1997年安徽高考文科数学真题及答案
安徽历年高考文科数学试题及答案汇编十数列

安徽历年高考文科数学试题及答案汇编十数列试题1、15.(4分)(2008安徽)在数列{a n }中,a n =4n ﹣,a 1+a 2+…+a a =an 2+bn ,n ∈N *,其中a ,b 为常数,则ab= . 2、5.(5分)(2009安徽)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ) A .﹣1 B .1 C .3 D .73、5.(5分)(2010安徽)设数列{}n a 的前n 项和2n S n ,则8a 的值为(A ) 15 (B) 16 (C) 49 (D )644、7.(5分)(2011安徽)若数列{a n }的通项公式是a n =(﹣1)n(3n ﹣2),则a 1+a 2+…+a 10=( )A .15B .12C .﹣12D .﹣15 5、5.(5分)(2012安徽)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=n n 8379 A . ﹣6 B . ﹣4 C . ﹣2 D . 2 7、12.(5分)(2014安徽)如图,在等腰直角三角形ABC 中,斜边BC=2,过点A 作BC 的垂线,垂足为A 1,过点A 1作AC 的垂线,垂足为A 2,过点A 2作A 1C 的垂线,垂足为A 3…,依此类推,设BA=a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7= .8、13.(3分)(2015安徽)已知数列{a n }中,a 1=1,a n =a n ﹣1+(n≥2),则数列{a n }的前9项和等于 . 解答题 1、21.(12分)(2008安徽)设数列{a n }满足a 1=a ,a n+1=ca n +1﹣c ,n ∈N*,其中a ,c 为实数,且c≠0(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设N*,求数列{b n }的前n 项和S n ;(Ⅲ)若0<a n <1对任意n ∈N*成立,证明0<c≤1.2、19.(12分)(2009安徽)已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2﹣b n(Ⅰ)求数列{a n }与{b n }的通项公式;(Ⅱ)设c n =a n 2•b n ,证明:当且仅当n≥3时,c n+1<c n . 3、21.(本小题满分13分) (2010安徽) 设12,,,,n C C C 是坐标平面上的一列圆,它们的圆心都在x 轴的正半轴上,且都与直线3y x =相切,对每一个正整数n ,圆n C 都与圆1n C +相互外切,以n r 表示n C 的半径,已知{}n r 为递增数列.(Ⅰ)证明:{}n r 为等比数列;(Ⅱ)设11r =,求数列{}nn r 的前n 项和.4、21.(13分)(2011安徽)在数1 和100之间插入n 个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n ,再令a n =lgT n ,n≥1. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =tana n •tana n+1,求数列{b n }的前n 项和S n5、21.(13分)(2012安徽)设函数f (x )=+sinx 的所有正的极小值点从小到大排成的数列为{x n }.(Ⅰ)求数列{x n }.(Ⅱ)设{x n }的前n 项和为S n ,求sinS n .6、19.(13分)(2013安徽)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数 f (x )=(a n ﹣a n+1+a n+2)x+a n+1cosx ﹣a n+2sinx 满足f′()=0(Ⅰ)求数列{a n }的通项公式; (Ⅱ)若b n =2(a n +)求数列{b n }的前n 项和S n .7、18.(12分)(2014•安徽)数列{a n }满足a 1=1,na n+1=(n+1)a n +n (n+1),n ∈N *. (Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n =3n•,求数列{b n }的前n 项和S n .8、 18.(12分)(2015安徽)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =,求数列{b n }的前n 项和T n .答案1、解:∵a n=4n﹣,∴数列{a n}为等差数列,a1=,d=4,∴,∴,∴ab=﹣1.故答案为﹣1.2、解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B3、解:887644915a S S=-=-=.故选A。
1997年全国统一高考文科数学试卷

A. B. C. D.
【解答】解:集合 ,
,
,
故选: .
2.(4分)如果直线 与直线 平行,那么实数 等于
A. B. C. D.
【解答】解: 直线 与直线 平行,
它们的斜率相等, , .
故选: .
3.(4分)函数 在一个周期内的图象是
A. B.
C. D.
【解答】解:令 ,解得 ,可知函数 与 轴的一个交点不是 ,排除 ,
1997年全国统一高考数学试卷(文科)
一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)
1.(4分)设集合 ,集合 ,集合
A. B. C. D.
2.(4分)如果直线 与直线 平行,那么实数 等于
A. B. C. D.
3.(4分)函数 在一个周期内的图象是
A. B.
C. D.
的周期 ,故排除
故选: .
4.(4分)已知三棱锥 的三个侧面与底面全等,且 , .则二面角 的大小为
A. B. C. D.
【解答】解:如图所示,由三棱锥的三个侧面与底面全等,
且 ,
得 , ,
取 的中点 ,连接 , ,
则 即为所求二面角的平面角.
且 ,
,
,
故选 .
5.(4分)函数 的最小正周期是
A. B. C. D.
椭圆 的中心为 关于直线 对称的点为
故椭圆 的方程为
故选: .
12.(5分)圆台上、下底面面积分别是 、 ,侧面积是 ,这个圆台的体积是
A. B. C. D.
【解答】解: , , , ,
, , .
.
故选: .
