第十二章 数的开方

合集下载

第十二章数的开方

第十二章数的开方

平方根的定义:如果一个数的平方等于a,那么这个数就叫做a的平方根。

平方根的基本性质一个数的平方根分为三种情况:正数有两个个平方根,它们互为相反数;0的平方根是0_;负数没有平方根。

算术平方根正数的正的平方根称为算术平方根。

而0的算术平方根是0开平方运算求一个非负数的平方根的运算,叫做开平方。

开平方是一种运算,它与平方互为逆运算,计算器求一个数的平方根时要特别注意按键顺序。

平方根与算术平方根的联系与区别:联系:具有包含关系,平方根包含算术平方根,算术平方根是平方根的一种。

存在条件相同:平方根和算术平方根都只有非负数才有。

0的平方根和算术平方根都为零。

区别:定义不同个数不同表示方法不同取值范围不同几个非负数之和为零,则它们分别为零。

立方根的定义:一个数的立方等于a,则这个数叫a的立方根。

立方根的性质正数的立方根是正数,负数的立方根是负数,0的立方根是0。

平方根与立方根的联系与区别联系:都与相应的乘方运算互为逆运算,开平方与平方互为逆运算,开立方与立方互为逆运算。

都可以归结为非负数的非负根来研究零的平方根和立方根都是它本身区别:符号不同,根指数2可以省略而根指数3不可以省略平方根只有非负数才有而立方根任何数都有正数的平方根有两个,而正数的立方根只有一个实数与数轴开立方的运算:求一个数立方根的运算叫做开立方,=__________无理数无限不循环小数叫做无理数。

一看是否是无限小数;二看是否是不循环小数。

无理数的常见形式含开平方不尽的式子;含π的式子;定义本身的形式。

实数有理数与实数统称为实数实数与数轴上的点一一对应分类⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎪⎧⎪⎪⎨⎪⎪⎨⎨⎪⎪⎪⎪⎩⎩⎪⎪⎩正有理数正实数正无理数实数负有理数负实数负无理数正有理数有理数负有理数实数正无理数无理数负无理数分数正整数有理数实数整数负整数无理数实数的运算顺序先算乘方开方、再算乘除、最后算加减,如果有扩号,则先算括号里面的。

第12章 数的开方

第12章  数的开方

第12章数的开方§12.1平方根与立方根一、平方根1、平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。

(也叫做二次方根)即:若x2=a,则x叫做a的平方根。

2、平方根的性质:(1)一个正数有两个平方根。

它们互为相反数;(2)零的平方根是零;(3)负数没有平方根。

二、算术平方根1、算术平方根的定义:正数a的正的平方根,叫做a的算术平方根。

2、算术平方根的性质:(1)一个正数的算术平方根只有一个为正;(2)零的算术平方根是零;(3)负数没有算术平方根;(4)算术平方根的非负性:a≥0。

三、平方根和算术平方根是记号:平方根±a(读作:正负根号a);算术平方根a(读作根号a)即:“±a”表示a的平方根,或者表示求a的平方根;“a”表示a的算术平方根,或者表示求a的算术平方根。

其中a叫做被开方数。

∵负数没有平方根,∴被开方数a必须为非负数,即:a≥0。

四、开平方:求一个非负数的平方根的运算,叫做开平方。

其实质就是:已知指数和二次幂求底数的运算。

五、立方根1、立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根。

(也叫做三次方根)即:若x3=a,则x叫做a的立方根。

2、立方根的性质:(1)一个正数的立方根为正; (2)一个负数的立方根为负; (3)零的立方根是零。

3、立方根的记号:3a (读作:三次根号a ),a 称为被开方数,“3”称为根指数。

3a 中的被开方数a 的取值范围是:a 为全体实数。

六、开立方:求一个数的立方根的运算,叫做开立方。

其实质就是:已知指数和三次幂求底数的运算。

七、注意事项:1、“±a ”、“a ”、“3a ”的实质意义:“±a ”→问:哪个数的平方是a ; “a ”→问:哪个非负数的平方是a ; “3a ”→问:哪个数的立方是a 。

