安徽省2020年高考数学 第17题优美解
三年高考(2020)高考数学试题分项版解析专题17椭圆理(含解析)

专题17椭圆考纲解读明方向考纲解读考点内容解读 要求 常考题型 预测热度1.椭圆的定义及其标准方程掌握 选择题 解答题★★★2.椭圆的几何性质掌握椭圆的定义、几何图 形、标准方程及简单性质掌握填空题 解答题 ★★★3.直线与椭圆的位置关系掌握 解答题 ★★★分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程 2能熟练运用几何性质(如范围、对 称性、顶点、离心率)解决相关问题 3能够把直线与椭圆的位置关系的问题转化为方程组解的问题 ,判断位 置关系及解决相关问题 4本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主 ,与 向量等知识的综合起来考查的命题趋势较强 ,分值约为12分,难度较大.2020年咼考全景展示【答案】D详解:因为 "叽为等腰三角形所以卩0市2=2&由AP 斜率为6得, tanAPAF 2 二 巴 A ainAPAF 2 二 COSA PAF 2 二6 订131.【2020年理数全国卷II 】已知x y,耳/是椭圆「丁訂心旳的左,右焦点,是」的左顶点,点在过|且斜率为aB.的直线上, 1r 一 d ;;,贝y 的离心率为A.C.D.【解析】分析:先根据条件得 PR=2c,再利用正弦定理得a,c 关系,即得离心率由正弦定理得sim.PAf 2AF 2 sin£APF 2所以 选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于 心:詞的方程或不等式,再根据卜;':订的关系消掉£得到的关系式,而建立关于应绥的方程或不等式,要充分利用椭圆和双曲线的几何性质、 点的坐标的范围等.2 .【2020年浙江卷】已知点 F (0 , 1),椭圆4 +y 2=mm >1)上两点A , B 满足川「=2也,则当m F _____________ 时, 点B 横坐标的绝对值最大. 【答案】5【解析】分析先根1S 条件得到"坐标间的关系,代入椭圆方程解得歩的纵坐标」即得F 的福坐折关于從 的函数关系,晶后扌魁®二次函数性质确定最值朝去.i 羊解;设机%化莎},由和=2而甯-冷=23 -乃=2仕- 1)“ -yi = 2上-3・因为上占在椭圆上:所仪手+百=忆于■疋=r +总比-3)£ =玳上手+山-f}1 = 了与亍+ F 孑=m 对应相减得Ji =宁,疋=- 10m+ 9] 4j 当且仅当用=5吋取最大值.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为 在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个 于函数最值的探求来使问题得以解决W : —— + = 1(口 > I )A 0)3.【2020年理北京卷】已知椭圆线与椭圆M 的四个交点及椭圆 M 的两个焦点恰为一个正六边形的顶点,则椭圆 M 的离心率为 ___________双曲线N 的离心率为 ___________ . 【答案】^2【解析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中 •关系,即得双曲线 N 的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为 ,再根据椭圆定义得卜一匸^力],解得椭圆M 的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为汀认I ,再根据椭圆定义得 : ,所以椭和:|x=±-^圆M 的离心率为双曲线N 的渐近线方程为加,由题意得双曲线 N 的一条渐近线的(或者多个)变量的函数,然后借助.若双曲线N 的两条渐近由八計、诂尸,可得ab =6,从而a =3, b =2•所以,椭圆的方程为(n)设点P 的坐标为(X 1,y 1),点Q 的坐标为(X 2, y 2).由已知有y 1>y 2>0,故卩叮八泊=倾斜角为 n n 2n ——=tan - = 3』 / 3m + n m + 3 m——=4* AC = 2.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于I;虫箱的方程或不等式,再根据卜黒的关系消掉E 得到的关系式,而建立关于|怎冷•:的方程或不等式,要充分利用椭圆和双曲线的几何性质、 点的坐标的范围等.4.【2020年理数天津卷】设椭圆 (a >b >0)的左焦点为F ,上顶点为B 已知椭圆的离心率为 3 ,点A 的坐标为顾,且丨皿一;. (I )求椭圆的方程; (II )设直线l与椭圆在第一象限的交点为 P,且I 与直线AB 交于点Q 若(O 为原点),求k 的值.11【答案】(i )|;(n )2或想【解析】分析:(I)由题意结合椭圆的性质可得 a =3, b =2.则椭圆的方程为.(n)设点P 的坐儿=i\可得.由1 •据此得到关于k 的方程,解方程可得 k 的值为 或标为(X 1 ,yj ,点Q 的坐标为(X 2, y 2).由题意可得5y 1=9y 2.由方程组1°2k11详解:(I)设椭圆的焦距为2c ,由已知知,又由a 2=b 2+c 2,可得2a =3b .由已知可得,I":-打,■‘,X i ,因为sin^OAB 而/ 71 1叔1_曾•OA两,故1饨| =佝2.由|卩Q厂4呵°,可得5y i=9y2.由方程组,y-kx, x2 y2—+ 5-^U q 4消去X , 可得J恣1=瓷易知直线AB的方程为x+y - 2=0,由方程组•消去2kx,可得.由5y i=9y2,可得5 (k+1)=,两边平方,整理得11 = 0,解得丹―旳.又t= 11 1 11或 厉•所以,k 的值为2或函’点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力, 重视根与系数之间的关系、 弦长、斜率、三角形的面积等问题.W(1, m)(m > 0).为 上一点,且悴;“阳咔感:剧.证明:两, , 成等差数列,并求该数 列的公差.【答案】(1)【解析】分析:⑴ 设而不求,利用点建法进行证明。
精品解析:2020年全国统一高考数学试卷(理科)(新课标Ⅲ)(解析版)