13.(5分)定义在区间 的奇函数 为增函数;偶函数 在区间 , 的图象与 的图象重合,设 ,给出下列不等式:
1996年安徽高考文科数学真题及答案

1996年安徽高考文科数学真题及答案 第Ⅰ卷(选择题共65分)注意事项:1.答案Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题;第1—10题每小题4分,第11—15题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合.则{}1,2,3,4,5,6,7I ={}{}1,3,5,7,3,5A B ==A . B . C . D . I A B = I A B = I A B = I A B = 【答案】C【解析】显然C 正确.2.当时,在同一坐标系中,函数与的图像1a >xy a -=log a y x =【答案】A【解析】当时,函数是减函数,且过点;而函数为增函数,1a >xy a -=(0,1)log a y x =且过点. (1,0)3.若,则的取值范围是22sin cos x x >xA . ⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππB . ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππC . ⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππD . ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ【答案】D【解析】或,解得2221sin cos sin sin 2x x x x >⇒>⇒>sin x <24k x ππ+<或,即 32()4k k Z ππ<+∈322()44k x k k Z ππππ-<<-∈(21)(21)4k x k πππ-+<<-,所以的取值范围是. 3()4k Z π+∈x ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ 4.复数等于54)31()22(i i -+A . B . C . D . i 31+i 31+-i 31-i 31--【答案】B.25(2)12()i ω===-+-5.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有A .720种B .360种C .240种D .120种 【答案】C【解析】将甲、乙两人捆绑在一起,不同的排法有. 5252240A A =6.已知是第三象限角且,则 α24sin 25α=-tan 2α=A .B .C .D . 433434-43-【答案】D【解析】由已知得,所以 7cos 25α=-2sin2sin 1cos 22tan 2sin cos 2sin cos 222αααααααα-===. 71()42524325--==--7.如果直线与平面满足:和,那么必 ,l m ,,αβγ,//,l l m βγαα=⊂ m γ⊥有A .且B .且C .且D .且 αγ⊥l m ⊥αγ⊥//m β//m βl m ⊥//αβαγ⊥【答案】A【解析】略. 8.当时,函数的22x ππ-≤≤()sin f x x x =+A .最大值是1,最小值是 B .最大值是1,最小值是 1-12-C.最大值是2,最小值是 D .最大值是2,最小值是 2-1-【答案】D【解析】因为,由已知.故当 ()sin 2sin(3f x x x x π=+=+5636x πππ-≤+≤,即时,有最大值是2;当,即时,有32x ππ+=6x π=()f x 36x ππ+=-2x π=-()f x 最小值是. 1-9.中心在原点,准线方程为,离心率为的椭圆方程是 4x =±12A .B .C .22143x y +=22134x y +=2214x y +=D .2214y x +=【答案】A【解析】由题设可得,解得,所以椭圆方程是.214,2a c c a ==2,1a c ==22143x y +=10.圆锥母线长为1,侧面展开图圆心角为,该圆锥的体积是240︒A B . C D .881π1081π【答案】C【解析】设圆锥底面半径为,则,得,, r 224021360r ππ︒=⨯︒23r ==圆锥的体积是 212()33π=11.椭圆的两个焦点坐标是222515091890x x y y -+++=A . B .(3,5),(3,3)---(3,3),(3,5)- C . D . (1,1),(7,1)-(7,1),(1,1)---【答案】B【解析】椭圆的标准方程为,而的焦点为,所以2222(1)(3)153y x +-+=2222153y x +=(0,4)±的焦点坐标是. 2222(1)(3)153y x +-+=(3,3),(3,5)-12.将边长为的正方形沿对角线折起,使得,则三棱锥的a ABCD AC BD a =D ABC -体积为A .B .C .D . 63a 123a 3123a 3122a 【答案】D【解析】取的中点,连接,如图所示.AC O ,BO DO均为等腰直角三角形,, ,ABC ADC ∆∆2AC BO DO ===∴,则面,就是三棱锥2BOD π∠=DO ⊥ABC DO D ABC-的高,所以. 231132D ABC V a a -=⋅=13.等差数列的前项和为30,前项和为100,则它的前项和为 {}n a m 2m 3m A .130 B .170 C .210 D .260 【答案】C【解析】由已知得,则成等差数列,所以230,100m m S S ==232,,m m m m m S S S S S --.323()210m m m S S S =-=14.设双曲线的半焦距为,直线过两点.已知原点)0(12222b a by a x <<=-c l (,0),(0,)a b 到直线的距离为,则双曲线的离心率为 l c 43A .2B .C .D . 32332【答案】A【解析】直线的方程为,原点到直线,则 l 0bx ay ab +-=l =,即,解得或,所以 22222316a b c a b =+22222()316a c a c c -=2e =e =0ab <<,所以不合题意. e ==>e =15. 是上的奇函数,,当时,,则()f x (,)-∞+∞(2)()f x f x +=-01x ≤≤()f x x = 等于(7.5)f A . B . C . D . 0.50.5- 1.5 1.5-【答案】B【解析】(7.5)(5.52)(5.5)[(3.5)](3.5)(1.5)[(0.5)]f f f f f f f =+=-=--==-=---.(0.5)0.5f =-=-第Ⅱ卷(非选择题共85分) 注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.已知点与抛物线的焦点的距离是5,则 . (2,3)-)0(22>=p px y p =【答案】4,解得. 5=4p =17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个.(用数字作答) 【答案】32【解析】从7个点中取3个点有种取法,3个点共线的有3种,三角形共有37C 37332C -=个.18.的值是 .tg20tg40tg40++【答案】3【解析】∵,∴,tg20tg40tg(2040)1tg20tg40++==-tg20tg40tg20tg40)+=tg20tg40tg40+=19.如图,正方形所在平面与正方形所在平面成的二面角,则异面直线ABCD ABEF 60与所成角的余弦值是 .AD BF 【答案】42【解析】由于,所以即为异面直线与//AD BC CBF ∠AD 所成角,设正方形边长为,在中,BFa CBF ∆,,BF BC a FC====,.=222cos 2BF BC FC CBF BF BC +-∠==⋅三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.20.(本小题满分11分)解不等式.log (1)1a x a +->【解】本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力,满分11分.(Ⅰ)时,原不等式等价于不等式组: ——2分1>a 10,1.x a x a a +->⎧⎨+->⎩解得. ——5分 21x a >-(Ⅱ)当时,原不等式等价于不等式组: ——7分01a <<10,1.x a x a a +->⎧⎨+-<⎩解得. 10分121a x a -<<-综上,当时,不等式的解集为;1>a {}21x x a >-当时,不等式的解集为. ——11分 01a <<{}121x a x a -<<-21.(本小题满分12分)设等比数列的前项和为.若,求数列的公比. {}n a n n S 3692S S S +=q 【解】本小题主要考查等比数列的基础知识,逻辑推理能力和运算能力.满分12分.若,则有.但,1q =3161913,6,9S a S a S a ===10a ≠即得,与题设矛盾,故. ——2分3692S S S +≠1q ≠又依题意可得. 3692S S S +=369111(1)(1)2(1)111a q a q a q q q q---+=---整理得.363(21)0q q q --=由得方程., —— 9分0q ≠63210q q --=33(21)(1)0q q +-=∵ ,∴,∴ ——12分 31,1q q ≠≠3210q +=q =22.