2、注意a 和3a 中的a 的取值范围的应用。

如:若3-x 有意义,则x 取值范围是 。

第12章 数的开方

第12章  数的开方

第12章 数的开方(12.1-12.2)一、选择题1、下列说法中正确的是( )A.4是8的算术平方根B.125的平方根是5C.-6是6的平方根D.-a 没有平方根 2、下列各式中错误的是( ) A .±36.0=±0.6 B.327-=-3 C.-44.1=-1.2 D. 44.1=±1.2 3、下列说法中,正确的是( ) A.27的立方根是3,记作27=3 B .-100的算术平方根是10 C .a 的三次立方根是±3a D .正数a 的算术平方根是a 4、196的平方根是( )A .14B .±14C .14D .±145、下图是一个数值转换机,若输入的a 值为2,则输出的结果应为( ) A .2 B .-2 C .1 D .-16、数3.14,2, ,0.323 232…,71,9,1+2中,无理数有( )A .2个B .3个C .4个D .5个 7、把-1.6、-2π、23、32、0,按从小到大的顺序排列为( )A .-1.6<-2π<0<23<32 B.-1.6<-2π<0<32<23C. -2π<-1.6<0<32<23 D. -2π<-1.6<0<23<328、用计算器计算,1515,1414,1313,12122222--------…,根据你发现的规律,判断P=1)1n (11)(n Q 1n 1n 22-+-+=--与(n 为大于1的整数)的大小关系为( )A .P<Q B.P=Q C.P>Q D.与n 的取值有关 二、填空题9、︱-49︱的算术平方根是 ,2)9(-的平方根是 。

10、平方根、立方根都是它本身的数是 。

11、对于正实数a 、b 作新定义:a ■b=2ab+b 5a 2-,在此定义下,若3■b=40,则b 的值为 。

第12章 数的开方.

第12章 数的开方.

第12章数的开方§12.1平方根与立方根1.平方根2.立方根§12.2实数与数轴阅读材料为什么说2不是有理数小结复习题第12章数的开方要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?()2=25§12.1 平方根与立方根1. 平方根本章导图中提出的问题,就是已知正方形的面积为25cm2,求这个正方形的边长.容易知道,这个正方形的边长是5cm.这个问题实质上就是要找一个数,这个数的平方等于25.概括如果一个数的平方等于a,那么这个数叫做a的平方根(square root).在上述问题中,因为52=25,所以5是25的一个平方根.又因为(-5)2=52=25,所以-5也是25的一个平方根.这就是说,5与-5都是25的平方根.根据平方根的意义,我们可以利用平方来检验或寻找一个数的平方根.例1 求100的平方根.解 因为102=100, (-10)2=100,除了10和-10以外,任何数的平方都不等于100,所以100的平方根是10和-10,也可以说,100的平方根是±10.试一试(1) 144的平方根是什么?(2) 0的平方根是什么?(3)254的平方根是什么?(4) -4有没有平方根?为什么?请你自己也编三道求平方根的题目,并给出解答.概 括一个正数如果有平方根数的范围从有理数扩充到实数以后(本章第2节),每一个正实数必定有两个平方根.,那么必定有两个,它们互为相反数.显然,如果我们知道了这两个平方根中的一个,那么立即可以得到它的另一个平方根.正数a 的正的平方根,叫做a 的算术平方根,记作a ,读作“根号a”;另一个平方根是它的相反数,即-a.因此正数a的平方根可以记作±a.a称为被开方数.因为0的平方等于0,而其他任何数的平方都不等于0,所以0的平方根只有一个,就是0.通常也记作0=0.思考负数有平方根吗?求一个非负数的平方根的运算,叫做开平方.将一个正数开平方,关键是找出它的一个算术平方根.在例1中,100的算术平方根是100=10,100的平方根是±100=±10.例2将下列各数开平方:(1)49;(2)1.69解(1)因为72=49,所以49=7,因此49的平方根为±7;(2)在例1、例2中,我们是通过观察,利用开方与平方的关系来开平方的.如果被开方数比较复杂,我们常用计算器直接得出一个正数的算术平方根(有时得到的是近似值).例3用计算器求下列各数的算术平方根:(1)529;(2)1225;(3)4481.分析用计算器求一个非负数的算术平方根,只需直接按书写顺序按键即可.解(1)在计算器上依次键入■ 5 2 9=,显示结果为23,所以529的算术平方根为529=23.(2)在计算器上依次键入■ 1 2 2 5 =,显示结果为,所以1225的算术平方根为1225=.(3)在计算器上依次键入■ 4 4 ·8 1 =,显示结果为,如果要求精确到0.01,那么44≈..81练习1. 说出下列各数的平方根:(1)64;(2)025;(3)49〖〗81.2. 用计算器计算:(1)676;(2)278784;(3)4225 (精确到0.01).3. 下列说法正确吗?为什么?如果不正确,那么请你写出正确答案.(1)0.09的平方根是0.3;(2)25=±5.2. 立方根问题现有一只体积为216cm3的正方体纸盒,它的棱长是多少?思 考这个实际问题,在数学上可以提出怎样的一个计算问题?从这里可以抽象出一个什么数学概念?概 括上面所提出的问题,实质上就是要找一个数,这个数的立方等于216.容易验证,63=216,除6 以外,任何数的立方都不等于216,所以正方体的棱长应为6cm .如果一个数的立方等于a ,那么这个数叫做a 的立方根(cube root ).试一试(1) 27的立方根是什么?(2) -27的立方根是什么?(3) 0的立方根是什么?请你自己也编三道求立方根的题目,并给出解答.概 括任何数(正数、负数或零)的立方根如果存在的话,必定只有一个.数a 的立方根,记作3a ,读作“三次根号a ”.a 称为被开方数,3称为根指数.求一个数的立方根的运算,叫做开立方.例4求下列各数的立方根:(1)278; (2) -125; (3) -0.008.解(1) 因为(32)3,所以.322783=(2) 因为(-5)3=-125,所以3125-=-5.(3) 。