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数113i-的虚部是( ) A. 310-B. 110-C.110D.310【答案】D 【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C. 14230.2,0.3p p p p ==== D. 14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( ) A. 3135-B. 1935-C.1735D.1935【答案】D 【解析】 【分析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B. 13C. 12D.23【答案】A 【解析】 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161 cos22339 AB BC ACBAB BC+-+-===⋅⨯⨯故1 cos9B=.故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A. 6+42B. 4+42C. 6+23D. 4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:22AB AD DB===∴ADB△是边长为22根据三角形面积公式可得:211sin60222ADBS AB AD=⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tanθ–tan(θ+π4)=7,则tanθ=()A. –2B. –1C. 1D. 2【答案】D【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan74πθθ⎛⎫-+=⎪⎝⎭,tan12tan71tanθθθ+∴-=-,令tan,1t tθ=≠,则1271ttt+-=-,整理得2440t t-+=,解得2t=,即tan2θ=.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l与曲线yx2+y2=15都相切,则l的方程为()A. y=2x+1B. y=2x+12C. y=12x+1 D. y=12x+12【答案】D【解析】【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y=(0x,则00x>,函数y=y'=,则直线l的斜率k=,设直线l的方程为)0y x x=-,即x x-+=,由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1 B. 2C. 4D. 8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >. 综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以max 31227z =⨯+⨯=.故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x+的展开式中常数项是__________(用数字作答).【答案】240 【解析】 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项. 【详解】622x x ⎛⎫+ ⎪⎝⎭ 其二项式展开通项:()62612rrrr C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r r r r x C x --⋅=⋅1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=. 故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C r n r rr n T a b -+=,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】2π 【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于223122AM =-=1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯= 解得:2r,其体积:3423V r π==. 2. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+, 证明如下:当1n =时,13a =成立; 假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; (2)由(1)可知,2(21)2nnn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 33 37空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;(2)427. 【解析】 【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内; (2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =, 同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F , ()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由0m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的法向量为()222,,n x y z =,由110n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,7cos ,321m n m n m n⋅<>===⨯⋅ 设二面角1A EF A --的平面角为θ,则7cos θ=,242sin 1cos 7θθ∴=-=. 因此,二面角1A EF A --42. 