(本小题满分11分)已知的三个内角满足:,求 ABC ∆,,A B C BC A B C A cos 2cos 1cos 1,2-=+=+的值. 2cosCA -解法一:由题设条件知. ——2分60,120B A C =+=,∴. =-22cos 1cos 1-=+C A 将上式化为. C A C A cos cos 22cos cos -=+利用和差化积及积化和差公式,上式可化为. ——6分 )]cos()[cos(22cos 2cos2C A C A CA C A -++-=-+将代入上式得 21)cos(,2160cos 2cos-=+==+C A C A .cos)2A C A C -=-将代入上式并整理得 1)2(cos 2)cos(2--=-CA C A ——9分0232cos(22(cos 242=--+-CA C A ,(2cos 3)022A C A C ---+=∵,∴.302A C -+≠2cos 02A C-=从而得. ——12分cos2A C -=解法二:由题设条件知.60,120B A C =+=设,则,可得, ——3分 2A C α-=2A C α-=60,60A C αα=+=-所以)60cos(1)60cos(1cos 1cos 1αα-++=+C Aααααsin 23cos 211sin 23cos 211++-=. ——7分 ααα22sin 43cos 41cos -=43cos cos 2-=αα依题设条件有, Bcos 243cos cos 2-=-αα∵,∴.21cos =B 2243cos cos 2-=-αα整理得 ——9分22cos 0,αα+-=,(2cos 3)0αα+=∵,∴.03cos 22≠+α02cos 2=-α从而得. ——11分 222cos =-C A23.(本小题满分12分)【注意:本题的要求是,参照标号①的写法,在标号②、③、④、⑤的横线上填写适当步骤,完成(Ⅰ)证明的全过程;并解答(Ⅱ),如图2.】如图1,在正三棱柱中,,分别是上的点,111ABC A B C -13AA AB a ==,E F 11,BB CC 且.,2BE a CF a ==(Ⅰ)求证:面面; AEF ⊥ACF (Ⅱ)求三棱锥的体积.1A AEF -(Ⅰ)证明: ①∵,,延长与延,2BE a CF a ==//BE CF FE CB 长线交于,连结.D AD ∴,DBE DCF ∆∆ ∴. DB BEDC CF= ② . ∴.DB AB =③ . ∴.DA AC ⊥④ . ∴.FA AD ⊥⑤ .∴面. AEF ⊥ACF (Ⅱ)解:【解】本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ)②∵,∴,∴, ——1分:1:2BE CF =2DC DB =DB BC =③∵是等腰三角形,且,ABD ∆120ABD ∠=︒∴,∴, —— 3分 30BAD ∠=︒90CAD ∠=︒④∵面,∴是在面上的射影,FC ⊥ACD CA FA ACD 且, —— 5分 CA AD ⊥⑤∵,面,面,FA AC A = DA ⊥ACF DA ⊂ADF ∴面面. 7分 ADF ⊥ACF(Ⅱ)∵,11A AEF E AA F V V --=在面内作,垂足为. 111A B C 111B G A C ⊥G 1B G =面面,∴面, 111A B C ⊥1A C 1B G ⊥1A C∵,而面,∴三棱柱.——9分 1E BB ∈1//BB 1A C 1E AA F -——10分 1112A FA S AA AC ∆=⋅=∴ ——12分 11A AEF E AA FV V --==24.(本小题满分10分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=,人均粮食占有量=) 耕地面积总产量总人口数总产量【解】本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.设耕地平均每年至多只能减少公顷,又设该地区现有人口为人,粮食单产为吨/x P M 公顷.依题意得不等式.——5分 %)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯P M P x M 化简得. ——7分 ]22.1)01.01(1.11[10103+⨯-⨯≤x ∵ 103312210101.1(10.01) 1.110[1]10[1(10.010.01)]1.22 1.22C C ⨯+⨯-=⨯-⨯+⨯+⨯+ . —— 9分 3 1.110[1 1.1045] 4.11.22≈⨯-⨯≈∴(公顷).4x ≤答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分25.(本小题满分12分)已知是过点的两条互相垂直的直线,且与双曲线各有两12,l l )0,2(-P 12,l l 122=-x y 个交点,分别为和.11,A B 22,A B (Ⅰ)求的斜率的取值范围;1l 1k (Ⅱ)若恰是双曲线的一个顶点,求的值.1A 22A B 【解】本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.(Ⅰ)依题设,的斜率都存在,因为过点且与双曲线有两个交点,故方程12,l l 1l )0,2(-P 组 ① ——1分 1122(0),1.y k x k y x ⎧=+≠⎪⎨-=⎪⎩有两个不同的解.在方程组①中消去,整理得. ②y 01222)1(2121221=-++-k x k x k 若,则方程组①只有一个解,即与双曲线只有一个交点,与题设矛盾,故 0121=-k 1l ,即,方程②的判别式为0121≠-k 11≠k .2222211111)4(1)(21)4(31)k k k ∆=---=-设的斜率为,因为过点且与双曲线有两个交点,故方程组2l 2k 2l )0,2(-P ③ ⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y 有两个不同的解.在方程组③中消去,整理得y . ④01222)1(2222222=-++-k x k x k 同理有.)13(4,0122222-=∆≠-k k 又因为,所以有. ——4分 12l l ⊥121l l ⋅=-于是,与双曲线各有两个交点,等价于12,l l ⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k 解得——6分 ⎪⎩⎪⎨⎧≠<<.1,33311k k ∴. ——7分 )3,1()1,33()33,1()1,3(1 ----∈k (Ⅱ)双曲线的顶点为.122=-x y (0,1),(0,1)-取时,有,1(0,1)A 1(01k =解得.从而——8分 1k =211k k =-=将. ⑤2k =230x ++=记与双曲线的两交点为,则 2l 211222(,),(,)A x y B x y . 2222222122121212()()3()3[()4]A B x x y y xx x x x x =-+-=-=+-由⑤知.1212)3xx x x +=-=∴ ——11分2222260,A B A B ==当取时,由双曲线关于轴的对称性,知.1(0,1)A -122=-x y x 22A B =所以过双曲线的一个顶点时,. ——12分1l 22A B =。
1997年高考试数学试题(全国理)及答案

1997年普通高等学校招生全国统一考试数学(理工农医类)第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第(1)—(10)题每小题4分,第(11)—(15)题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合M ={x │0≤x <2},集合N ={x │x 2-2x -3<0},集合M ∩N = ( )(A) {}10<≤x x ; (B) {}20<≤x x ; (C) {}10≤≤x x ; (D) {}20≤≤x x 。
2.如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a = ( )(A) -3; (B) -6; (C) 23-; (D) 32。
3.函数y =tg(π3121-x )在一个周期内的图像是 ()4.已知三棱锥D-ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是 ( ) (A) arccos 33; (B) arccos 31; (C) 2π; (D) 32π。
5.函数y =sin(x 23-π)+cos2x 的最小正周期是( )(A)2π; (B) π; (C) π2; (D) π4。
6.满足arccos(1-x )≥arccos x 的x 的取值范围是 ( )(A) [-1,-21]; (B) [-21,0]; (C) [0, 21]; (D) [ 21,1]。
7.将y =2x 的图像 ( )(A) 先向左平行移动1个单位; (B) 先向右平行移动1个单位; (C) 先向上平行移动1个单位; (D) 先向下平行移动1个单位。
再作关于直线y =x 对称的图像,可得到函数y =log 2(x +1)的图像.8.长方体一个顶点上三条棱的长分别是3,4,5,且它的八个顶点都在同一个球面上,这个球的表面积是 ( )(A) 20π2; (B) 25π2; (C) 50π; (D) 200π。
普通高等学校招生全国统一考试数学文试题(安徽卷,解析版)

普通高等学校招生全国统一考试数学文试题(安徽卷,解析版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸上答题无效........。
4. 考试结束后,务必将试题卷和答题卡一并上交。