第十二章数的开方教案

第十二章数的开方教案

12.1.1平方根教学目标:1.理解平方根和算术平方根的概念,掌握它的求法及表示方法;2.会用根号表示一个数的平方根3. 体会到平方根和算术平方根这两个概念的联系和区别教学重点:了解一个非负数平方根的概念,求某些非负数的平方根。

教学难点:平方根和算术平方根的区别和联系,以及对a的理解。

教学过程:一、复习引入1、我们已学过哪些数的运算?(加、减、乘、除、乘方5种)2、加法与减法这两种运算之间有什么关系?乘法与除法之间呢?(均为互逆运算)3、一个正方形的边长是5米,它的面积是多少?其运算是什么运算?(面积25平方米,运算是乘方运算)二、创设问题情境,解决问题正方形面积为25 cm2, 的正方形纸片,纸片的边长应是多少?答案:边长是5cm.∵2525=,∴正方形的边长是5cm.如果把正方形的面积改为9,16,29呢?一定存在面积为29的正方形边长,那么是多少呢?我们今天就来解决这个问题(板书课题——平方根)平方根定义:2525=,25是5的平方,而5是25的平方根.还有没有平方能等于25的数,()2525-=,25是-5的平方,-5是也是25的平方根.如果一个数的平方等于a,那么这个数叫做a的平方根.即若2x a=,则x叫做a的平方根.问:4,9,16,25,81,916,164的平方根是多少?为什么?【例1】求下列各数的平方根(1)81;(2)425;(3)100;(4)0.49.示范:∵()2981±=,∴81的平方根是9±.记作:9=±三、平方根的性质通过上面例题的解答,你能发现什么?1、一个正数有两个平方根,它们互为相反数.①0的平方根是多少呢?2、∵200=,∴零只有一个平方根,是零.②负数的平方根多少呢?3、∵任何数的平方都是非负数,∴负数没有平方根.③ 四、算术平方根我们把正数a a 的负的平方根表示为a 的平方根表示为【例2】求下列各数的算术平方根49,100,144,925,0.64, 2.89 ; 971.81示范:∵2749=,∴49的算术平方根是7.3497134916971)3(=±=±=±所以,因为【例3】说出下列各式的值;;.引言:∵2290a a a a ==∵大于∴五、开平方:求一个非负数的平方根的运算,叫做开平方,也叫做开二次方.“开平方是一种运算” 代数运算共有六种三个级别,加、减;乘、除;乘方、开方.【例3】将下列各数开平方0.04,1,1169,641225,0.81,36.示范:∵()20.20.04±=,∴0.04的平方根是0.2±,即0.2=±.六、小结:两个定义(平方根与算术平方根),三条性质(一个正数有两个平方根,它们互为相反数;零只有一个平方根为零;负数没有平方根.) 七、作业:B4一张.12.1.1平方根——符号及逆运算教学目标:1会求非负数的平方根,2掌握a表示的算术平方根中的a的条件和a的本身的意义3应用平方根的性质解决问题教学重点和难点:区分应用平方根的性质解决问题教学过程:【例1】说出下列式子的值.;.三、a的关系.(一样给一列,依次推导公式,以会计算为主)2a=(2a=(2a=,,a=.【例2】计算下列各式的值.2;2(;2(;2(3)±.例3:求下列各式的值:.;;;;9005136.0314120)5(432425)4(362324)3(25214)2(625)1(2222--+⋅--±-例4 求下列各式字母的取值范围(2;(3同步:1x的值为________.2.已知3y=,求2x y+的值.【例5】23x y+的平方根.∴30x y-+=,10x y+-=.解得,1x=-,2y=,∴234x y+=.∴23x y+的平方根为2±.同步:若20a -=,求2a b -的值.四、加深平方与平方根的互逆关系【例6】已知21a -的平方根是3±,31a b +-的平方根为4±,求2a b +的平方根.解:由题意,得219a -=,3116a b +-=, ∴5a =,2b =,29a b +=. ∴2a b +的平方根为3±.同步:1.若54x +的平方根是1±,则x = _______.2.若x 是16的一个平方根,y 是9的一个平方根,则x +y =______. 五、利用平方根性质解题【例7】如果A 的两个平方根分别是21x -与34x -,求A 的值?解:由题意,得()()21340x x -+-=.解得1x =. ∴21211x -=-=,∴A 211==.同步:如果21x -和34x -是A 的平方根,求A 的值? 六、利用平方根解一元二次方程 【例8】求下列各式的值:(1)0252=-x ; (2)81)1(42=+x ; (3)6442=x ; (4)09822=-x . 解:(1)225x =,5x =±; (2)()28114x +=,912x +=±,∴72x =或112x =-. (3)216x =,∴4x =±. (4)2196x =,∴13x =±. 小结:作业:一张卷11.1.2立方根教学目标1.了解一个数的立方根的意义; 2.会用根号表示一个数的立方根;3.弄清立方根与平方根的区别,了解开立方和立方互为逆运算。

