2x ·25x+12=2,当且仅当x =25x,即x =5时取“=”.∴x =5时营运的平均利润最大. 二、填空题(每小题5分,共15分)5. 某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt(其中k 为常数,t表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个. 答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=e 12k ,∴k =2ln 2,∴y =e2t ln 2,当t =5时,∴y =e10ln 2=210=1 024.6. 某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km. 答案 9解析 设出租车行驶x km 时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤38+2.15x -3+1,3<x ≤88+2.15×5+2.85x -8+1,x >8由y =22.6,解得x =9.7. 2008年我国人口总数为14亿,如果人口的自然年增长率控制在1.25%,则________年我国人口将超过20亿.(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1) 答案 2037解析 由已知条件:14(1+1.25%)x -2 008>20,x - 2 008>lg107lg 8180=1-lg 74lg 3-3lg 2-1=28.7,则x >2 036.7,即x =2 037. 三、解答题(共22分)8. (10分)某种出口产品的关税税率为t ,市场价格x (单位:千元)与市场供应量p (单位:万件)之间近似满足关系式:p =2(1-kt )(x -b )2,其中k ,b 均为常数.当关税税率t =75%时,若市场价格为5千元,则市场供应量为1万件;若市场价格为7千元,则市场供应量约为2万件. (1)试确定k ,b 的值;(2)市场需求量q (单位:万件)与市场价格x 近似满足关系式:q =2-x,当p =q 时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.解 (1)由已知⎩⎪⎨⎪⎧1=21-0.75k 5-b 22=21-0.75k7-b 2,⇒⎩⎪⎨⎪⎧1-0.75k 5-b 2=01-0.75k7-b2=1.解得b =5,k =1.(2)当p =q 时,2(1-t )(x -5)2=2-x, ∴(1-t )(x -5)2=-x ⇒t =1+x x -52=1+1x +25x-10而f (x )=x +25x在(0,4]上单调递减,∴当x =4时,f (x )有最小值414,故当x =4时,关税税率的最大值为500%.9.(12分)如图所示,在矩形ABCD 中,已知AB =a ,BC =b (a >b ).在AB 、AD 、CD 、CB 上分别截取AE 、AH 、CG 、CF 都等于x ,当x 为何值时,四边形EFGH 的面积最大?求出这个最大面积. 解 设四边形EFGH 的面积为S , 由题意得S △AEH =S △CFG =12x 2,S △BEF =S △DHG =12(a -x )·(b -x ).由此得S =ab -2⎣⎢⎡⎦⎥⎤12x 2+12a -xb -x=-2x 2+(a +b )x =-2⎝⎛⎭⎪⎫x -a +b 42+a +b28.函数的定义域为{x |0<x ≤b }, 因为a >b >0,所以0<b <a +b2.若a +b4≤b ,即a ≤3b ,x =a +b4时面积S 取得最大值a +b28;若a +b4>b ,即a >3b 时,函数S =-2⎝ ⎛⎭⎪⎫x -a +b 42+a +b 28在(0,b ]上是增函数,因此,当x =b 时,面积S 取得最大值ab -b 2. 综上可知,若a ≤3b ,当x =a +b4时,四边形EFGH 的面积取得最大值a +b28;若a >3b ,当x =b 时,四边形EFGH 的面积取得最大值ab -b 2.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共20分)1. 某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为( )A .45.606万元B .45.6万元C .45.56万元D .45.51万元答案 B解析 依题意可设甲销售x 辆,则乙销售(15-x )辆,总利润S =L 1+L 2,则总利润S =5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15(x -10.2)2+0.15×10.22+30 (x ≥0).∴当x =10时,S max =45.6(万元).2. 某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( ) A .x =15,y =12 B .x =12,y =15 C .x =14,y =10 D .x =10,y =14答案 A解析 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.3. 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )答案 A解析 汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s 与t 的函数图像上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的.二、填空题(每小题5分,共15分)4. 如图,书的一页的面积为600 cm 2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为____________. 答案 30 cm 、20 cm解析 设长为a cm ,宽为b cm ,则ab =600, 则中间文字部分的面积S =(a -2-1)(b -2) =606-(2a +3b )≤606-26×600=486, 当且仅当2a =3b ,即a =30,b =20时,S 最大=486.5. 某商人购货,进价已按原价a 扣去25%.他希望对货物订一新价,以便按新价让利20%销售后仍可获得售价25%的利润,则此商人经营这种货物的件数x 与按新价让利总额y 之间的函数关系式为______________. 答案 y =a4x (x ∈N *)解析 设新价为b ,依题意,有b (1-20%)-a (1-25%)=b (1-20%)·25%,化简得b = 54a .∴y =b ·20%·x =54a ·20%·x ,即y =a4x (x ∈N *). 6. 某医院为了提高服务质量,对挂号处的排队人数进行了调查,发现:当还未开始挂号时,有N 个人已经在排队等候挂号;开始挂号后排队的人数平均每分钟增加M 人.假定挂号的速度是每个窗口每分钟K 个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟后不出现排队现象,则需要同时开放的窗口至少应有________个.答案 4解析 设要同时开放x 个窗口才能满足要求,则⎩⎪⎨⎪⎧ N +40M =40K , ①N +15M =15K ×2, ②N +8M ≤8Kx . ③由①②,得⎩⎪⎨⎪⎧ K =2.5M ,N =60M ,代入③,得60M +8M ≤8×2.5Mx ,解得x ≥3.4.故至少同时开放4个窗口才能满足要求.三、解答题7. (13分)(2011·湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/时)解 (1)由题意,当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧ 200a +b =0,20a +b =60, 解得⎩⎪⎨⎪⎧ a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧ 60, 0≤x ≤20,13200-x , 20<x ≤200. (2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x , 0≤x ≤20,13x 200-x , 20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x ) ≤13⎣⎢⎡⎦⎥⎤x +200-x 22=10 0003, 当且仅当x =200-x ,即x =100时,等号成立.所以当x =100时,f (x )在区间(20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时.(注:本资料素材和资料部分来自网络,仅供参考。