参考公式: 椎体体积13V Sh =,其中S 为椎体的底面积,h 为椎体的高. 若111ni y y n ==∑(x 1,y 1),(x 2,y 2)…,(x n ,y n )为样本点,ˆybx a =+为回归直线,则 111n i x x n ==∑,111ni y y n ==∑()()()111111222111nni i n n i i i x y yy x ynx yb x x x nx a y bx====---==--=-∑∑∑∑,a y bx =-说明:若对数据适当的预处理,可避免对大数字进行运算. 第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设 i 是虚数单位,复数aii1+2-为纯虚数,则实数a 为 (A )2 (B) -2 (C) 1-2(D) 12(1)【命题意图】本题考查复数的基本运算,属简单题. 【解析】设()aibi b R i1+∈2-=,则1+(2)2ai bi i b bi =-=+,所以1,2b a ==.故选A.(2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则()U SC T 等于(A )}{,,,1456 (B) }{,15 (C) }{4 (D) }{,,,,12345 (2)B 【命题意图】本题考查集合的补集与交集运算.属简答题. 【解析】{}1,5,6UT =,所以(){}1,6U S T =.故选B.(3) 双曲线x y 222-=8的实轴长是(A )2 (B)22 (C) 4 (D) 42(3)C 【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C. (4) 若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为 (A )-1 (B) 1 (C) 3 (D) -3 (4)B 【命题意图】本题考查直线与圆的位置关系,属容易题.【解析】圆的方程x y x y 22++2-4=0可变形为()()x y 22+1+-2=5,所以圆心为(-1,2),代入直线x y a 3++=0得1a =.(5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a 1,b ) (B ) (10a,1-b) (C) (a10,b+1) (D)(a 2,2b) (5)D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系. 【解析】由题意lg b a =,lg lg b a a 22=2=,即()2,2a b 也在函数lg y x = 图像上.(6)设变量x,y 满足,x y 1x y 1x +≤⎧⎪-≤⎨⎪≥0⎩,则x y +2的最大值和最小值分别为说明:若对数据适当的预处理,可避免对大数字进行运算.(A ) 1,-1 (B) 2,-2 (C ) 1,-2 (D)2,-1(6)B 【命题意图】本题考查线性目标函数在线性约束条件下的最大值与最小值问题.属中等难度题.【解析】1,1,0x y x y x +=-==三条直线的交点分别为(0,1),(0,-1),(1,0),分别代入x y +2,得最大值为2,最小值为-2.故选B.(7)若数列}{n a 的通项公式是()()n a n =-13-2,则a a a 1210++=(A ) 15 (B) 12 (C ) -12 (D) -15 (7)A 【命题意图】本题考查数列求和.属中等偏易题. 【解析】法一:分别求出前10项相加即可得出结论; 法二:12349103a a a a a a +=+==+=,故a a a 1210++=3⨯5=15.故选A.(8)一个空间几何体得三视图如图所示,则该几何体的表面积为第(8)题图(A ) 48 (B)32+817 (C) 48+817 (D) 80(8)C 【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242⨯+⨯=,四个侧面的面积为()44221724817++=+,所以几何体的表面积为48817+.故选C.(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于 (A )110(B) 18 (C) 16 (D) 15(9)D 【命题意图】本题考查古典概型的概率问题.属中等偏难题.【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,所以是矩形的概率为31155=.故选D. (10) 函数()()nf x ax x 2=1-在区间〔0,1〕上的图像如图所示,则n 可能是 (A )1 (B) 2 (C) 3 (D) 4(10)A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1n =时,()()()f x ax x a x x x 232=1-=-2+,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332,知a 存在.故选A.2011年普通高等学校招生全国统一考试(安徽卷)数 学(文科)第II 卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.................. 二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)设()f x 是定义在R 上的奇函数,当x≤0时,()f x =22x x -,则(1)f = . (11)-3【命题意图】本题考查函数的奇偶性,考查函数值的求法.属中等难度题. 【解析】2(1)(1)[2(1)(1)]3f f =--=----=-.(12)如图所示,程序框图(算法流程图)的输出结果是15 .(12)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. (13)函数216y x x=--的定义域是 .(13)(-3,2)【命题意图】本题考查函数的定义域,考查一元二次不等式的解法. 【解析】由260x x -->可得260x x +-<,即()()+320x x -<,所以32x -<<.(14)已知向量a ,b 满足(a +2b )·(a -b )=-6,且a =,2b =,则a 与b 的夹角为 . (14)60°【命题意图】本题考查向量的数量积,考查向量夹角的求法.属中等难度的题.【解析】()()26a b a b +⋅-=-,则2226a a b b +⋅-=-,即221226a b +⋅-⨯=-,1a b ⋅=,所以1cos ,2a b a b a b⋅〈〉==⋅,所以,60a b 〈〉=. (15)设()f x =sin 2cos2a x b x +,其中a ,b ∈R ,ab ≠0,若()()6f x f π≤对一切则x ∈R恒成立,则①11()012f π= ②7()10f π<()5f π ③()f x 既不是奇函数也不是偶函数④()f x 的单调递增区间是2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦⑤存在经过点(a ,b )的直线与函数的图()f x 像不相交 以上结论正确的是 (写出所有正确结论的编号).(15)①③【命题意图】本题考查辅助角公式的应用,考查基本不等式,考查三角函数求值,考查三角函数的单调性以及三角函数的图像. 【解析】2222()sin 2cos2sin(2)f x a x b x a b x a b ϕ=+=+++,又31()sin cos 063322f a b a b πππ=+=+,由题意()()6f x f π≤对一切则x ∈R 恒成立,则22312a b a b ++对一切则x ∈R 恒成立,即222231344a b a b ab +++,223230a b ab+恒成立,而22323a b ab +,所以22323a b ab +=,此时30a b =>.所以()3sin 2cos 22sin 26f x b x b x b x π⎛⎫=+=+ ⎪⎝⎭.①1111()2sin 01266f b πππ⎛⎫=+= ⎪⎝⎭,故①正确; ②774713()2sin 2sin 2sin 10563030f b b b πππππ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 21713()2sin 2sin 2sin 5563030f b b b πππππ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以7()10f π<()5f π,②错误; ③()()f x f x -≠±,所以③正确;④由①知()3sin 2cos 22sin 26f x b x b x b x π⎛⎫=+=+ ⎪⎝⎭,0b >, 由222262k x k πππππ-++知236k x k ππππ-+,所以③不正确;⑤由①知30a b =>,要经过点(a ,b )的直线与函数的图()f x 像不相交,则此直线与横轴平行,又()f x 的振幅为23b b >,所以直线必与()f x 图像有交点.⑤不正确.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内. (16)(本小题满分13分)在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a=3,b=2,12cos()0B C ++=,求边BC 上的高.(16)解:∵A+B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =, 又0°<A<180°,所以A =60°. 在△ABC 中,由正弦定理sin sin a b A B=得sin 2sin 602sin 23b A B a ===, 又∵b a <,所以B <A ,B =45°,C =75°, ∴BC 边上的高AD =AC ·sinC =2sin 752sin(4530)=+2(sin 45cos30cos 45sin 30)=+2321312()2+=⨯+⨯=.(17)(本小题满分13分)设直线11221212:x+1:y=k x 1k k k k +20l y k l =-⋅=,,其中实数满足,(I )证明1l 与2l 相交;(II )证明1l 与2l 的交点在椭圆222x +y =1上. (18)(本小题满分13分)设()2xe f x =,其中a 为正实数.(Ⅰ)当34a =时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. (19)(本小题满分13分)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1OA =,2OD =,,OAB OAC ,ODF 都是正三角形。