【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m +=<<的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率c e a ==== 解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=; (2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:22231111055125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:15555252⨯⨯=;②当P 点为(3,1)-时, 故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题. 21.设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b =-;(2)证明见解析 【解析】 【分析】(1)利用导数的几何意义得到'1()02f =,解方程即可; (2)由(1)可得'2311()32()()422f x x x x =-=+-,易知()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-; (2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-,令'()0f x >,得12x >或21x <-;令'()0f x <,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增, 且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+, 若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>, 又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<, 又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0x ',即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1. 【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)2)3cos sin 120ρθρθ-+=【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--, 则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }.【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明; (2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc +++=⋅==,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=. 当且仅当b c =时,取等号,a ∴≥,即3max{,,}4abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。
2020高考全国二卷数学试题分析解析解读

2020高考全国二卷数学试题分析解析解读2020年1月,教育部发布《中国高考评价体系》,明确“一核”、“四层”、“四翼”的高考评价体系,即高考要体现“立德树人、服务选才、引导教学”的核心功能,考查“核心价值、学科素养、关键能力、必备知识”四层内容考查要求,考查“基础性、综合性、应用性、创新性”的四翼要求。
2020年全国Ⅱ卷高考文理科数学试题,依托高考评价体系,充分落实了“一核”“四层”“四翼”的要求,在试题整体结构稳定的基础上,有适度创新,突出数学学科特色,突出学科素养导向,有时代特色,注重能力考查,着重考查学生的思维能力,综合运用数学思维方法分析问题、解决问题的能力。
试题主要呈现以下特点:一、试题稳中有变,大题结构动态调整2020年的高考数学保持题型、考点、难度的相对稳定,但是为了对接新高考,以学科素养立意命题,增加了阅读量、信息量,学生明显表现出不适应,感觉难度增大。
尤其是在题的顺序上打破常规,文理科的第3、4题新颖试题过早出现,出乎学生意料,耽误了一定的答题时间,在感觉和信心上受挫。
若学生能及时调整答题策略,后面的选择填空题都很常规,多数学生都能轻松解决。
此试卷对学生和教师的提醒是,困难的试题可能会在试卷的任何地方出现,不能再坚持难题一定在后面的观念了。
全国Ⅱ卷的理科和文科试题,对主观题的结构布局及考查难度也都进行了动态调整,文理科的解答题顺序均为:17题解三角形、18题概率统计,19题圆锥曲线,20题立体几何,21题函数导数;22、23题为二选一。
其中第一道大题第17题考查解三角形的相关知识,替换了2019年的立体几何大题的位置;而立体几何大题后移至第20题,仍然考查平行、垂直关系,直线和平面所成的角及体积的计算,但灵活性加大;解析几何大题前移至第19题的位置,难度有所降低。
大题结构的调整主要考查学生灵活应变的能力和主动调整适应的能力。
对重点内容的考查,在整体符合考试大纲的前提下,各部分内容和难度进行动态设计,这种设计有助于学生全面学习和掌握重点知识和重点内容,同时破解应试教育,指导高中教学。
数学关键能力的培养--以2020年高考数学全国卷Ⅲ理科第17题为例