12章数的开方总复习

12章数的开方总复习
没有
a
a 有意义。
3、立方根的表示方法:
数a的立方根用 a表示 读作“三次根号a”
3
如:5是125的立方根,
即: 3 125 5
4、立方根的性质:
(1)正数有一个正的立方根
(2)负数有一个负的立方根 (3)0的立方根还是0
典型例题
例1.(1) 若 a 5 ,则a=
2
;若 a 5,则a=
(二)化简:
(1)
72 __;(2)
49 ___; 81
(3)
3
2 3
(四)绝对值 (1)ຫໍສະໝຸດ 2 1.42(2)
(2 3 3 2 ) 2
(3)若点a、b在数轴上位置如图,化简
(a 1) 2 (b 1) 2 (a b) 2
a
-3 -2 -1 0 1
b
2 3
4
a
0
b
巩固练习
6.计算: (1) 求5的算术平方根与2的平方根之和(保留三位有
效数字)
(2)
2 2 5 2 0.04 3
(精确到0.01).
| x 2 | 5 7.求出右式中的x: .
(一)概念: (1)4的平方根是____________;
4 的平方根是_______;
3
2
有理数集合( 无理数集合( 非负实数集合(
) ) )
将下列个数填入相应的集合内:
3
1 5 2, , 7 , π, - , 2, 3,- 5 ,3 6 ,0 4 2
3 9 ,3.1415926, -4.5252252225„„
„„ 有理数集合
„„ 无理数集合
知识回顾
3、实数与数轴上的点是 一一对应 关系

第12章数的开方教案

第12章数的开方教案

第12章数的开方课程内容标准1.了解平方根、算术平方根、立方根的概念,会用根号表示.2.了解平方与开平方、立方与开立方互为逆运算,会用平方、立方的运算求某些数的平方根与立方根,会用计算器求一个非负数的算术平方根及任意一个数的立方根..3.了解无理数和实数的概念,知道实数与数轴上的点一一对应.4.能估计无理数的大小,培养估算能力,会进行简单的实数运算.单元教学分析§12.1 平方根与立方根1.注意与平方、立方运算的联系与转化;2.注重对基本概念的理解与应用,熟悉必要的数学语言;3.重视计算器的使用及对估算的教学,防止对学生提出繁难的数字计算要求;4.注意把握好对已出现无理数的处理.§12.2 实数与数轴1.让学生感知无理数的存在,数系扩展的必要.2.初步理解和接受实数与数轴上的点一一对应的思想.3.理解和接受有理数范围内相关概念和运算法则的自然延伸.课时分配本章教学时间为7课时,分配如下:§12.1 平方根与立方根------------3课时§12.2 实数与数轴----------------2课时复习-----------------------------2课时第1课时平方根(1)教学内容教科书P.1——P.2的内容教学目标:1、理解平方根的概念;2、认识平方与开平方的关系;3、会用平方根的概念求某些数的平方根。