1997年普通高等学校招生全国统一考试数学试卷(全国卷.理)答案

参考答案一、选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分,满分65分.(1)B (2)B (3)A (4)C (5)B (6)D (7)D(8)C(9)B (10)B (11)A (12)D (13)C (14)C (15)D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.注:第(19)题多填、漏填和错填均给0分.三、解答题(20)本小题主要考查复数的基本概念、复数的运算以及复数的几何意义等基础知识,考查运算能力和逻辑推理能力.满分10分.解法一:-------2分于是,.-------5分由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三解形. -------------7分解法二:由此得OP⊥OQ,│OP│=│OQ│.由此知△OPQ有两边相等且其夹角为直角,故△OPQ为等腰直角三角形.-------------10分(21)本小题主要考查等比数列的概念、数列极限的运算等基础知识,考查逻辑推理能力和运算能力.满分11分.解:,. -------------3分分两种情况讨论.(Ⅰ)p>1.=p. -------------7分(Ⅱ)p<1.∵ 0<q<p<1,-------11分(22)本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力,满分12分.-------------4分故所求函数及其定义域为.-------------5分(Ⅱ)依题意知S,a,b,v都为正数,故有.因为c-v≥0,且a>bc2,故有a-bcv≥a-bc2>0,也即当v=c时,全程运输成本y最小.(23)本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,考查逻辑推理能力和空间想象能力,满分12分.解:(Ⅰ)∵AC1是正方体,∴AD⊥面DC1.又D 1F 面DC1,∴AD⊥D1F. -------------2分(Ⅱ)取AB中点G,连结A1G,FG.因为F是CD的中点,所以GF、AD平行且相等,又A1D1、AD平行且相等,所以GF、A1D1平行且相等,故GFD1A1是平行四边形,A1G∥D1F.设A1G与AE相交于点H,则∠AHA1是AE与D1F所成的角,因为E是BB1的中点,所以Rt△A1AG≌Rt△ABE,∠GA1A=∠GAH,从而∠AHA1=90°,即直线AE与D1F所成角为直角. -------------5分(Ⅲ)由(Ⅰ)知AD⊥D1F,由(Ⅱ)知AE⊥D1F,又AD∩AE=A,所以D1F⊥面AED.又因为D1F 面A1FD1,所以面AED⊥面A1FD1. -------------7分(Ⅳ)连结GE,GD1.∵FG∥A1D1,∴FG∥面A1ED1,∵AA1=2,(24)本小题主要考查一元二次方程、二次函数和不等式的基础知识,考查综合运用数学知识分析问题和解决问题的能力.满分12分.证明:(Ⅰ)令F(x)=f(x)-x.因为x1,x2是方程f(x)-x=0的根,所以F(x)=a(x-x1)(x-x2).------------2分当x∈(0,x1)时,由于x1<x2,得(x-x1)(x-x2)>0,又a>0,得F(x)=a(x-x1)(x-x2)>0,即x<f(x). ------------4分,所以x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0.得 x1-f(x)>0.由此得f(x)<x1.------------7分(Ⅱ)依题意知因为x1,x2是方程f(x)-x=0的根,即x1,x2是方程ax2+(b-1)x+c=0的根.,------------9分.因为ax2<1,所以.------------12分(25)本小题主要考查轨迹的思想,求最小值的方法,考查综合运用知识建立曲线方程的能力.满分12分.解法一:设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为│b│,│a│.r2=2b2------------2分又圆P截y轴所得的弦长为2,所以有r2=a2+1.从而得2b2-a2=1. -------------5分又点P(a,b)到直线x-2y=0的距离为,-------------7分所以 5d2=│a-2b│2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1,当且仅当a=b时上式等号成立,此时5d2=1,从而d取得最小值.-------------10分由此有解此方程组得由于r2=2b2知于是,所求圆的方程是(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2. -------------12分解法二:同解法一得∴得①将a2=2b2-1代入①式,整理得②把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2-1)≥0,得 5d2≥1..将其代入②式得2b2±4b+2=0.解得b=±1.将b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.综上a=±1,b=±1,r2=2.由│a-2b│=1知a,b同号.于是,所求圆的方程是(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2. -------------12分。
1997年全国高考数学试题

一九九七年全国高考数学试题理科试题一.选择题:本题共15个小题;第(1)-(10)题每小题4分,第(11)-(15)题每小题5分,共65分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合M=}20|{<≤x x ,集合N=}032|{2<--x x x ,集合=⋂N M ( B )(A )}10|{<≤x x (B )}20|{<≤x x (C )}10|{≤≤x x (D )}20|{≤≤x x(2)如果直线022=++y ax 与直线023=--y x 平行,那么系数=a ( B )(A )-3 (B)-6 (C)23- (D)32(3)函数)3121(π-=x tg y 在一个周期内的图象是 ( A )(4)已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=3,BC=2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是 (A )33arccos(B )31arccos (C )2π (D )32π ( C )(5)函数x x y 2cos )23sin(+-π=的最小正周期是 ( B )(A) (B) (C) (D)x x(A )2π (B )π (C )π2 (D )π4(6)满足x x arccos )1arccos(≥-的x 的取值范围是 ( D ) (A )[-1,21-](B )[21-,0](C )[0,21](D )[21,1] (7)将x y 2=的图象 ( D ) (A )先向左平行移动1个单位(B )先向右平行移动1个单位 (C )先向上平行移动1个单位(D )先向下平行移动1个单位 再作关于直线x y =对称的图象,可得到函数)1(log 2+=x y 的图象 (8)长方体一个顶点上三条棱的长分别是3,4,5,且它的八个顶点都在同一个球面上,这个球的表面积是 ( C ) (A )π220 (B )π225 (C )π50 (D )π200(9)曲线的参数方程是)0,(.1,112≠⎪⎩⎪⎨⎧-=-=t t t y t x 是参数,它的普通方程是(A )1)1()1(2=--y x (B )2)1()2(x x x y --=( B ) (C )1)1(12--=x y (D )112+-=x x y (10)函数2cos 3cos 2+-=x x y 的最小值为 ( B ) (A )2 (B )0 (C )41- (D )6(11)椭圆C 与椭圆14)2(9)3(22=-+-y x 关于直线0=+y x 对称,椭圆C 的方程是 ( A )(A )19)3(4)2(22=+++y x (B )14)3(9)2(22=-+-y x (C )14)3(9)2(22=+++y x (D )19)3(4)2(22=-+-y x(12)圆台上、下底面积分别为ππ4,,侧面积为π6,这个圆台的体积是 ( D ) (A )332π (B )π32 (C )637π (D )337π(13)定义在区间),(+∞-∞的奇函数)(x f 为增函数;偶函数)(x g 在区间),0[+∞的图象与)(x f 的图象重合。
近五年安徽文科高考数学试卷及答案2