【步步高】2014届高三数学大一轮复习讲义--函数图象与性质的综合应用

【步步高】2014届高三数学大一轮复习讲义--函数图象与性质的综合应用

专题一 函数图象与性质的综合应用1.函数的三要素是对应关系、定义域、值域;其中函数的核心是对应关系. 2.函数的性质主要包括:单调性、周期性、对称性、最值等.3.求函数值域的方法有配方法、换元法、不等式法、函数单调性法、图象法等. 4.作图一般有两种方法:描点法作图、图象变换法作图. 5.图象的三种变换:平移变换、伸缩变换和对称变换.1. (2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于( )A .-3B .-1C .1D .3 答案 A解析 ∵f (x )是奇函数,当x ≤0时,f (x )=2x 2-x , ∴f (1)=-f (-1)=-[2×(-1)2-(-1)]=-3.2. 函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为 ( )A.13B.23 C .1 D .2 答案 B解析 令f (x )=0,解得x =1;令f (x )=1,解得x =13或3.因为函数f (x )在(0,1)上为减函数,在(1,+∞)上为增函数.故b -a 的最小值为1-13=23.3. (2011·辽宁)设函数f (x )=⎩⎪⎨⎪⎧21-x , x ≤11-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞) 答案 D解析 当x ≤1时,由21-x ≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).4. (2011·湖北)已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于 ( ) A .2 B.154 C.174 D .a 2答案 B解析 ∵f (x )是奇函数,g (x )是偶函数, ∴由f (x )+g (x )=a x -a -x +2,① 得-f (x )+g (x )=a -x -a x +2,②①+②,得g (x )=2,①-②,得f (x )=a x -a -x . 又g (2)=a ,∴a =2,∴f (x )=2x -2-x , ∴f (2)=22-2-2=154.5. 已知y =f (x )的图象如图,则y =f (1-x )的图象为下列四图中的 ( )答案 A解析 将y =f (1-x )变形为y =f [-(x -1)]①作y =f (-x )图象,将y =f (x )关于y 轴对称即可; ②将f (-x )的图象沿x 轴正方向平移1个单位, 得y =f [-(x -1)]=f (1-x )的图象.题型一 函数求值问题例1 (2012·苏州模拟)设f (x )=⎩⎪⎨⎪⎧log 3(x 2+t ),x <0,2×(t +1)x ,x ≥0 且f (1)=6,则f (f (-2))的值为________.思维启迪:首先根据f (1)=6求出t 的取值,从而确定函数解析式,然后由里到外逐层求解f (f (-2))的值,并利用指数与对数的运算规律求出函数值. 答案 12解析 ∵1>0,∴f (1)=2×(t +1)=6, 即t +1=3,解得t =2.故f (x )=⎩⎪⎨⎪⎧log 3(x 2+2),x <0,2×3x , x ≥0,所以f (-2)=log 3[(-2)2+2]=log 36>0. f (f (-2))=f (log 36)=2×3log 36=2×6=12.探究提高 本题的难点有两个,一是准确理解分段函数的定义,自变量在不同取值范围 内对应着不同的函数解析式;二是对数与指数的综合运算问题.解决此类问题的关键是 要根据分段函数的定义,求解函数值时要先判断自变量的取值区间,然后再代入相应的 函数解析式求值,在求值过程中灵活运用对数恒等式进行化简求值.(2012·广东六校联考)已知f (x )=⎩⎪⎨⎪⎧-cos (πx ), x >0,f (x +1)+1, x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于 ( )A .-2B .1C .2D .3 答案 D解析 f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 题型二 函数性质的应用例2 设奇函数f (x )在(0,+∞)上为单调递增函数,且f (2)=0,则不等式f (-x )-f (x )x≥0的解集为 ( ) A .[-2,0]∪[2,+∞) B .(-∞,-2]∪(0,2] C .(-∞,-2]∪[2,+∞) D .[-2,0)∪(0,2] 思维启迪:转化成f (m )<f (n )的形式,利用单调性求解. 答案 D解析 因为f (x )为奇函数,所以f (-x )=-f (x ),不等式可化为-f (x )-f (x )x ≥0,即-f (x )x ≥0.当x >0时,则有f (x )≤0=f (2),由f (x )在(0,+∞)上单调递增可得x ≤2;当x <0时,则有f (x )≥0=-f (2)=f (-2),由函数f (x )为奇函数可得f (x )在(-∞,0)上单调递增,所以x ≥-2.所以不等式的解集为[-2,0)∪(0,2].探究提高 解决抽象函数问题的关键是灵活利用抽象函数的性质,利用函数的单调性去 掉函数符号是解决问题的关键,由函数为奇函数可知,不等式的解集关于原点对称,所 以只需求解x >0时的解集即可.设函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,log 2(-x ),x <0,若f (m )<f (-m ),则实数m 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 答案 C解析 f (-x )=⎩⎪⎨⎪⎧ log 12(-x ),-x >0log 2x ,-x <0=⎩⎪⎨⎪⎧log 12(-x ),x <0,log 2x ,x >0.当m >0时,f (m )<f (-m )⇒log 12m <log 2m ⇒m >1;当m <0时,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒-1<m <0.所以,m 的取值范围是(-1,0)∪(1,+∞). 题型三 函数图象及应用例3 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc的取值范围是_____________.思维启迪:可以先画出函数f (x )的图象,通过图象的特征观察a 、b 、c 的关系. 答案 (10,12)解析 画出函数f (x )的图象,再画出直线y =d (0<d <1),如图所示,直观上知0<a <1,1<b <10,10<c <12,再由|lg a |=|lg b |,得-lg a =lg b ,从而得ab =1,则10<abc <12.探究提高 通过图形可以发现a ,b ,c 所在的区间,再把绝对值符号去掉,就能发现ab =1,这样利用数形结合就可把问题化难为易了.已知不等式x 2-log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解由x 2-log a x <0, 得x 2<log a x .设f (x )=x 2,g (x )=log a x .由题意知,当x ∈⎝⎛⎭⎫0,12时,函数f (x )的图象在函数g (x )的图象的下方, 如图,可知⎩⎪⎨⎪⎧ 0<a <1,f ⎝⎛⎭⎫12≤g ⎝⎛⎭⎫12,即⎩⎪⎨⎪⎧0<a <1,⎝⎛⎭⎫122≤log a 12, 解得116≤a <1.∴实数a 的取值范围是⎣⎡⎭⎫116,1. 题型四 函数的值域与不等式恒成立问题例4 (2012·天津滨海新区五所重点学校联考)定义在R 上的增函数y =f (x )对任意x ,y ∈R都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.思维启迪:(1)赋值法是解决抽象函数问题的常用方法,第(1)(2)两问可用赋值法解决. (2)将恒成立问题转化成函数最值问题. (1)解 令x =y =0,得f (0+0)=f (0)+f (0), 即f (0)=0.(2)证明 令y =-x ,得f (x -x )=f (x )+f (-x ), 又f (0)=0,则有0=f (x )+f (-x ), 即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)解 方法一 因为f (x )在R 上是增函数, 又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2.综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立.方法二 由k ·3x <-3x +9x +2,得k <3x +23x -1.u =3x +23x -1≥22-1,3x =2时,取“=”,即u 的最小值为22-1,要使对x ∈R ,不等式k <3x +23x -1恒成立,只要使k <22-1.探究提高 对于恒成立问题,若能转化为a >f (x ) (或a <f (x ))恒成立,则a 必须大于f (x )的最大值(或小于f (x )的最小值).因此恒成立问题可以转化为我们较为熟悉的求最值的问题进行求解.若不能分离参数,可以将参数看成常数直接求解.定义在R 上的奇函数f (x ),当x ∈[0,+∞)时,f (x )是增函数,对于任意的θ∈⎣⎡⎦⎤0,π2,均有f (cos 2θ-3)+f (4m -2m cos θ)>0,试求实数m 的取值范围. 解 因为f (x )是定义在R 上的奇函数,当x ∈[0,+∞)时,f (x )是增函数,则f (x )在(-∞,0]上也是增函数,所以f (x )在R 上是增函数,且f (0)=0, ∵f (cos 2θ-3)+f (4m -2m cos θ)>0, ∴f (cos 2θ-3)>f (2m cos θ-4m ), 于是cos 2θ-3>2m cos θ-4m ,① 即cos 2θ-m cos θ+2m -2>0. 得m >cos 2θ-2cos θ-2,设h (θ)=cos 2θ-2cos θ-2,则h (θ)=4-⎣⎡⎦⎤(2-cos θ)+22-cos θ≤4-22,即h (θ)max =4-22,只须m >4-2 2.故实数m 的取值范围是(4-22,+∞). 2.高考中的函数零点问题典例:(2011·山东)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.考点分析 本题考查对数函数、函数单调性、函数零点等知识,体现了函数知识的综合.求解策略 解答本题可先确定函数f (x )在(0,+∞)上的单调性,然后根据a ,b 满足的条件及对数的运算性质探究出f (x )零点所在的区间,从而对照x 0∈(n ,n +1),n ∈N *确定出n 的值. 答案 2解析 ∵2<a <3,∴f (x )=log a x +x -b 为定义域上的单调递增函数.f (2)=log a 2+2-b , f (3)=log a 3+3-b .∵2<a <3<b ,∴0<lg 2<lg a <lg 3,∴lg 2lg 3<lg 2lg a <1.又∵b >3,∴-b <-3,∴2-b <-1, ∴log a 2+2-b <0,即f (2)<0.∵1<lg 3lg a <lg 3lg 2,3<b <4,∴-1<3-b <0,∴log a 3+3-b >0,∴f (3)>0,即f (2)·f (3)<0. 由x 0∈(n ,n +1),n ∈N *知,n =2.解后反思 (1)本题考查函数零点,与函数的单调性相结合;(2)解决函数的有关问题,要综合利用函数的图象,函数的单调性、对称性、周期性、值域等.方法与技巧1. 利用复合函数求函数值是一类重要问题,解题关键是利用已知的函数值,通过解析式的变化特点进行代入求值,有时也可以利用周期性来解题.2. 抽象函数奇偶性的判断关键在于构造f (-x ),使之与f (x )产生等量关系,即比较f (-x )与±f (x )是否相等,此时赋值比较多的是-1、1、0等.3. 作图、识图和用图是函数图象中的基本问题.作图的基本途径:求出函数的定义域;尽量求出值域;变换(化简、平移、对称、伸缩等)出图象的形状;描点作图.识图就是从 图形中发现或捕捉所需信息,从而使问题得到解决.用图就是根据需要,作出函数的图 形,使问题求解得到依据,使函数、方程、不等式中的许多问题化归为函数图象问题. 失误与防范1. 函数求值问题一定要关注自变量的取值范围,尤其是分段函数,以防代错解析式. 2. 对于由抽象函数不等式向具体不等式转化的过程中,一定要注意单调区间,需将自变量转化到同一个单调区间上去.3. 识图要抓住性质特征,关键点;作图要规范,一般从基本图形通过平移、对称等变换来作图.(时间:60分钟) A 组 专项基础训练一、选择题(每小题5分,共20分)1. (2011·重庆)下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是 ( )A .(-∞,1]B .[-1,43]C .[0,32) D .[1,2)答案 D解析 方法一 当2-x ≥1,即x ≤1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(- ∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|=-ln(2-x ),此时函 数f (x )在[1,2)上单调递增,故选D. 方法二 f (x )=|ln(2-x )|的图象如图所示.由图象可得,函数f (x )在区间[1,2)上为增函数,故选D.2. (2011·北京)如果log 12x <log 12y <0,那么 ( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x 答案 D解析 不等式转化为⎩⎨⎧log 12x <log 12y ,log 12y <0⇒1<y <x .3. (2012·浙江改编)设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32等于 ( ) A.32 B .-14 C.14 D.12 答案 A解析 当x ∈[-1,0]时,-x ∈[0,1], ∵f (x )为偶函数,∴f (x )=f (-x )=-x +1. ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12=-⎝⎛⎭⎫-12+1=32. 4. (2012·江西)如图所示,|OA |=2(单位:m),|OB |=1(单位:m),OA 与OB 的夹角为π6,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交于点C .甲、乙两质点同时从点O 出发,甲先以速率1(单位:m/s)沿线段OB 行至点B ,再以速率3(单位:m/s)沿圆弧BDC 行至点C 后停止;乙以速率2(单位:m/s)沿线段OA 行至点A 后停止.设t 时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为S (t )(S (0)=0),则函数y =S (t )的图象大致是( )答案 A解析 对t 进行分段,确定函数y =S (t )的解析式.由题意知,当0<t ≤1时,甲从O 向B 移动,乙从O 向A 移动,则t 时刻,|OB |=t ,|OA | =2t ,此时S (t )=12·|OB |·|OA |sin π6=12t 2,此段图象为抛物线;当t >1时,设圆弧半径为r ,甲从B 沿圆弧移动到C 后停止,乙在A 点不动,则此时S (t )=12×1×2·sin π6+12·r ·3(t -1)=3r 2t +1-3r2,此段图象为直线,当甲移动至C 点后,甲、乙均不再移动,面积不再增加,选项B 中开始一段函数图象不对,选项C 中后两段图象不对,选项D 中前两段 函数图象不对,故选A. 二、填空题(每小题5分,共15分)5. 设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,则不等式log a (x -1)>0的解集为______. 答案 (2,+∞)解析 ∵x 2-2x +3>0,即(x -1)2+2>0的解集为R , ∴函数f (x )=log a (x 2-2x +3)的定义域为R . 又∵函数y =x 2-2x +3有最小值2,无最大值. 据题意有a >1.∴log a (x -1)>0=log a 1等价于⎩⎪⎨⎪⎧x -1>0,x -1>1,解得x >2,即不等式log a (x -1)>0的解集为(2,+∞). 6. 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是__________. 答案 [-94,0]∪(2,+∞)解析 由x <g (x )得x <x 2-2,∴x <-1或x >2;由x ≥g (x )得x ≥x 2-2,∴-1≤x ≤2.∴f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.即f (x )=⎩⎨⎧(x +12)2+74,x <-1或x >2,(x -12)2-94,-1≤x ≤2.当x <-1时,f (x )>2;当x >2时,f (x )>8.∴当x ∈(-∞,-1)∪(2,+∞)时,函数的值域为(2,+∞). 当-1≤x ≤2时,-94≤y ≤0.∴当x ∈[-1,2]时,函数的值域为[-94,0].综上可知,f (x )的值域为[-94,0]∪(2,+∞).7. 已知函数f (x )=⎩⎪⎨⎪⎧a x -5 (x >6),⎝⎛⎭⎫4-a 2x +4 (x ≤6),在R 上是单调递增函数,则实数a 的取值范围为________.答案 [7,8)解析 由题意知,实数a 应满足⎩⎪⎨⎪⎧a >14-a 2>0⎝⎛⎭⎫4-a 2×6+4≤a 6-5,即⎩⎪⎨⎪⎧a >1a <8a ≥7,解得7≤a <8. 三、解答题(共25分)8. (12分)若直线y =2a 与函数y =|a x -1| (a >0且a ≠1)的图象有两个交点,求a 的取值范围.解 ①当a >1时,画出函数y =|a x -1|的草图:若y =2a 与y =|a x -1|的图象有两个交点, 则有0<2a <1,∴0<a <12(舍去).②当0<a <1时,画出函数y =|a x -1|的草图:若y =2a 与y =|a x -1|的图象有两个交点,则有0<2a <1,∴0<a <12. 综上所述,a 的取值范围是⎝⎛⎭⎫0,12. 9. (13分)已知a >0,且a ≠1,f (log a x )=a a 2-1⎝⎛⎭⎫x -1x . (1)求f (x );(2)判断f (x )的单调性;(3)求f (x 2-3x +2)<0的解集.解 (1)令t =log a x (t ∈R ),则x =a t ,且f (t )=a a 2-1⎝⎛⎭⎫a t -1a t .∴f (x )=a a 2-1(a x -a -x ) (x ∈R ). (2)当a >1时,a x -a -x 为增函数, 又a a 2-1>0,∴f (x )为增函数; 当0<a <1时,a x -a -x 为减函数, 又aa 2-1<0,∴f (x )为增函数. ∴函数f (x )在R 上为增函数.(3)∵f (0)=a a 2-1(a 0-a 0)=0,∴f (x 2-3x +2)<0=f (0). 由(2)知:x 2-3x +2<0,∴1<x <2.∴不等式的解集为{x |1<x <2}.B 组 专项能力提升一、选择题(每小题5分,共15分)1. 已知函数f (x )=||lg x ,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是 ( )A .(22,+∞) B.[ 22,+∞)C .(3,+∞) D.[ 3,+∞)答案 C解析 由已知条件0<a <1<b 和f (a )=f (b )得,-lg a =lg b ,则lg a +lg b =0,ab =1,因此a +2b =a +2a ,由对勾函数知y =x +2x在(0,1)单调递减,得a +2b >3,即a +2b 的取值范围是(3,+∞).2.设函数f (x )是定义在R 上周期为3的奇函数,若f (1)<1,f (2)=2a -1a +1,则 ( )A .a <12且a ≠-1 B .-1<a <0 C .a <-1或a >0 D .-1<a <2答案 C解析 ∵函数f (x )为奇函数,∴f (1)=-f (-1)<1,∴f (-1)>-1.又∵函数f (x )的周期为3,∴f (-1)=f (2)=2a -1a +1>-1,∴3a a +1>0, 解得a >0或a <-1.3. 设f (x )是定义在R 上的偶函数,对任意的x ∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫12x -1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0 (a >1)恰有3个不同的实数根,则a 的取值范围是 ( )A .(1,2)B .(2,+∞)C .(1,34)D .(34,2)答案 D解析由f (x -2)=f (x +2),知f (x )是以4为周期的周期函数,于是可得f (x )在(-2,6]上的大致图象如图中实线所示,令g (x )=log a (x +2) (a >1),则g (x )的大致图象如图所示,结合图象可知,要使得方程f (x )-log a (x+2)=0 (a >1)在区间(-2,6]内恰有3个不同的实数根,则只需⎩⎪⎨⎪⎧ g (2)<3g (6)>3,即⎩⎨⎧log a 4<3log a 8>3,解得34<a <2. 二、填空题(每小题4分,共12分)4. 函数f (x )=log 0.5(3x 2-ax +5)在(-1,+∞)上是减函数,则实数a 的取值范围是__________.答案 [-8,-6]解析 设g (x )=3x 2-ax +5,由已知⎩⎪⎨⎪⎧a 6≤-1,g (-1)≥0,解得-8≤a ≤-6.5. 已知f (x )=a sin x +b 3x +4 (a ,b ∈R ),且f [lg(log 210)]=5,则f [lg(lg 2)]=________.答案 3解析 lg(log 210)=-lg(lg 2),f (-x )=a sin(-x )+b 3-x +4=-(a sin x +b 3x )+4.又f [lg(log 210)]=5,∴f [lg(lg 2)]=4-5+4=3.6. 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a的取值范围是__________.答案 (-2,1)解析∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x ,作出f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,即-2<a <1.三、解答题(13分)7. 设函数f (x )=3ax 2-2(a +c )x +c (a >0,a ,c ∈R ).(1)设a >c >0.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,求c 的取值范围;(2)函数f (x )在区间(0,1)内是否有零点,有几个零点?为什么?解 (1)因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴为x =a +c 3a,由条件a >c >0, 得2a >a +c ,故a +c 3a <2a 3a =23<1,即二次函数f (x )的对称轴在区间[1,+∞)的左边,且抛 物线开口向上,故f (x )在[1,+∞)内是增函数.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,则f (x )min =f (1)>c 2-2c +a ,即a -c >c 2-2c +a , 得c 2-c <0,所以0<c <1.(2)①若f (0)·f (1)=c ·(a -c )<0,则c <0,或a <c ,二次函数f (x )在(0,1)内只有一个零点.②若f (0)=c >0,f (1)=a -c >0,则a >c >0.因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴是x =a +c 3a. 而f ⎝⎛⎭⎫a +c 3a =-a 2+c 2-ac 3a <0,所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,a +c 3a 和⎝ ⎛⎭⎪⎫a +c 3a ,1内各有一个零点,故函数f (x )在区间(0,1) 内有两个零点.。