数学关键能力的培养以2020年高考数学全国卷Ⅲ理科第17题为例卢会玉(甘肃省嘉峪关市第一中学㊀735100)摘㊀要:2018年高考数学全国卷Ⅰ文科卷第17题和2020年高考数学全国卷Ⅲ理科第17题有很多相像的地方.笔者从复习备考时对2018年高考数学全国卷Ⅰ文科卷第17题的三个改编题入手ꎬ分析如何一步步的培养学生的分析㊁归纳和运算等数学关键能力.数学的关键能力离不开数学核心素养ꎬ两者是相辅相成的ꎬ提高数学关键能力首先要提高数学核心素养.与此同时ꎬ数学核心素养提高了ꎬ数学关键能力相应的也会得到提高.进而又分析了今年高考题是如何考查数学核心素养的ꎬ以期获得一些教学和学习经验.关键词:2020高考ꎻ数学关键能力ꎻ数学核心素养中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2021)10-0030-03收稿日期:2021-01-05作者简介:卢会玉(1981.7-)ꎬ女ꎬ甘肃省天水人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀2020年的高考在经历了千难万难后落下帷幕ꎬ从看到高考题的那一刻起ꎬ脑海中浮现的都是当时和学生一起备考的画面.尤其是看到2020年高考数学全国卷Ⅲ理科第17题时ꎬ更是兴奋不已.因为在复习数列专题时ꎬ为了培养学生的分析㊁归纳㊁推理和计算能力ꎬ特意将2018年高考数学全国卷Ⅰ文科卷第17题进行了改编ꎬ进行了全方位的备考.«中国高考评价体系»明确指出:关键能力是高考考查的重点内容.但是有教师混淆了关键能力和数学技巧的区别ꎬ试图通过不断的训练获得关键能力.笔者认为ꎬ关键能力的考查是在建立在基本技能和基本思想的基础上进行的综合能力的考查.㊀㊀一㊁一个原题三个改编例1㊀(2018年高考数学全国卷Ⅰ文科卷第17题)已知数列an{}满足a1=1ꎬnan+1=2n+1()anꎬ设bn=ann.㊀(1)求b1ꎬb2ꎬb3ꎻ(2)判断数列bn{}是否为等比数列ꎬ并说明理由ꎻ(3)求an{}的通项公式.解析㊀(1)由条件可得an+1=2n+1()nan.将n=1代入得ꎬa2=4a1ꎬ而a1=1ꎬ所以a2=4.将n=2代入得ꎬa3=3a2ꎬ所以a3=12.从而b1=1ꎬb2=2ꎬb3=4ꎻ(2)bn{}是首项为1ꎬ公比为2的等比数列.由条件可得an+1n+1=2annꎬ即bn+1=2bnꎬ又b1=1ꎬ所以bn{}是首项为1ꎬ公比为2的等比数列ꎻ(3)由(2)可得ann=bn=1ˑ2n-1=2n-1ꎬ所以an=n 2n-1.㊀笔者认为该题更多的是考查学生的运算能力ꎬ因为bn=ann在题干中明确的给出ꎬ对于学生来说ꎬ基本没有涉及到分析㊁归纳和推理能力的考查ꎬ所以为了提高学生能力ꎬ对题目进行改编是有必要的.例2㊀(2018年高考数学全国卷Ⅰ文科卷第17题改编题)已知数列an{}满足a1=1ꎬnan+1=2n+1()anꎬ求an{}的通项公式.将题目改编成直接求an{}的通项公式ꎬ对学生关键能力的要求就非常高了.学生必须要明确一定有一个新数列产生ꎬ从而借助新数列解决an{}的通项公式.这个过程中ꎬ学生必然要进行分析ꎬ经过综合考虑之后进行归纳和推理ꎬ进而加以证明ꎬ获得结论.具体解题过程和原题基本一样.例3㊀(2018年高考数学全国卷Ⅰ文科卷第17题改03编题)已知数列an{}满足a1=1ꎬnan+1=2n+1()an.(1)计算a2ꎬa3ꎬa4ꎬa5ꎻ(2)求an{}的通项公式.将题目改编成先计算前五项再求an{}的通项公式ꎬ对学生关键能力的要求较高.给学生提供了一种先通过写出前几项再进行分析ꎬ从而发现结论的思路.考查的是学生的归纳能力和计算能力.具体解题过程和原题基本一样.例4㊀(2018年高考数学全国卷Ⅰ文科卷第17题改编题)已知数列an{}满足a1=1ꎬnan+1=2n+1()anꎬ设bn=ann.(1)判断数列bn{}是否为等比数列ꎬ并说明理由ꎻ(2)求an{}的通项公式.(3)求数列an{}的前n项和Sn.改编成如上问题ꎬ主要是想考查学生的运算能力ꎬ将bn=ann在题干中明确的给出ꎬ是为了减少学生分析㊁归纳和推理的思维量.学生求出an{}的通项公式后ꎬ发现an=n 2n-1ꎬ这对学生来说ꎬ是一个比较熟悉的错位相减法求和问题ꎬ对学生运算能力的要求较高.经过对2018年高考数学全国卷Ⅰ文科卷第17题的改编ꎬ重点培养了学生分析问题的能力㊁归纳问题的能力以及运算能力.令人欣喜的是ꎬ果不其然今年的高考题正是考查这方面的知识和能力.㊀㊀二㊁一个原题一些思考(2020年高考数学全国卷Ⅲ理科第17题)设数列an{}满足a1=3ꎬan+1=3an-4n.(1)计算a2ꎬa3ꎬ猜想an{}的通项公式并加以证明ꎻ(2)求数列2nan{}的前n项和Sn.解析㊀(1)由题意可得a2=3a1-4=9-4=5ꎬa3=3a2-8=15-8=7ꎬ由数列an{}的前三项可猜想数列an{}是以3为首项ꎬ2为公差的等差数列ꎬ即an=2n+1ꎬ证明如下:当n=1时ꎬa1=3成立ꎻ假设n=k时ꎬak=2k+1成立.那么n=k+1时ꎬak+1=3ak-4k=3(2k+1)-4k=2k+3=2(k+1)+1也成立.则对任意的nɪN∗ꎬ都有an=2n+1成立ꎻ(2)由(1)可知ꎬan 2n=(2n+1) 2nSn=3ˑ2+5ˑ22+7ˑ23+ +(2n-1) 2n-1+(2n+1) 2n①2Sn=3ˑ22+5ˑ23+7ˑ24+ +(2n-1) 2n+(2n+1) 2n+1②由①-②得:-Sn=6+2ˑ22+23+ +2n()-(2n+1) 2n+1=6+2ˑ22ˑ1-2n-1()1-2-(2n+1) 2n+1=(1-2n) 2n+1-2ꎬ即Sn=(2n-1) 2n+1+2.数学的关键能力有五项:逻辑思维能力㊁运算求解能力㊁空间想象能力㊁数学建模能力和创新能力.该题明显考查学生的分析能力㊁归纳能力和运算能力ꎬ指向非常明确.高考评价体系确立的是基础性㊁综合性㊁应用性㊁创新性的考查要求ꎬ本题体现是基础性.对基本技能和基本思想的要求较高.数学的关键能力离不开数学核心素养ꎬ两者是相辅相成的ꎬ提高数学关键能力首先要提高数学核心素养.与此同时ꎬ数学核心素养提高了ꎬ数学关键能力相应的也会得到提高.那么今年高考数列题是如何考查数学核心素养的呢?1.核心素养之数学抽象数学抽象是指舍去事物的一切物理属性ꎬ得到数学研究对象的思维过程.要求学生能从事物的具体背景中抽象出一般规律和结构ꎬ并且用数学符号或者数学术语予以表征.例㊀(2020年高考数学全国卷Ⅱ理科第4题)北京天坛的圜丘坛为古代祭天的场所ꎬ分上㊁中㊁下三层ꎬ上层中心有一块圆形石板(称为天心石)ꎬ环绕天心石砌9块扇面形石板构成第一环ꎬ向外每环依次增加9块ꎬ下一层的第一环比上一层的最后一环多9块ꎬ向外每环依次也增加9块ꎬ已知每层环数相同ꎬ且下层比中层多729块ꎬ则三层共有扇面形石板(不含天心石)(㊀㊀).A.3699块㊀B.3474块㊀C.3402块㊀D.3339块解析㊀设第n环天石心块数为anꎬ第一层共有n环ꎬ则an{}是以9为首项ꎬ9为公差的等差数列ꎬan=9+(n-1)ˑ9=9nꎬ设Sn为an{}的前n项和ꎬ则第一层㊁第二层㊁第三层的块数分别为SnꎬS2n-SnꎬS3n-S2nꎬ因为下层比中层多729块ꎬ所以S3n-S2n=S2n-Sn+729ꎬ即3n(9+27n)213-2n(9+18n)2=2n(9+18n)2-n(9+9n)2+729ꎬ即9n2=729ꎬ解得n=9ꎬ所以S3n=S27=27(9+9ˑ27)2=3402.