2007年普通高等学校招生全国统一考试(安徽卷)数学(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第I 至第2页,第II 卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2.答第I 卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第II 卷时,必须用0.5毫米黑色黑水签字笔在答题卡上.....书写.在试题卷上作答无........效.. 4.考试结束,监考员将试题和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么球的体积公式(1)122n n n ++++=34π3V R =222(1)(21)126n n n n +++++=其中R 表示球的半径22333(1)124n n n ++++=第I 卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若{}21A x x ==,{}2230B x x x =--=,则A B =( )A.{}3B.{}1C.∅D.{}1-2.椭圆2241x y +=的离心率为( )A.2B.34C.2D.233.等差数列{}n a 的前n 项和为n S ,若21a =,33a =,则4S =( ) A.12 B.10 C.8 D.64.下列函数中,反函数是其自身的函数为( ) A.2()f x x =,[0)x ∈+∞,B.3()()f x x x =∈-∞+∞,,C.()e ()xf x x =∈-∞+∞,,D.1()f x x=,(0)x ∈+∞, 5.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为2,则a 的值为( ) A.2-或2B.12或32C.2或0 D.2-或0 6.设t ,m ,n 均为直线,其中m n ,在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 7.图中的图象所表示的函数的解析式为( )A.312y x =- (02)x ≤≤B.33122y x =-- (02)x ≤≤C.312y x =-- (02)x ≤≤D.11y x =--(02)x ≤≤8.设1a >,且2log (1)a m a =+,log (1)a n a =-,log (2)a p a =,则m n p ,,的大小关系为( )A.n m p >>B.m p n >> C.m n p >> D.p m n >>9.如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为( ) A.321-C.1110.把边长为的正方形ABCD 沿对角线AC 折成直二面角,折成直二面角后,在A B C D ,,,四点所在的球面上,B 与D 两点之间的球面距离为( )C.π B.π2 D.π311.定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[]T T -,上的根的个数记为n ,则n 可能为( )A.0B.1C.3D.52007年普通高等学校招生全国统一考试(安微卷)第7题图数学(文科)第II 卷(非选择题共95分)注意事项: 请用0.5毫米黑色墨水签字笔在答题卡...上书写作答,在试题卷上书写作答无效........... 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.12.已知52345012345(1)x a a x a x a x a x a x -=+++++,则024135()()a a a a a a ++++的值等于 .13.在四面体O ABC -中,OA a =,OB b =,OC c =,D 为BC 的中点,E 为AD 的中点,则OE =(用a b c ,,表示)14.在正方体上任意选择两条棱,则这两条棱相互平行的概率为. 15.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是(写出所有正确结论的编号..). ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分10分) 解不等式(311)(sin 2)0x x --->.17.(本小题满分14分) 如图,在六面体1111ABCD A B C D -中,四边形ABCD 是边长为2的正方形,四边形1111A B C D 是边长为1的正方形,1DD ⊥平面1111A B C D ,1DD ⊥平面ABCD ,12DD =.(Ⅰ)求证:11A C 与AC 共面,11B D 与BD 共面. (Ⅱ)求证:平面11A ACC ⊥平面11B BDD ;(Ⅲ)求二面角1A BB C --的大小(用反三角函数值表示) 18.(本小题满分14分)设F 是抛物线2:4G x y =的焦点.(I )过点(04)P -,作抛物线G 的切线,求切线方程; ABCD1A1B1C 1D(II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =,延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 19.(本小题满分13分)在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到..两只苍蝇都飞出,再关闭小孔. (I )求笼内恰好剩下....1只果蝇的概率; (II )求笼内至少剩下....5只果蝇的概率. 20.(本小题满分14分) 设函数232()cos 4sincos 43422x xf x x t t t t =--++-+,x ∈R , 其中1t ≤,将()f x 的最小值记为()g t . (I )求()g t 的表达式;(II )讨论()g t 在区间(11)-,内的单调性并求极值.21.(本小题满分14分)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加(0)d d >,因此,历年所交纳的储备金数目12a a ,,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为(0)r r >,那么,在第n 年末,第一年所交纳的储备金就变为11(1)n a r -+,第二年所交纳的储备金就变为22(1)n a r -+,.以n T 表示到第n 年末所累计的储备金总额.(Ⅰ)写出n T 与1(2)n T n -≥的递推关系式;(Ⅱ)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(文史)参考答案一、选择题:本题考查基本知识的基本运算.每小题5分,满分55分. 1.D 2.A 3.C 4.D 5.C 6.A7.B 8.B 9.A 10.C 11.D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.256-13.111244a b c ++ 14.31115.①②③三、解答题16.本小题主要考查三角函数的基本性质,含绝对值不等式的解法,考查基本运算能力.本小题满分10分.解:因为对任意x ∈R ,sin 20x -<,所以原不等式等价于3110x --<. 即311x -<,1311x -<-<,032x <<,故解为203x <<. 所以原不等式的解集为203x x ⎧⎫<<⎨⎬⎩⎭. 17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分. 解法1(向量法):以D 为原点,以1DADC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,. (Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-==,,,,,,,,,,,∵. 111122AC AC DB D B ==,∴. AC ∴与11AC 平行,DB 与11D B 平行,于是11A C 与AC 共面,11B D 与BD 共面.(Ⅱ)证明:1(002)(220)0DD AC =-=,,,,··,(220)(220)0DB AC =-=,,,,··, 1DD AC ⊥∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=-,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+=·n ,111120BB x y z =--+=n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+=m ·,12220CC y z =-+=m ·.于是20x =,取21z =,则22y =,(021)=,,m .1cos 5==,m n m n m n ·. ∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DADC ,的中点,连结11EF A E C F ,,, 有111111A E D D C F D D DE DF ==,,,∥∥. 11A E C F ∴∥,于是11AC EF ∥.由1DE DF ==,得EF AC ∥, 故11AC AC ∥,11A C 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B OC F , ∥∥,连结OE OF ,, ABCD1A1B1C 1D MOEF于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴. 1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.过点A 在平面1ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角.根据勾股定理,有111A A C C B B ==. 1OM B B ⊥∵,有11B O OB OM B B ==·,BM =AM =,CM =. 2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查抛物线的方程与性质,抛物线的切点与焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力.本小题满分14分.解:(I )设切点2004x Q x ⎛⎫ ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为2000()42x xy x x -=-. 即20424x x y x =-. 因为点(0)P -4,在切线上.所以2044x -=-,2016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,.