步步高大一轮复习讲义数学答案

步步高大一轮复习讲义数学答案

步步高大一轮复习讲义数学答案第一章:概率论基础1.1 集合与概率题目:设集合A={1,2,3,4,5},B={3,4,5,6,7},求A与B的交集、并集和差集。

答案:•交集:A∩B = {3,4,5}•并集:A∪B = {1,2,3,4,5,6,7}•差集:A-B = {1,2}1.2 条件概率与事件独立题目:某班级有40名男生和30名女生,从中随机抽取一名学生,求抽到男生的概率。

答案: - 总人数:40 + 30 = 70 - 抽到男生的概率:40/70 = 4/72.1 随机变量与离散型随机变量题目:设随机变量X表示投掷一枚骰子出现的点数,求X 的概率分布。

答案:X123456P(X)1/61/61/61/61/61/62.2 连续型随机变量与概率密度函数题目:设随机变量X表示一位学生的身高,其概率密度函数为f(x) = 0.01,0<x<100,求X在区间[50,70]的概率。

答案: - X在区间[50,70]的概率:P(50<=X<=70) =∫(50,70)0.01dx = 0.01*(70-50) = 0.23.1 矩阵与线性方程组题目:解下列线性方程组: - 2x + 3y = 8 - 3x + 2y = 7答案: - 通过消元法可得:x = 1,y = 23.2 行列式与矩阵的逆题目:求下列矩阵的逆矩阵: - A = [1, 2; 3, 4]答案: - A的逆矩阵:A^(-1) = [ -2, 1/2; 3/2, -1/2]第四章:数学分析基础4.1 极限与连续题目:求极限lim(x->0)(sinx/x)的值。

答案: - 极限lim(x->0)(sinx/x) = 14.2 导数与微分题目:求函数y=3x^2的导数。

答案: - y的导数:dy/dx = 6x以上是《步步高大一轮复习讲义》中关于数学部分的答案,希望对你的复习有所帮助。

祝你学习顺利!。

《步步高》2014届高考数学浙江专用(理)大一轮复习讲义【配套课件】选修4-1解答题(要点梳理+基础自测+题

《步步高》2014届高考数学浙江专用(理)大一轮复习讲义【配套课件】选修4-1解答题(要点梳理+基础自测+题

难点正本 疑点清源
3.与圆有关的等角问题
(8)切割线定理
找角相等,要有找同弧
从圆外一点引圆的一条割线与一条切 或等弧所对的圆周角,
线,切线长是这点到割线与圆的两个交 并注意结合应用弦切角
点的线段长的 等比中项 .
定理的意识.
基础知识·自主学习
要点梳理 (9)圆内接四边形的性质与判定定理 ①圆内接四边形判定定理 (ⅰ)如果四边形的对角 互补 ,则此四边 形内接于圆; (ⅱ)如果四边形的一个外角 等于 它的 内角的对角,那么这个四边形的四个顶 点共圆.
证中明,∠∵B∠ABCA=C=909°,0°,ADA⊥D⊥BCB,C,E ∴∠ADB=∠ADC=∠BAC=90°,
是 AC 的中点,ED 交 AB 的延长 ∴∴线∠∠于11+=F∠∠,2A求=C证B90,:°,∴AA∠BC△=2A+DBA∠DFF∽.AC△BC=A9D0,°,∴AABC=BADD.
解析
题型分类·深度剖析
变式训练 1 如图,▱ABCD 中,E 是 CD 的延长线上一点,BE 与 AD 交于点 F,DE=12CD. (1)求证:△ABF∽△CEB;
(2)若△DEF 的面积为 2,求▱ABCD 的面积. (1)证明 ∵四边形 ABCD 是平行四边形, ∴∠A=∠C,AB∥CD,∴∠ABF=∠CEB, ∴△ABF∽△CEB. (2)解 ∵四边形 ABCD 是平行四边形, ∴AD∥BC,AB∥CD, ∴△DEF∽△CEB,△DEF∽△ABF.
∴△AFH∽△GFB.∴HBFF=GAFF, ∴AF·BF=GF·HF.
∵在 Rt△ABD 中,FD⊥AB, ∴DF2=AF·BF, ∴DF2=GF·HF.
题型分类·深度剖析
题型二
直角三角形射影定理及其应用

【步步高】2014届高三数学大一轮复习讲义 《不等式》

【步步高】2014届高三数学大一轮复习讲义 《不等式》

基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理 2.两个实数比较大小的方法
难点正本 疑点清源 2.理解不等式的思想和方法
(1)作差法是证明不等式的最基 本也是很重要的方法,应引起 高度注意,要注意强化. (2)加强化归意识,把比较大 小问题转化为实数的运算. (3)通 过复 习要强 化不等 式 “运算”的条件.如 a>b、 c>d 在什么条件下才能推出 ac>bd. (4)强化函数的性质在大小比 较中的重要作用,加强知识 间的联系.
解析
①中, 2-b2=(a+b)(a-b)=1, b 为正实数, a-b≥1, a a, 若
则必有 a+b>1,不合题意,故①正确.
1 1 a-b ②中,b-a= ab =1,只需 a-b=ab 即可. 2 4 如取 a=2,b= 满足上式,但 a-b= >1,故②错. 3 3
③中,a,b 为正实数,所以 a+ b>| a- b|=1,
要点梳理
难点正本 疑点清源 2.理解不等式的思想和方法
3.不等式的性质 (1)对称性:a>b⇔b<a; (2)传递性: a>b, b>c⇒ a>c ; (3)可加性: a>b⇔a+c > b+c, a>b,c>d⇒a+c > b+d; (4)可乘性: a>b, c>0⇒ac > bc, a>b>0,c>d>0⇒ac > bd;
所以实数 m
3 1 ,3∪- . 的取值范围是 2 2
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析