故选C.本题主要考查学生的数学抽象能力ꎬ需要学生能将实际问题转化为数列问题ꎬ并且要读懂题目所表达的意思.涉及等差数列前n项和有关的计算问题ꎬ进而考查学生数学运算能力ꎬ算是一道容易题.2.核心素养之数据分析数据分析是指从数据中获得有用的信息ꎬ形成知识的过程ꎬ主要包括:收集数据提取信息ꎬ利用图表展示数据ꎬ构建模型分析数据ꎬ解释数据蕴含的结论.例㊀(2020年高考数学全国卷Ⅱ理科第12题)0-1周期序列在通信技术中有着重要应用.若序列a1a2 an 满足aiɪ{0ꎬ1}(i=1ꎬ2ꎬ )ꎬ且存在正整数mꎬ使得ai+m=ai(i=1ꎬ2ꎬ )成立ꎬ则称其为0-1周期序列ꎬ并称满足ai+m=ai(i=1ꎬ2ꎬ )的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2 an ꎬC(k)=1mðmi=1aiai+k(k=1ꎬ2ꎬ ꎬm-1)是描述其性质的重要指标ꎬ下列周期为5的0-1序列中ꎬ满足C(k)ɤ15(k=1ꎬ2ꎬ3ꎬ4)的序列是(㊀㊀).A.11010 ㊀㊀㊀㊀B.11011C.10001 D.11001解析㊀由ai+m=ai知ꎬ序列ai的周期为mꎬ由已知ꎬm=5ꎬC(k)=15ð5i=1aiai+kꎬk=1ꎬ2ꎬ3ꎬ4对于选项A.C(1)=15ð5i=1aiai+1=15(a1a2+a2a3+a3a4+a4a5+a5a6)=15(1+0+0+0+0)=15ɤ15C(2)=15ð5i=1aiai+2=15(a1a3+a2a4+a3a5+a4a6+a5a7)=15(0+1+0+1+0)=25ꎬ不满足ꎻ对于选项B.C(1)=15ð5i=1aiai+1=15(a1a2+a2a3+a3a4+a4a5+a5a6)=15(1+0+0+1+1)=35ꎬ不满足ꎻ对于选项D.C(1)=15ð5i=1aiai+1=15(a1a2+a2a3+a3a4+a4a5+a5a6)=15(1+0+0+0+1)=25ꎬ不满足ꎻ故选C.本题考查数列的新定义问题ꎬ涉及到周期数列ꎬ考查学生对新定义的理解能力以及数据分析能力和数学运算能力ꎬ是一道中档题.3.核心素养之数学运算数学运算是指在明晰运算对象的基础上ꎬ依据运算法则解决书序问题ꎬ主要包括:理解运算对象ꎬ掌握运算法则ꎬ探究运算方向ꎬ选择运算方法ꎬ设计运算程序ꎬ求得运算结果.例㊀(2020年高考数学全国卷Ⅰ理科第17题)设an{}是公比不为1的等比数列ꎬa1为a2ꎬa3的等差中项.(1)求an{}的公比ꎻ(2)若a1=1ꎬ求数列{nan}的前n项和.解析㊀(1)设an{}的公比为qꎬa1为a2ꎬa3的等差中项ꎬ㊀ȵ2a1=a2+a3ꎬa1ʂ0ꎬʑq2+q-2=0ꎬȵqʂ1ꎬʑq=-2ꎻ(2)设{nan}的前n项和为Snꎬa1=1ꎬan=(-2)n-1ꎬSn=1ˑ1+2ˑ(-2)+3ˑ(-2)2+ +n(-2)n-1ꎬ①-2Sn=1ˑ(-2)+2ˑ(-2)2+3ˑ(-2)3+ (n-1)(-2)n-1+n(-2)nꎬ②①-②得ꎬ3Sn=1+(-2)+(-2)2+ +(-2)n-1-n(-2)n=1-(-2)n1-(-2)-n(-2)n=1-(1+3n)(-2)n3ꎬʑSn=1-(1+3n)(-2)n9.本题考查等比数列通项公式基本量的计算㊁等差中项的性质ꎬ以及错位相减法求和ꎬ考查计算求解能力ꎬ属于基础题.数学运算几乎每道题都会涉及到ꎬ有句俗语说:想到不如做到!很多学生不是想不到ꎬ而是想到了却做错了ꎬ这就是典型的数学运算能力欠缺.应该在平时的学习中利用一切机会进行训练ꎬ在不断犯错又不断改错中ꎬ运算能力才能得到提高.㊀㊀参考文献:[1]陈国林.例谈数列中的数字文化[J].高中生之友ꎬ2019(10):42-43.[责任编辑:李㊀璟]23。
专题17 概率-2023年高考数学真题题源解密(新高考)(解析版)

专题17 概率目录一览2023真题展现考向一概率考向二离散型随机变量及其分布列真题考查解读近年真题对比考向一概率考向二离散型随机变量及其分布列考向三正太分布命题规律解密名校模拟探源易错易混速记/二级结论速记考向一概率1.(多选)(2023•新高考Ⅱ•第12题)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1﹣α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1﹣β.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)( )A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1﹣α)(1﹣β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1﹣β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1﹣β)2+(1﹣β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率【答案】ABD解:采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为:(1﹣β)(1﹣α)(1﹣β)=(1﹣α)(1﹣β)2,故A正确;采用三次传输方案,若发送1,依次收到1,0,1的概率为:(1﹣β)β(1﹣β)=β(1﹣β)2,故B正确;采用三次传输方案,若发送1,则译码为1包含收到的信号为包含两个1或3个1,故所求概率为:C23β(2−β)2+(1−β)3,故C错误;三次传输方案发送0,译码为0的概率P1=C23α(1−α)2+(1−α)3,单次传输发送0译码为0的概率P2=1﹣α,P2−P1=(1−α)−C23α(1−α)2−(1﹣α)3=(1−α)[1−C23α(1−α)−(1−α)2]=(1﹣α)(2α2﹣α)=(1﹣α)α(2α﹣1),当0<α<0.5时,P2﹣P1<0,故P2<P1,故D正确.考向二离散型随机变量及其分布列2.(2023•新高考Ⅰ•第21题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;(3)已知:若随机变量X i服从两点分布,且P(X i=1)=1﹣P(X i=0)=q i,i=1,2,⋯,n,则E(ni=1X i)=ni=1q i.