由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >. 因直线AC 过焦点(01)F ,,所以直线AC 的方程为1y kx =+.点A C ,的坐标满足方程组214y kx x y =+⎧⎨=⎩,, 得2440x kx --=, 由根与系数的关系知121244.x x k x x +=⎧⎨=-⎩,24(1)AC k ===+.因为AC BD ⊥,所以BD 的斜率为1k -,从而BD 的方程为11y x k=-+. 同理可求得22214(1)41k BD k k ⎛⎫+⎛⎫=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭. 2222218(1)18(2)322ABCDk S AC BD k k k +===++≥. 当1k =时,等号成立.所以,四边形ABCD 面积的最小值为32.19.本小题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力.本小题满分13分.解:以k A 表示恰剩下k 只果蝇的事件(016)k =,,,. 以m B 表示至少剩下m 只果蝇的事件(016)m =,,,. 可以有多种不同的计算()k P A 的方法.方法1(组合模式):当事件k A 发生时,第8k -只飞出的蝇子是苍蝇,且在前7k -只飞出的蝇子中有1只是苍蝇,所以17287()28kk C k P A C --==. 方法2(排列模式):当事件k A 发生时,共飞走8k -只蝇子,其中第8k -只飞出的蝇子是苍蝇,哪一只?有两种不同可能.在前7k -只飞出的蝇子中有6k -只是果蝇,有68kC -种不同的选择可能,还需考虑这7k -只蝇子的排列顺序.所以162688(7)!7()28kk kC C k kP A A ----==. 由上式立得163()2814P A ==; 356563()()()()28P B P A A P A P A =+=+=. 20.本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力.本小题满分14分. 解:(I )我们有232()cos 4sin cos 43422x xf x x t t t t =--++-+222sin 12sin 434x t t t t =--++-+ 223sin 2sin 433x t x t t t =-++-+23(sin )433x t t t =-+-+.由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+.(II )我们有2()1233(21)(21)1g t t t t t '=-=+--1<<,. 列表如下:由此可见,()g t 在区间112⎛⎫-- ⎪⎝⎭,和112⎛⎫ ⎪⎝⎭,单调增加,在区间1122⎛⎫- ⎪⎝⎭,单调减小,极小值为122g ⎛⎫= ⎪⎝⎭,极大值为42g 1⎛⎫-= ⎪⎝⎭. 21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++,①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r=+--++-. 即1122(1)nn a r d a r d d T r n r r r ++=+--.如果记12(1)nn a r d A r r +=+,12n a r d d B n r r+=--,则n n n T A B =+. 其中{}n A 是以12(1)a r dr r++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以12a r d d r r +--为首项,dr-为公差的等差数列.2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致. 2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径如果事件A B ,相互独立,那么 球的体积公式 34π3V R =()()()P A B P A P B =其中R 表示球的半径第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).若A 为位全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)R A B =-∞ðC .(0,)AB =+∞D . }{()2,1R A B =--ð 解:R A ð是全体非正数的集合即负数和0,所以}{()2,1R A B =--ð(2).若(2,4)AB =,(1,3)AC =, 则BC =( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)解:向量基本运算 (1,3)(2,4)(1,1)BC AC AB =-=-=--(3).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖解:定理:垂直于一个平面的两条直线互相平行,故选B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1997年安徽高考文科数学真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一、选择题:本大题共15小题;第(1)—(10)题每小题4分,第(11)—(15)题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 设集合M ={x |0≤x <2},集合N ={x |x 2-2x -3<0},集合M ∩N = ( )(A) {x |0≤x <1} (B) {x |0≤x <2} (C) {x |0≤x ≤1}(D) {x |0≤x ≤2}(2) 如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a = ( )(A) -3(B) -6(C) -23(D)32 (3) 函数y =tg ⎪⎭⎫⎝⎛-π3121x 在一个周期内的图像是( )(4) 已知三棱锥D —ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是( )(A)4π(B)3π (C)2π (D)32π(5) 函数y =sin(3π-2x )+sin2x 的最小正周期是 ( )(A)2π (B)π(C) 2π(D) 4π(6) 满足tg a ≥ctg a 的角a 的一个取值区间是 ( )(A) ⎥⎦⎤⎝⎛40π,(B) ⎥⎦⎤⎢⎣⎡40π,(C) ⎪⎭⎫⎢⎣⎡24ππ,(D) ⎥⎦⎤⎢⎣⎡24ππ,(7) 设函数y =f (x )定义在实数集上,则函数y =f (x -1)与y =f (1-x )的图像关于( )(A) 直线y =0对称 (B) 直线x =0对称 (C) 直线y =1对称(D) 直线x =1对称(8) 长方体一个顶点上三条棱的长分别是3,4,5且它的八个顶点都在同一个球面上,这个球的表面积是( )(A) 202π(B) 252π(C) 50π(D) 200π(9) 如果直线l 将圆:x 2+y 2-2x -4y =0平分,且不通过第四象限,那么l 的斜率的取值范围是( )(A) [0,2](B) [0,1](C) [0,21] (D) ⎪⎭⎫⎢⎣⎡210,(10) 函数y =cos 2x -3cos x +2的最小值为 ( )(A) 2(B) 0(C) -41(D) 6(11) 椭圆C 与椭圆()()1429322=-+-y x 关于直线x +y =0对称,椭圆C 的方程是( )(A)()()1934222=+++y x(B)()()1439222=-+-y x(C)()()1439222=+++y x(D)()()1934222=-+-y x(12) 圆台上、下底面积分别为π、4π,侧面积为6π,这个圆台的体积是 ( ) (A)332π(B) π32(C)637π(D)337π(13) 定义在区间(-∞,+∞)的奇函数f (x )为增函数;偶函数g (x )在区间[)∞+,0的图像与f (x )的图像重合.设a >b >0,给出下列不等式( )① f (b )-f (-a )>g (a )-g (-b );② f (b )-f (-a ) < g (a )-g (-b ); ③ f (a )-f (-b )>g (b )-g (-a );④ f (a )-f (-b )<g (b )-g (a ). (A) ①与④(B) ②与③(C) ①与③(D) ②与④(14) 不等式组⎪⎩⎪⎨⎧+->+->x x x x x 22330的解集是( )(A) {x |0<x <2} (B) {x |0<x <2.5} (C) {x |0<x <6}(D) {x |0<x <3}(15) 四面体的一个顶点为A ,从其它顶点与各棱的中点中取3个点,使它们和点A 在同一平面上,不同的取法有( )(A) 30种(B) 33种(C) 36种 (D) 39种第Ⅱ卷(非选择题 共85分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.(16)已知92⎪⎪⎭⎫⎝⎛-x x a 的展开式中x 3的系数为49,常数a 的值为___________ (17)已知直线x -y =2与抛物线y 2=4x 交于A 、B 两点,那么线段的中点坐标是_______(18)︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为__________(19)已知m 、l 是直线,α、β是平面,给出下列命题: ①若l 垂直于α内的两条相交直线,则l ⊥α; ②若l 平行于α,则l 平行于α内的所有直线; ③若m ⊂α,l ⊂β,且l ⊥m ,则α⊥β; ④若l ⊂β,且l ⊥α,则α⊥β;⑤若m ⊂α,l ⊂β,且α∥β,则m ∥l .其中正确的命题的序号是___________ (注:把你认为正确的命题的序号都.