【步步高】(四川专用)2014届高三数学大一轮复习 常考题型强化练 不等式第七章课件 理 新人教A版汇总

【步步高】(四川专用)2014届高三数学大一轮复习 常考题型强化练 不等式第七章课件 理 新人教A版汇总
解 析 设该公司合理计划当天派用甲、乙型卡车的车辆数分
x+y≤12, 2x+y≤19, 别为 x,y,则根据条件得 x,y 满足的约束条件为10x+6y≥72, x≤8,y≤7, x∈N*,y∈N*,
A组 专项基础训练
1
2
3
4
5
6
7
8
9
3.(2011·四川)某运输公司有 12 名驾驶员和 19 名工人,有 8 辆载重
(2)设工作台从左到右的人数依次 意一点时,均能使函数 d(x)取得最
为 2,1,3,试确定供应站的位置, 小值,且最小值为 3x3-x2-2x1. 并求所有工人到供应站的距离之
和的最小值.
A组 专项基础训练
1
2
3
4
5
6
7
8
9
9.(12 分)某市政府为了造宜居城市,计划在 公园内新建一个如图所示的矩形 ABCD 的 休闲区,内部是矩形景观区 A1B1C1D1,景观 区四周是人行道,已知景观区的面积为 8 000 平方米,人行道的 宽为 5 米(如图所示). (1)设景观区的宽 B1C1 的长度为 x(米),求休闲区 ABCD 所占面积 S 关于 x 的函数; (2)规划要求景观区的宽 B1C1 的长度不能超过 50 米,如何设计景 观区的长和宽,才能使休闲区 ABCD 所占面积最小?
数学 川(理)
常考题型强化练——不等式
第七章 不等式
A组 专项基础训练
1
2
3
4
5
6
7
8
9
A组 专项基础训练
1
2
3
4
5
6
7
8
9
1.“|x|<2”是“x2-x-6<0”的什么条件