记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E(Y).【解答】解:(1)设第2次投篮的人是乙的概率为P,由题意得P=0.5×0.4+0.5×0.8=0.6;(2)由题意设P n为第n次投篮的是甲,则P n+1=0.6P n+0.2(1﹣P n)=0.4P n+0.2,∴P n+1−13=0.4(P n−13),又P1−13=12−13=16≠0,则{P n−13}是首项为16,公比为0.4的等比数列,∴P n−13=16×(25)n﹣1,即P n=13+16×(25)n﹣1,∴第i次投篮的人是甲的概率为P i=13+16×(25)i﹣1;(3)由(2)得P i=13+16×(25)i﹣1,由题意得甲第i次投篮次数Y i服从两点分布,且P(Y i=1)=1﹣P(Y i=0)=P i,∴E(ni=1Y i)=E(Y)=ni=1P i,∴当n≥1时,E(Y)=ni=1P i=1(25)i−1+n3=16[1−(25)n]1−25+n3=518[1﹣(25)n]+n3;当n =0时,E (Y )=0=518[1﹣(25)0]+03,综上所述,E (Y )=518[1﹣(25)n ]+n3,n ∈N .【命题意图】概率、随机变量的分布列与数学期望.【考查要点】概率多为小题。
安徽省2020年高考数学试题分析 人教版

安徽省2020年高考数学试题分析2020年安徽高考改革,已经进入了一个崭新的阶段,整体发生了前所未有的变化,首次自行编制并颁布《考试说明》。
继2020年英语自主命题后,2020年语文、数学、英语自主命题,首次计算机网上阅卷。
这些变化,曾经使2020年参加高考的46万考生和家长、广大高三教师、以及社会方方面面关心高考的各界人士高度关注。
现在2020年安徽高考已经尘埃落定。
就高考而言,全省各地几家欢乐几家愁。
语文、数学、英语自主命题,成功得失众说纷纭。
下面我将通过对安徽数学试卷的数据分析,分析安徽高考数学试题的特点。
通过回顾备考2020年高考的风雨历程,审视2020年高三复习备考策略的成败得失,为2020年高三复习、高考备考积累经验。
一、统计数据分析(一)题型结构2020年安徽高考数学卷从题型结构来看,基本上保持了《高考说明》和《考试大纲》的要求。
即选择题、填空题、解答题三种题型结构与2020年全国卷相同。
题量、分值也保持不变。
其难度和区分度的要求达到或基本达到2020年全国卷的程度。
2020年高考全国卷的题型结构(表一)2020年高考安徽数学卷统计数据(表二)(二)理科成绩呈正态分布2020年安徽理科考生的成绩呈正态分布,峰值在65~95之间,而且不高。
说明考生的分布比较均匀,考试对考生的区分度较好,中等难度(p=平均得分满分)值在0.4~0.7之间)的试卷比例合适。
但是容易题(p值为0.7以上)比例较低,难度题(p值为0.3以下)比例较高。
2020安徽数学试题有较强的区分度。
现在我们还没有看见2020年全省数学成绩的有关统计数据,现以安庆市为例进行分析:理科考生的成绩仍然呈正态分布,从考生分布的直方图可以看出,考分峰值73.71~103.71,容易题比例较2020年全国数学试卷有较大比例的提高(即p值为0.7以上的题目)。
选择题1~10题都不难,给后面综合题的解答赢得了宝贵的时间,这是2020年数学考分有较大提高的一个重要原因。
2020高考数学全国卷1卷试题及答案详解

绝密★启用前2020年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题).全卷满分150分.考试用时120分钟. 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置. 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效. 3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效. 4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效. 5.考试结束后,请将本试卷和答题卡一并上交. 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若1z i =+,则22z z -=A .0B .1C 2D .22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x =-≤≤,则a =A .4-B .2-C .2D .43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 51-B 51-C 51+D 51+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C ︒)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(),1,2,,20i i x y i =得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y a bx =+B .2y a bx =+C .x y a be =+D .ln y a b x =+6.函数43()2f x x x =-的图像在点()()1,1f 处的切线方程为 A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.设函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭在[],ππ-的图像大致如下图,则()f x 的最小正周期为A .109πB .76π C .43π D .32π 8.25()()y x x y x ++的展开式中33x y 的系数为A .5B .10C .15D .209.已知(0,)απ∈,且3cos28cos 5αα-=,则sin α= A .53B .23 C .13D .5910.