填上) 三、解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.(20)(本小题满分10分) 已知复数i z 2321+=,i 2222+=ω.求复数3ωωz z +的模及辐角主值. (21)(本小题满分11分)设S n 是等差数列{a n }前n 项的和.已知331S 与441S 的等比中项为551S ,331S 与441S 的等差中项为1.求等差数列{a n }的通项a n .(22)(本小题满分12分)甲、乙两地相距s 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时.已知汽车每小时的运输成本........(以元为单位)由可变部分和固定部分组成:可变部分与速度v (千米/时)的平方成正比,且比例系数为b ;固定部分为a 元.(Ⅰ)把全程运输成本......y (元)表示为速度v (千米/时)的函数,并指出这个函数的定义域; (Ⅱ)为了使全程运输成本......最小,汽车应以多大速度行驶? (23)(本小题满分12分)如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点. (Ⅰ)证明AD ⊥D 1F ; (Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明面AED ⊥面A 1FD 1;(Ⅳ)设AA 1=2,求三棱锥E -AA 1F 的体积F AA E V 1-. (24)(本小题满分12分)已知过原点O 的一条直线与函数y =log 8x 的图像交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数的y =log 2x 的图像交于C 、D 两点.(Ⅰ)证明点C 、D 和原点O 在同一条直线上; (Ⅱ)当BC 平行于x 轴时,求点A 的坐标. (25)(本小题满分12分)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x -2y =0的距离为55.求该圆的方程.1997年普通高等学校招生全国统一考试 数学试题(文史类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四.只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.第(1)—(10)题每小题4分,第(11)—(15)题每小题5分.满分65分.(1)B (2)B (3)A (4)C (5)B (6)C (7)D (8)C (9)A (10)B (11)A (12)D (13)C (14)C (15)B二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)4 (17) (4,2) (18)2-3 (19)①,④ 注:第(19)题多填、漏填和错填均给0分. 三、解答题(20)本小题主要考查复数的基本概念、复数的运算等基础知识,考查利用三角公式进行变形的技能和运算能力.满分10分.解法一:将已知复数化为复数三角形式:3sin 3cos 2321ππi i z +=+=,i 2222+=ω 4sin4cosππi +=依题意有z ω+z ω3=(cos 127π+i sin 127π)+(cos 1213π+i sin 1213π) =(cos 127π+cos 1213π)+i (sin 127π+sin 1213π)=2cos 4π(cos 65π+i sin 65π)故复数z ω+z ω3的模为2,辐角主值为65π.解法二:z ω+z ω3= z ω(1+ω2) =(21+23i )(22+22i )(1+i )=2(-23i +21i ) =2(cos65π+i sin 65π) (21)本小题主要考查等差数列、等比数列、方程组等基础知识,考查运算能力.满分11分.解:设等差数列{a n }的首项a 1=a ,公差为d ,则通项为 a n =a +(n -1)d , 前n 项和为()d n n na S n 21-+=, 依题意有⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⋅24131514131432543S S S S S 其中S 5≠0. 由此可得⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛⨯++⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫⎝⎛⨯+=⎪⎭⎫ ⎝⎛⨯+⨯⎪⎭⎫ ⎝⎛⨯+223444122333124552512344412233312d a d a d a d a d a整理得⎪⎩⎪⎨⎧=+=+22520532d a d ad 解方程组得⎩⎨⎧==10a d ⎪⎩⎪⎨⎧=-=4512a d 由此得a n =1;或 a n =4-512(n -1) =532-512n .经验证知时a n =1,S 5=5,或n a n 512532-=时,S 5=-4,均适合题意. 故所求等差数列的通项为a n =1,或n a n 512532-=.(22)本小题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.满分12分.解:(1)依题意知汽车从甲地匀速行驶到乙地所用时间为vs,全程运输成本为 y =a ·v s +bv 2·v s =S (va +bv ) 故所求函数及其定义域为 y = S (va+bv ),v ∈(]c ,0 (Ⅱ)依题意知S 、a 、b 、v 都为正数,故有S (va+bv )≥2ab S . 当且仅当bv va=,即bav =时上式中等号成立.若c b a≤,则当bav =时,全程运输成本y 最小. 若c ba>,当(]c x ,0∈时,有 S (v a +bv )-S (c a +bc )= S [(v a -c a )+(bv -bc )]=vcS (c -v )(a -bcv ). 因为c -v ≥0,且a >bc 2,故有a -bcv ≥a -bc 2>0,所以S (v a +bv )≥S (ca+bc ),且仅当v =c 时等号成立. 也即当v =c 时,全程运输成本y 最小. 综上知,为使全程运输成本y 最小,当c b ab ≤时行驶速度应为b ab v =;当c bab>时行驶速度应为.(23)本小题主要考查直线与直线,直线与平面,平面与平面的位置关系,考查逻辑推理和空间想象能力.满分12分.解:(Ⅰ) ∵ AC 1是正方体, ∴ AD ⊥面DC 1. 又D 1F ⊂面DC 1, ∴ AD ⊥D 1F .(Ⅱ)取AB 中点G ,连结A 1G ,FG .因为F 是CD 的中点,所以GF 、AD 平行且相等,又A 1D 1、AD 平行且相等,所以GF 、A 1D 1平行且相等,故GFD 1A 1是平行四边形,A 1G ∥D 1F .设A 1G 与AE 相交于点H ,∠AHA 1是AE 与D 1F 所成的角. 因为E 是BB 1的中点,所以Rt △A 1AG ≌Rt △ABE ,∠GA 1A =∠GAH , 从而∠AHA 1=90º,也即直线AE 与D 1F 所成的角为直角.(Ⅲ)由(Ⅰ)知AD ⊥D 1F ,由(Ⅱ)知AE ⊥D 1F ,又AD ∩AE =A , 所以D 1F ⊥面AED .又因为D 1F ⊂面A 1FD 1,所以面AED ⊥面A 1FD 1. (Ⅳ)∵ 体积E AA F F AA E V V 11--=,又FG ⊥面ABB 1A 1,三棱锥F -AA 1E 的高FG =AA 1=2,面积 E AA S 1∆=21S □11A ABB =21×22=2. ∴F AA E V 1-=31×E AA S 1∆×FG =31×2×2=34(24)本小题主要考查对数函数图像、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力,满分12分.解:(Ⅰ)设点A 、B 的横坐标分别为x 1、x 2由题设知,x 1>1,x 2>1.则点A 、B 纵坐标分别为log 8x 1、log 8x 2.因为A 、B 在过点O 的直线上,所以,228118log log x x x x = 点C 、D 坐标分别为(x 1,log 2x 1),(x 2,log 2x 2). 由于log 2x 1=2log log 828x -3 log 8x 1,log 2x 2=2log log 828x =3log 8x 2OC 的斜率 1181121log 3log x x x x k ==, OD 的斜率 2282222log 3log x x x x k ==. 由此可知,k 1=k 2,即O 、C 、D 在同一条直线上. (Ⅱ)由于BC 平行于x 轴知 log 2x 1= log 8x 2, 即得 log 2x 1=31log 2x 2, ∴ x 2=31x .代入x 2log 8x 1=x 1log 8x 2得31x log 8x 1=3x 1log 8x 1.由于x 1>1知log 8x 1≠0, ∴ 31x =3x 1.考虑x 1>1解得x 1=3.于是点A 的坐标为(3,log 83).(25)本小题主要考查轨迹的思想,考查综合运用知识建立曲线方程的能力.满分12分. 解:设圆P 的圆心为P (a ,b ),半径为γ,则点P 到x 轴,y 轴的距离分别为|b |,|a |.由题设知圆P 截x 轴所得劣弧对的圆心角为90º,知圆P 截x 轴所得的弦长为r 2.故r 2=2b 2又圆P 被y 轴所截得的弦长为2,所以有r 2=a 2+1.从而得2b 2-a 2=1.又因为P (a ,b )到直线x -2y =0的距离为55,所以5552b a d -=, 即有 a -2b =±1, 由此有⎩⎨⎧=-=-121222b a a b ⎩⎨⎧-=-=-121222b a a b 解方程组得⎩⎨⎧-=-=11b a ⎩⎨⎧==11b a 于是r 2=2b 2=2, 所求圆的方程是(x +1)2+(y +1)2=2,或(x -1)2+(y -1)2=2.。