2014届步步高大一轮复习讲义专题四

2014届步步高大一轮复习讲义专题四

专题四 数列的综合应用1.数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题.2.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、分期付款、合理定价等.3.解答数列应用题的基本步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中. 4.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n +1的递推关系,还是S n 与S n +1之间的递推关系.1.在等比数列{a n }中,a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5的值为________. 答案 5解析 设首项为a 1,公比为q ,则a 1>0,q >0,a 2a 4+2a 3a 5+a 4a 6=a 21q 4+2a 21q 6+a 21q 8=a 21q 4(1+q 2)2=25.∴a 1q 2(1+q 2)=5,∴a 3+a 5=a 1q 2+a 1q 4=a 1q 2(1+q 2)=5.2.已知等差数列的公差d <0,前n 项和记为S n ,满足S 20>0,S 21<0,则当n =________时,S n 达到最大值. 答案 10解析 ∵S 20=10(a 1+a 20)=10(a 10+a 11)>0,S 21=21a 11<0,∴a 10>0,a 11<0,∴n =10时,S n 最大.3.设等差数列{a n }的各项均为整数,其公差d ≠0,a 5=6,若a 3,a 5,a m (m >5)是公比为q (q >0)的等比数列,则m 的值为________. 答案 11解析 由题意,得a 3=6-2d ,因为q =66-2d =33-d,所以3-d =3q ;因为q 大于零,所以3-d 是大于零的整数,q =33-d.由题意知,数列{a n }各项均为整数,故d ,q 均应为整数.当3-d >3,3-d ∈Z 时,q 不为整数,故3-d 只能取1,3.当3-d =3时,d =0,不满足条件;故3-d =1,此时d =2,q =3,满足条件.所以q =3,d =2,因此6×3=a m =6+(m -5)×2,所以m =11. 4.设数列{a n }是公差大于0的等差数列,a 3,a 5分别是方程x 2-14x +45=0的两个实根.则数列{a n }的通项公式是a n =________;若b n =a n +12n +1,则数列{b n }的前n 项和T n =__________.答案 2n -1 2-n +22n解析 因为方程x 2-14x +45=0的两个根分别为5、9,所以由题意可知a 3=5,a 5=9,所以d =2,∴a n =a 3+(n -3)d =2n -1.∵b n =a n +12n +1=n ·12n ,∴T n =1×12+2×122+3×123+…+(n -1)×12n -1+n ·12n ①∴12T n =1×122+2×123+…+(n -1)×12n +n ·12n +1② ①-②得,12T n =12+122+123+…+12n -1+12n -n ·12n +1=1-n +22n +1,∴T n =2-n +22n .5.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)等于( ) A .26 B .29 C .212 D .215 答案 C解析 f ′(x )=x ′·[(x -a 1)(x -a 2)…(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)…(x -a 8)+[(x -a 1)(x -a 2)…(x -a 8)]′·x , 所以f ′(0)=(0-a 1)(0-a 2)…(0-a 8)+0=a 1a 2…a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.题型一 等差数列与等比数列的综合应用 例1 在等差数列{a n }中,a 10=30,a 20=50.(1)求数列{a n }的通项a n ;(2)令b n =2a n -10,证明:数列{b n }为等比数列.思维启迪:第(1)问列首项a 1与公差d 的方程组求a n ;第(2)问利用定义证明. (1)解 由a n =a 1+(n -1)d ,a 10=30,a 20=50, 得方程组⎩⎪⎨⎪⎧ a 1+9d =30,a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2.∴a n =12+(n -1)·2=2n +10. (2)证明 由(1),得b n =2a n -10=22n+10-10=22n =4n ,∴b n +1b n =4n +14n =4, ∴{b n }是首项是4,公比q =4的等比数列.探究提高 对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系.往往用到转化与化归的思想方法.数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1 (n ≥1).(1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且T 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .解 (1)由a n +1=2S n +1,可得a n =2S n -1+1 (n ≥2), 两式相减得a n +1-a n =2a n ,则a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1.故{a n }是首项为1,公比为3的等比数列,∴a n =3n -1.(2)设{b n }的公差为d ,由T 3=15,b 1+b 2+b 3=15,可得b 2=5,故可设b 1=5-d ,b 3=5+d ,又a 1=1,a 2=3,a 3=9, 由题意可得(5-d +1)(5+d +9)=(5+3)2, 解得d 1=2,d 2=-10.∵等差数列{b n }的各项为正,∴d >0,∴d =2,b 1=3,∴T n =3n +n (n -1)2×2=n 2+2n .题型二 数列与函数的综合应用例2 已知函数f (x )=log 2x -log x 2(0<x <1),数列{a n }满足f (2a n )=2n (n ∈N *).(1)求数列{a n }的通项公式; (2)判断数列{a n }的单调性.思维启迪:(1)将a n 看成一个未知数,解方程即可求出a n ;(2)通过比较a n 和a n +1的大小来判断数列{a n }的单调性.解 (1)由已知得log 22a n -1log 22a n=2n ,∴a n -1a n =2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1.∵0<x <1,∴0<2a n <1,∴a n <0. ∴a n =n -n 2+1.(2)方法一 ∵a n +1-a n =(n +1)-(n +1)2+1-(n -n 2+1)=1-2n +1(n +1)2+1+n 2+1>1-2n +1(n +1)+n=0,∴a n +1>a n ,∴{a n }是递增数列.方法二 ∵a n +1a n =(n +1)-(n +1)2+1n -n 2+1=n +n 2+1n +1+(n +1)2+1<1,又∵an <0,∴a n +1>a n ,∴{a n }是递增数列.探究提高 本题融数列、方程、函数单调性等知识为一体,结构巧妙、形式新颖,着重考查逻辑分析能力.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y=b x +r (b >0且b ≠1,b ,r 均为常数)的图像上. (1)求r 的值;(2)当b =2时,记b n =n +14a n (n ∈N *),求数列{b n }的前n 项和T n .解 (1)由题意,S n =b n +r , 当n ≥2时,S n -1=b n -1+r .所以a n =S n -S n -1=b n -1(b -1).由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1. (2)由(1)知,n ∈N *,a n =(b -1)b n -1=2n -1,所以b n =n +14×2n -1=n +12n +1. T n =222+323+424+…+n +12n +2,12T n =223+324+…+n2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 故T n =32-12n -n +12n +1=32-n +32n +1,n ∈N *.题型三 数列与不等式的综合应用例3 (2012·广东)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列. (1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32.思维启迪:根据前几项关系易求a 1,可以构造数列求a n ,进而利用放缩法证明不等式. (1)解 ∵a 1,a 2+5,a 3成等差数列, ∴2(a 2+5)=a 1+a 3.又2S n =a n +1-2n +1+1,∴2S 1=a 2-22+1,2S 2=a 3-23+1, ∴2a 1=a 2-3,2(a 1+a 2)=a 3-7. 由⎩⎪⎨⎪⎧2(a 2+5)=a 1+a 3,2a 1=a 2-3,2(a 1+a 2)=a 3-7得⎩⎪⎨⎪⎧a 1=1,a 2=5,a 3=19.∴a 1=1.(2)解 ∵2S n =a n +1-2n +1+1,① ∴当n ≥2时,2S n -1=a n -2n +1.②①-②得2a n =a n +1-a n -2n +1+2n ,∴a n +1=3a n +2n .两边同除以2n +1得a n +12n +1=32·a n 2n +12,∴a n +12n +1+1=32⎝⎛⎭⎫a n 2n +1. 又由(1)知a 222+1=32⎝⎛⎭⎫a 121+1, ∴数列⎩⎨⎧⎭⎬⎫a n 2n +1是以32为首项,32为公比的等比数列,∴a n 2n +1=32·⎝⎛⎭⎫32n -1=⎝⎛⎭⎫32n ,∴a n=3n -2n , 即数列{a n }的通项公式为a n =3n -2n . (3)证明 ∵a n =3n -2n =(1+2)n -2n=C 0n ·1n ·20+C 1n ·1n -1·21+C 2n ·1n -2·22+…+C n n ·10·2n -2n =1+2n +2(n 2-n )+…+2n -2n >1+2n +2(n 2-n )=1+2n 2>2n 2>2n (n -1), ∴1a n =13n -2n <12n (n -1)=12·1n (n -1), ∴1a 1+1a 2+…+1a n<1+12⎣⎡⎦⎤11×2+12×3+…+1n (n -1) =1+12⎝⎛⎭⎫1-12+12-13+…+1n -1-1n=1+12⎝⎛⎭⎫1-1n =32-12n <32, 即1a 1+1a 2+…+1a n <32.已知数列{a n }满足a 1=13,a n +1a n =2a n +1-a n ,S n 表示数列{a n }前n 项和.求证:S n <1.证明 由a 1=13≠0易知,对于任意的n ,a n ≠0,原式化为2a n -1a n +1=1,1a n +1-1=2⎝⎛⎭⎫1a n -1. 令b n =1a n -1,b 1=2,b n +1=2b n ,数列{b n }是首项为2,公比为2的等比数列,即b n =1a n -1=2n ,所以a n =12n +1,故S n =a 1+a 2+…+a n <12+122+…+12n =1-12n <1.题型四 数列的实际应用例4 某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)思维启迪:关键信息:①每年新建住房面积平均比上一年增长8%,说明新建住房面积构成等比数列模型;②中低价房的面积均比上一年增加50万平方米,说明中低价房的面积构成等差数列模型.解 (1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2017年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400×(1.08)n -1.由题意可知a n >0.85b n ,有250+(n -1)×50>400×(1.08)n -1×0.85.当n =5时,a 5<0.85b 5,当n =6时,a 6>0.85b 6, ∴满足上述不等式的最小正整数n 为6.∴到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 探究提高 解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题,这恰好是数学实际应用的具体体现.今年“十一”期间,北京十家重点公园将举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来……按照这种规律进行下去,到上午11时30分公园内的人数是 ( ) A .211-47 B .212-57 C .213-68 D .214-80 答案 B解析 由题意,可知从早晨6时30分开始,接下来的每个30分钟内进入的人数构成以4为首项,2为公比的等比数列,出来的人数构造以1为首项,1为公差的等差数列,记第n 个30分钟内进入公园的人数为a n ,第n 个30分钟内出来的人数为b n ,则a n =4×2n-1,b n =n ,则上午11时30分公园内的人数为S =2+4(1-210)1-2-10(1+10)2=212-57.用构造数列的思想解题典例:(12分)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1 (n ≥2).(1)求数列{a n }的通项公式a n ;(2)求证:S 21+S 22+…+S 2n ≤12-14n. 审题视角 (1)从求证内容来看,首先要求出S n .(2)从S n 与S n -1的递推关系来看,可考虑构造新数列⎩⎨⎧⎭⎬⎫1S n .(3)可考虑用放缩法证明.规范解答(1)解 ∵a n =-2S n ·S n -1 (n ≥2),∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2 (n ≥2),[2分]∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列,[3分]∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n ,∴S n =12n.