已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC △的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知22:2220M x y x y +---=,且直线:220l x y ++=,P 为l 上的动点,过点P 作M 的切线PA ,PB ,切点为A ,B ,当AB PM ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a b a b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足约束条件2201010x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩,则7z x y =+的最大值是________.14.设,a b 为单位向量,且1+=a b ,则-=a b ________.15.已知F 为双曲线2222:1x y C a b-=(0,0a b >>)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 斜率为3,则C 的离心率为_______.16.如图,在三棱锥P ABC -的平面展开图中1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ︒∠=,则cos FCB ∠=__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前项和.18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =. (1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.20.(12分)已知,A B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=.P为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.21.(12分)已知函数()2x f x e ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的参数方程为cos sin kkx ty t ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.23.[选修4-5:不等式选讲](10分)已知函数()3121f x x x =++-. (1)画出()y f x =的图象;(2)求不等式()()1f x f x >+的解集.参考答案一、选择题15DBCCD - 610BCCAA - 11.D 12.B二、填空题13.1 14.3 15.2 116.4-三、解答题17.解:(1)设{}n a 的公比为q ,由题设得1232a a a =+,即21112a a q a q =+∴220q q +-=,解得1q =(舍去)或2q =-. ∴{}n a 的公比为2-.(2)记n S 为{}n na 的前n 项和,由(1)及题设可知()12n n a -=-,∴ ()()11222n n S n -=+⨯-++⨯- ①()()()2222212nn S n -=-+⨯-++-⨯- ②由①②得()()()()21312222n nn S n -=+-+-++--⨯-()()1223nnn --=-⨯-∴()()312199nn n S +-=- 18.解:(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===, ∴222PA PB AB +=,∴PA PB ⊥,又222PA PC AC +=,∴PA PC ⊥, ∴PA ⊥平面PBC(2)以O 为坐标原点,OE 方向为y 轴正方向,OE 为单位长, 建立如图所示的空间直角坐标系O xyz -. 由题设可得()()310,1,0,0,1,0,,,022E A C ⎛⎫--⎪⎝⎭, xyz。
三年高考(2020)高考数学试题分项版解析 专题17 椭圆 文(含解析)

专题17 椭圆文考纲解读明方向考纲解读分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2020年高考全景展示1.【2020年全国卷II文】已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.【答案】D【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.2.【2020年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B 横坐标的绝对值最大.【答案】5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m 的函数关系,最后根据二次函数性质确定最值取法.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2020年天津卷文】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】(Ⅰ);(Ⅱ).【解析】分析:(I)由题意结合几何关系可求得.则椭圆的方程为.(II)设点P的坐标为,点M的坐标为,由题意可得.易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.所以,椭圆的方程为.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4.【2020年文北京卷】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B. (Ⅰ)求椭圆M的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点共线,求k.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】分析:(1)根据题干可得的方程组,求解的值,代入可得椭圆方程;(2)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.详解:(Ⅰ)由题意得,所以,又,所以,所以,所以椭圆的标准方程为.(Ⅱ)设直线的方程为,由消去可得,则,即,设,,则,,则,易得当时,,故的最大值为.点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.2020年高考全景展示1.