[5分] 将S n =12n 代入a n =-2S n ·S n -1,得a n =⎩⎨⎧12(n =1),12n -2n 2(n ≥2).[6分](2)证明 ∵S 2n =14n 2<14n (n -1)=14⎝⎛⎭⎫1n -1-1n (n ≥2),S 21=14, ∴当n ≥2时,S 21+S 22+…+S 2n =14+14×2×2+…+14·n ·n<14+14⎝⎛⎭⎫1-12+…+14⎝⎛⎭⎫1n -1-1n =12-14n;[10分] 当n =1时,S 21=14=12-14×1. 综上,S 21+S 22+…+S 2n ≤12-14n.[12分] 温馨提醒 (1)在数列的解题过程中,常常要构造新数列,使新数列成为等差或等比数列.构造新数列可以使题目变得简单,而构造新数列要抓住题目信息,不能乱变形. (2)本题首先要构造新数列⎩⎨⎧⎭⎬⎫1S n ,其次应用放缩法,并且发现只有应用放缩法才能用裂项相消法求和,从而把问题解决.事实上:14n 2<14n (n -1),也可以看成一个新构造:b n =14n (n -1).(3)易错分析:构造不出新数列⎩⎨⎧⎭⎬⎫1S n ,从而使思维受阻.不会作不等式的放缩.方法与技巧1.用好等差数列和等比数列的性质可以降低运算量,减少差错.2.理解等差数列、等比数列定义、基本量的含义和应用,体会两者解题中的区别. 3.注意数列与函数、方程、三角、不等式等知识的融合,了解其中蕴含的数学思想. 4.在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题. 失误与防范1.等比数列的前n 项和公式要分两种情况:公比等于1和公比不等于1.最容易忽视公比等于1的情况,要注意这方面的练习.2.数列的实际应用问题,要学会建模,对应哪一类数列,进而求解.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.(2011·安徽)若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10等于( ) A .15B .12C .-12D .-15答案 A解析 ∵a n =(-1)n (3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.2.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于 ( ) A .6 B .7 C .8 D .9 答案 A解析 设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36,故当n =6时S n 取最小值.3.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n ) (n ∈N *),且{a n }是递增数列,则实数a 的取值范围是 ( )A.⎣⎡⎭⎫94,3B.⎝⎛⎭⎫94,3 C .(2,3) D .(1,3) 答案 C解析 数列{a n }满足a n =f (n ) (n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3.所以⎩⎪⎨⎪⎧a >1,3-a >0,a 8-6>(3-a )×7-3,解得2<a <3.4.(2012·湖北)定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x ;③f (x )=|x |;④f (x )=ln |x |.则其中是“保等比数列函数”的f (x )的序号为 ( ) A .①② B .③④ C .①③ D .②④ 答案 C解析 利用特殊化思想,选a n =2n 判定. 不妨令a n =2n .①因为f (x )=x 2,所以f (a n )=4n .显然{f (2n )}是首项为4,公比为4的等比数列. ②因为f (x )=2x ,所以f (a 1)=f (2)=22,f (a 2)=f (4)=24,f (a 3)=f (8)=28, 所以f (a 2)f (a 1)=2422=4≠f (a 3)f (a 2)=2824=16,所以{f (a n )}不是等比数列.③因为f (x )=|x |,所以f (a n )=2n =(2)n . 显然{f (a n )}是首项为2,公比为2的等比数列. ④因为f (x )=ln |x |,所以f (a n )=ln 2n =n ln 2.显然{f (a n )}是首项为ln 2,公差为ln 2的等差数列.故应选C. 二、填空题(每小题5分,共15分)5.(2011·江苏)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________. 答案33解析 由题意知a 3=q ,a 5=q 2,a 7=q 3且q ≥1,a 4=a 2+1,a 6=a 2+2且a 2≥1,那么有q 2≥2且q 3≥3.故q ≥33,即q 的最小值为33.6.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为________.答案 -10解析 由于a 1=1,a 2=-2,a n +2=-1a n,所以a 3=-1,a 4=12,a 5=1,a 6=-2,…,所以{a n }是周期为4的数列,故S 26=6×⎝⎛⎭⎫1-2-1+12+1-2=-10. 7.对正整数n ,若曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为_______________. 答案 2n +1-2解析 ∵y =x n (1-x )=x n -x n +1,∴y ′=nx n -1-(n +1)x n ,当x =2时,切线的斜率k =-(n +2)2n -1,∴在x =2处的切线方程为y +2n =-(n +2)2n -1(x -2),令x =0可得y =(n+1)2n ,即a n =(n +1)2n ,∴a n n +1=2n,即数列⎩⎨⎧⎭⎬⎫a n n +1为等比数列,其前n 项和S n =2-2n +11-2=2n +1-2.三、解答题(共22分)8.(10分)(2011·大纲全国)设数列{a n }满足a 1=0且11-a n +1-11-a n=1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n ,记S n =∑k =1n b k ,证明:S n <1.(1)解 由题设11-a n +1-11-a n=1,即⎩⎨⎧⎭⎬⎫11-a n 是公差为1的等差数列,又11-a 1=1,故11-a n=n .所以a n =1-1n .(2)证明 由(1)得b n =1-a n +1n =n +1-n n +1·n =1n -1n +1,S n =∑k =1n b k =∑k =1n ⎝⎛⎭⎪⎫1k -1k +1=1-1n +1<1. 9.(12分)已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小正整数n 的值.解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0. 由题意知:a 1q +a 1q 2+a 1q 3=28,① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0,即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2,∴a n =2n . (2)由(1)得b n =-n ·2n ,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n ). 设T n =1×2+2×22+…+n ·2n ,③ 则2T n =1×22+2×23+…+n ·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n -n ·2n +1 =2n +1-2-n ·2n +1=(1-n )·2n +1-2, ∴-T n =-(n -1)·2n +1-2. ∴S n =-(n -1)·2n +1-2. 要使S n +n ·2n +1>50成立, 即-(n -1)·2n +1-2+n ·2n +1>50,即2n >26. ∵24=16<26,25=32>26,且y =2x 是单调递增函数,∴满足条件的n 的最小值为5.B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.已知数列{a n }的通项公式为a n =log 2n +1n +2(n ∈N *),设其前n 项和为S n ,则使S n <-5成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值31答案 A解析 ∵a n =log 2n +1n +2=log 2(n +1)-log 2(n +2), ∴S n =a 1+a 2+…+a n =log 22-log 23+log 23-log 24+…+log 2(n +1)-log 2(n +2)=1-log 2(n +2),由S n <-5,得log 2(n +2)>6,即n +2>64,∴n >62,∴n 有最小值63.2.已知数列{a n }满足3a n +1+a n =4 (n ∈N *)且a 1=9,其前n 项和为S n ,则满足不等式|S n -n-6|<1125的最小正整数n 是 ( ) A .5B .6C .7D .8答案 C解析 由3a n +1+a n =4得,a n +1-1=-13(a n -1) (运用构造数列法),∴{a n -1}是以a 1-1=8为首项,-13为公比的等比数列, ∴a n -1=8·⎝⎛⎭⎫-13n -1,∴a n =8×⎝⎛⎭⎫-13n -1+1. ∴S n =8⎣⎡⎦⎤1+⎝⎛⎭⎫-13+⎝⎛⎭⎫-132+…+⎝⎛⎭⎫-13n -1+n =8×1-⎝⎛⎭⎫-13n 1+13+n =6-⎝⎛⎭⎫-13n ×6+n , ∴|S n -n -6|=⎪⎪⎪⎪⎝⎛⎭⎫-13n ×6=⎝⎛⎭⎫13n ×6<1125, 即3n >750.将n =5,6,7分别代入验证符合题意的最小正整数n =7.3.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n ) (n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1 C.n n -1D.n +1n 答案 A解析 由f ′(x )=mx m -1+a =2x +1得m =2,a =1.∴f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1. ∴S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1. 二、填空题(每小题5分,共15分)4.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a n n的最小值为________. 答案 212解析 a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2[(n -1)+(n -2)+…+1]+33=33+n 2-n ,所以a n n =33n+n -1. 设f (x )=33x +x -1,则f ′(x )=-33x 2+1. 令f ′(x )>0,得x >33或x <-33.所以f (x )在(33,+∞)上是增函数,在(0,33)上是减函数.因为n ∈N *,所以当n =5或n =6时,f (n )取最小值.因为f (5)=535,f (6)=636=212,535>212, 所以a n n 的最小值为212. 5.在等比数列{a n }中,S n 为其前n 项和,已知a 5=2S 4+3,a 6=2S 5+3,则此数列的公比q =________.答案 3解析 因为a 6-a 5=2(S 5-S 4),所以a 6=3a 5,所以q =3.6.(2011·陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.答案 2 000解析 假设20位同学是1号到20号依次排列的,使每位同学的往返所走的路程和最小,则树苗需放在第10或第11号树坑旁.此时两侧的同学所走的路程分别组成以20为首项,20为公差的等差数列,所有同学往返的总路程为S =9×20+9×82×20+10×20+10×92×20=2 000(米).三、解答题7.(13分)(2012·天津)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,证明T n +12=-2a n +10b n (n ∈N *).(1)解 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧ 2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2. 所以a n =3n -1,b n =2n ,n ∈N *.(2)证明 方法一 由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1,① 2T n =22a n +23a n -1+…+2n a 2+2n +1a 1.② ②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2=12(1-2n -1)1-2+2n +2-6n +2=10×2n -6n -10. 而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n -6n -10,故T n +12=-2a n +10b n ,n ∈N *.方法二 ①当n =1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立; ②假设当n =k 时等式成立,即T k +12=-2a k +10b k ,则当n =k +1时有T k +1=a k +1b 1+a k b 2+a k -1b 3+…+a 1b k +1=a k +1b 1+q (a k b 1+a k -1b 2+…+a 1b k )=a k +1b 1+qT k=a k +1b 1+q (-2a k +10b k -12)=2a k +1-4(a k +1-3)+10b k +1-24=-2a k +1+10b k +1-12.即T k +1+12=-2a k +1+10b k +1.因此n =k +1时等式也成立.由①和②,可知对任意n ∈N *,T n +12=-2a n +10b n 成立.。