【2020浙江,2】椭圆的离心率是A.B.C.D.【答案】B【解析】试题分析:,选B.【考点】椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2020课标1,文12】设A、B是椭圆C:长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是A.B.C.D.【答案】A【解析】【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是利用条件确定的关系,求解时充分借助题设条件转化为,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.3.【2020课标3,文11】已知椭圆C:,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为()A.B.C.D.【答案】A【解析】以线段为直径的圆是,直线与圆相切,所以圆心到直线的距离,整理为,即,即,,故选A.【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2020课标II,文20】设O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N,点P满足(1)求点P的轨迹方程;(2)设点在直线上,且.证明过点P且垂直于OQ的直线过C的左焦点F.【答案】(1)(2)见解析【解析】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程,(2)证明直线过定点问题,一般方法以算代证:即证,先设 P(m,n),则需证,根据条件可得,而,代入即得.(2)由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得,又由(1)知,故.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F【考点】求轨迹方程,直线与椭圆位置关系【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.5.【2020北京,文19】已知椭圆C的两个顶点分别为A(−2,0),B(2,0),焦点在x轴上,离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)根据条件可知,以及,求得椭圆方程;(Ⅱ)设,则,根据条件求直线的方程,并且表示直线的方程,并求两条直线的交点,根据,根据坐标表示面积比值.(Ⅱ)设,则.由题设知,且.直线的斜率,故直线的斜率.所以直线的方程为.【考点】1.椭圆方程;2.直线与椭圆的位置关系.【名师点睛】本题对考生计算能力要求较高,重点考察了计算能力,以及转化与化归的能力,解答此类题目,利用的关系,确定椭圆方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,一般都是根据根与系数的关系解题,但本题需求解交点坐标,再根据面积的几何关系,从而求解面积比值,计算结果,本题易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.6.【2020江苏,17】如图,在平面直角坐标系中,椭圆的左、右焦点分别为, ,离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.(1)求椭圆的标准方程;(2)若直线的交点在椭圆上,求点的坐标.【答案】(1)(2)【解析】解:(1)设椭圆的半焦距为c.因为椭圆E的离心率为,两准线之间的距离为8,所以,,解得,于是,因此椭圆E的标准方程是.由①②,解得,所以.因为点在椭圆上,由对称性,得,即或.又在椭圆E 上,故.由,解得;,无解.因此点P 的坐标为.【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程. 2020年高考全景展示1.【2020高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34【答案】B考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .2.[2020高考新课标Ⅲ文数]已知为坐标原点,是椭圆:的左焦点,分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为( )(A )(B ) (C ) (D )【答案】A【解析】考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得的值,进而求得的值;(2)建立的齐次等式,求得或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.3.【2020高考新课标2文数】已知是椭圆:的左顶点,斜率为的直线交与,两点,点在上,.(Ⅰ)当时,求的面积;(Ⅱ)当时,证明:.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.试题解析:(Ⅰ)设,则由题意知.由已知及椭圆的对称性知,直线的倾斜角为,又,因此直线的方程为.将代入得,解得或,所以.因此的面积.考点:椭圆的性质,直线与椭圆的位置关系.【名师点睛】本题中,分离变量,得,解不等式,即求得实数的取值范围.4.【2020高考北京文数】(本小题14分)已知椭圆C:过点A(2,0),B(0,1)两点.(I)求椭圆C的方程及离心率;(Ⅱ)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【答案】(Ⅰ);(Ⅱ)见解析.【解析】试题分析:(Ⅰ)根据两顶点坐标可知a,b的值,则亦知椭圆方程,根据椭圆性质及离心率公式求解;(Ⅱ)四边形的面积等于对角线乘积的一半,分别求出对角线的值求乘积为定值即可.试题解析:(I)由题意得,,.所以椭圆的方程为.又,所以离心率.令,得,从而.所以四边形的面积.从而四边形的面积为定值.考点:椭圆方程,直线和椭圆的关系,运算求解能力.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.。