步步高高三复习用书 第七章 7.2 课件

步步高高三复习用书 第七章 7.2  课件

则S8等于
A.31 B.32 √
C.33
D.34
a =26, 1 3 a1+5d=2, 由已知可得 解得 4 5a1+10d=30, d=-3,
解析
8×7 ∴S8=8a1+ 2 d
6
3.[P39T5] 在等差数列 {an} 中,若 a3 + a4 + a5 + a6 + a7 = 450 ,则 a2 + a8 180 =_____. 解析 由等差数列的性质,得a3+a4+a5+a6+a7=5a5=450, ∴a5=90,∴a2+a8=2a5=180.
基础自测 题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列
是等差数列.( × )
(2)等差数列{an}的单调性是由公差d决定的.( √ )
(3)等差数列的前n项和公式是常数项为0的二次函数.( × )
1
2
3
4
an=a1+ 如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是_________
(n-1)d . ________
3.等差中项 由三个数a,A,b组成的等差数列可以看成最简单的等差数列.这时,A叫做 a与b的 等差中项 . 4.等差数列的常用性质 (1)通项公式的推广:an=am+ (n-m)d (n,m∈N*). (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an . (3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为 2d . (4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.
故当n=8时,其前n项和最大.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由题意,先局部运用基本不等 式,再利用不等式的性质即可 得证.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一 利用基本不等式证明简单不等式
思维启迪 解析 探究提高
【例 1】已知 x>0,y>0,z>0. y z x z x y 求证:x+xy+y z +z ≥8.
思维启迪 解析 探究提高
【例 1】已知 x>0,y>0,z>0. y z x z x y 求证:x+xy+y z +z ≥8.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一 利用基本不等式证明简单不等式
思维启迪 解析 探究提高
【例 1】已知 x>0,y>0,z>0. y z x z x y 求证:x+xy+y z +z ≥8.
2 2
用长度 x 表示出造价,利用基本不 等式求最值即可.还应注意定义域 0<x≤5;函数取最小值时的 x 是否 在定义域内,若不在定义域内,不 能用基本不等式求最值,可以考虑 单调性.
基础知识
题型分类
思想方法
练出高分
ቤተ መጻሕፍቲ ባይዱ
题型分类·深度剖析
题型三
【例 3】
基本不等式的实际应用
某单位建造一间地面面

思 维 启 迪 解 析
由题意可得,造价 y= 12 3(2x×150+ x ×400)+5 800 16 =900x+ x +5 800 (0<x≤5),

16 y=900x+ x +5
800
800 =
≥900×2 13 000(元),
16 x× x + 5
基础知识
题型分类
思想方法
练出高分
x+1=2y+1, 当且仅当 x+2y+2xy=8, x=2, 即 y=1
时等号成立.
∴x+2y 的最小值是 4.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
16 16 变式训练 2 (2)已知 a>b>0,则 a + 的最小值是________ . ba-b
题型分类·深度剖析
题型三
【例 3】
基本不等式的实际应用
某单位建造一间地面面
思 维 启 迪 解 析
积为 12 m2 的背面靠墙的矩形小 房,由于地理位置的限制,房子 侧面的长度 x 不得超过 5 m.房 屋正面的造价为 400 元/m2,房 屋侧面的造价为 150 元/m2,屋 顶和地面的造价费用合计为 5 800 元, 如果墙高为 3 m, 且不 计房屋背面的费用.当侧面的长 度为多少时,总造价最低?
思想方法 练出高分
基础知识
题型分类
题型分类·深度剖析
题型二 利用基本不等式求最值
思维启迪 解析 答案
【例 2】
(1)已知 x>0,y>0,且 2x 1 1 +y=1,则x+y 的最小值为
(1)∵x>0,y>0,且 2x+y=1,
3+2 2 ; ________
(2)当 x>0 时,则 f(x)= 2x 的最 x2+1
基础知识 题型分类
难点正本 疑点清源
1.在应用基本不等式求最
.
值时,要把握不等式成 立的三个条件,就是 “ 一 正 —— 各 项 均 为 正;二定——积或和为 定值;三相等——等号 能否取得”,若忽略了 某个条件,就会出现 错误.
动画展示
思想方法
练出高分
基础知识·自主学习
要点梳理
3.算术平均数与几何平均数
当且仅当 x=y=z 时等号成立.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一 利用基本不等式证明简单不等式
思维启迪 解析 探究提高
【例 1】已知 x>0,y>0,z>0. y z x z x y 求证:x+xy+y z +z ≥8.
利用基本不等式证明不等式是 综合法证明不等式的一种情况, 证明思路是从已证不等式和问 题的已知条件出发, 借助不等式 的性质和有关定理, 经过逐步的 逻辑推理最后转化为需证问题.
思维启迪 解析 答案
【例 2】
(1)已知 x>0,y>0,且 2x 1 1 +y=1,则x+y 的最小值为 ________; 2x 的最 x2+1
(2)当 x>0 时,则 f(x)= 大值为________.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二 利用基本不等式求最值
思维启迪 解析 答案
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
【例 3】
基本不等式的实际应用
某单位建造一间地面面
思 维 启 迪 解 析
积为 12 m2 的背面靠墙的矩形小 房,由于地理位置的限制,房子 侧面的长度 x 不得超过 5 m.房 屋正面的造价为 400 元/m ,房 屋侧面的造价为 150 元/m ,屋 顶和地面的造价费用合计为 5 800 元, 如果墙高为 3 m, 且不 计房屋背面的费用.当侧面的长 度为多少时,总造价最低?
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
变式训练 1 已知 a>0,
证明
∵a>0,b>0,c>0,且 a+b+c=1,
b>0,c>0,且 a+b+c =1. 1 1 1 求证:a+b+ c≥9.
1 1 1 a+b+c a+b+c a+b+c ∴ + + = + + a b c a b c
难点正本 疑点清源
2 .运用公式解题时,既要 掌握公式的正用,也要注 设 a>0,b>0,则 a,b 的算术平 意公式的逆用,例如 a2 2 a+b + b ≥2ab 逆 用 就 是 均数为 ,几何平均数为 ab, 2 a2+b2 a+b ab≤ 2 ; 2 ≥ ab 两个正数 基本不等式可叙述为: (a , b>0) 逆 用 就 是 的算术平均数不小于它们的几何 a+b 2 ab≤ (a , b>0) 2 平均数 . 等.还要注意 “ 添、拆 项 ” 技巧和公式等号成 立的条件等.
16 当且仅当 x= x , 即 x=4 时取等号.
故当侧面的长度为 4 米时,总造价 最低.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
变式训练 3 (2011· 北京)某车间分批生产某种产品,每批的生产准备费 x 用为 800 元.若每批生产 x 件,则平均仓储时间为 天,且每件产品 8 每天的仓储费用为 1 元. 为使平均到每件产品的生产准备费用与仓储 费用之和最小,每批应生产产品 A.60 件
2
解析
2 b+a-b 2 a (2)∵a>b>0,∴b(a-b)≤ =4, 2
当且仅当 a=2b 时等号成立.
16 16 64 2 2 ∴a + ≥a + 2 =a + 2 ≥2 a a ba-b 4
2
64 a · 2 =16,当且仅当 a= a
2
2 2时等号成立.
16 ∴当 a=2 2,b= 2时,a + 取得最小值 16. ba-b
积为 12 m2 的背面靠墙的矩形小 房,由于地理位置的限制,房子 侧面的长度 x 不得超过 5 m.房 屋正面的造价为 400 元/m2,房 屋侧面的造价为 150 元/m2,屋 顶和地面的造价费用合计为 5 800 元, 如果墙高为 3 m, 且不 计房屋背面的费用.当侧面的长 度为多少时,总造价最低?
积定和最小) (2)如果和 x+y 是定值 p,那么当且仅 当 x=y 时,xy 有最 大 值是 和定积最大)
题型分类 思想方法
.(简记:
基础知识
练出高分
基础知识·自主学习
基础自测
题号
1 2 3 4 5
答案
81
-2
解析
8
C A
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一 利用基本不等式证明简单不等式
1 大值为________ .
1 1 2x+y 2x+y ∴x+ y= x + y y 2x y =3+x+ y ≥3+2 2.当且仅当x 2x = y 时,取等号. 2x 2 (2)∵x>0 , ∴f(x) = 2 = 1 x +1 x+x
2 ≤ =1, 2
1 当且仅当 x= , 即 x=1 时取等号. x
1 1 y=a+ab+b的最
(2)当 x>0 时,则 f(x)= 大值为________.
1 1 2x+y 2x+y ∴ + = + x y x y y 2x y =3+x+ y ≥3+2 2.当且仅当x 2x = y 时,取等号. 2x 2 (2)∵x>0 , ∴f(x) = 2 = 1 x +1 x+x 2 ≤ =1, 2 1 当且仅当 x=x, 即 x=1 时取等号.
【例 2】
(1)已知 x>0,y>0,且 2x 1 1 +y=1,则x+y 的最小值为 ________; 2x 的最 x2+1
利用基本不等式求最值可以先对 式子进行必要的变换.如第(1)问 1 1 把 x + y 中的 “1” 代换为 “2x + y”,展开后利用基本不等式;第 (2) 问把函数式中分子分母同除 “x”,再利用基本不等式.
解析
( B ) D.120 件
B.80 件
C.100 件
设每件产品的平均费用为 y 元,由题意得
800 x x · 8=20.
相关文档
最新文档