教学重点:平方根的概念和开平方运算。

教学难点:平方根的概念;利用平方根和平方的关系解题。

教学过程:一、复习引入1、我们将要学习的第12章叫:数的开方,那什么叫“数的开方”呢?我们已学过哪些数的运算?(加、减、乘、除、乘方5种)2、你能写出这些运算的符号吗?请举例说明。

如一个正方形的边长是5米,它的面积是多少?其运算是什么运算? (面积25平方米,运算是乘方运算)3、加法与减法这两种运算之间有什么关系?乘法与除法之间呢?(均为互逆运算)二、创设问题情境,解决问题1、请同学们欣赏本章导图,如果要剪出一块面积为25cm 2的正方形纸片,纸片的边长应是多少?这里该用哪种运算呢?通常这类不易直接列算式计算的问题,我们常用方程解决:设边长为xcm ,则有x 2=25,显然应取x=5。

八年级数学上册教材培训(第12章数的开方 第13章整式的乘除 第14章勾股定理)

八年级数学上册教材培训(第12章数的开方 第13章整式的乘除 第14章勾股定理)

三、探究拓展:
已知有理数a满足
3 a a 4 a
,求a的值。
四、巩固提高
1、 9 的平方根是 ; 6.25 = 。 x 2 0.64 0,则x= 2.若 ; 若 2x 12 18 0 , 则x= . 4 3.将下列各数开平方:(1) 9 (2)0.36 (3) 2 16
问题4:求一个非负数的算术平方根与“开平方”有区别吗?求289的算术平方根。 (用数学符号语言表达)
问题5:求下列各式的值:(1)
400 (2) 1.96 (3) 1
40 81
自探(二):阅读课本P4例3学习实践用计算器 求非负数的算术平方根。
用计算器计算下列各式:(1) 676 = (2) 27.8784 = (3) 4.225 = (4 ) 16.89= ; (精确到0.01); (精确到0.01)。 ;
52 122 (2) 4.求下列各式的值:(1) (3) 144 361 (4) 3 27
32
(2) 44 33 ; ;…仔细观察上面几道 。
2 2
5.借助计算器可以求出:(1)42 32 (3) 4442 3332 ;(4) 4444 3333 L L 题的计算结果,试猜想 1444424443 133424343 4 4
4、 a(a≥0)是 。 A.正数 B.零 C.负数 D.非负数
二、合作交流:
1、下列说法:(1)4是8的算术平方根; (2)-8是64的负的平方根; (3)一个数的算术平方根一定是正数; (4)100的算术平方根是10,记作 100 10 其中不正确的有 个。 A. 1个 B. 2个 C. 3个 D. 4个 2、一个数的平方根是它本身,这个数是 ,一个数的算术 平方根是它本身,这个数是 。 3、一个正数的平方根是2m-1与-m+2,求m的值及这个正数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 数的开方
一、选择题
1、(2001·德州)下列说法中正确的是( )
A 、81的平方根是±3;
B 、1的立方根是±1
C 、1=±1
D 、 5-是5的平方根的相反数
2x 的取值范围是( )
A 、x ≥ 3
B 、x > 3
C 、x ≠3
D 、x ≤ 3
3、(2004·哈尔滨)a -,则实数a 在数轴上的对应点一定在( )
A 、原点左侧
B 、原点右侧
C 、原点或原点左侧
D 、原点或原点右侧
4、若()2
27.0-=x ,则=x ( ).
A 、-0.7
B 、±0.7
C 、0.7
D 、0.49 5、一个数的平方根是它本身,则这个数的立方根是( ).
A 、 1
B 、 0
C 、 -1
D 、1,-1或0 6、数3.14,2,π,0.323232…,
7
1
,9,21+中,无理数的个数为( ). A 、2个 B 、3个 C 、4个 D 、5个
7、若1<x<2,则│x-3│的值为( ).
A 、2x-4
B 、-2
C 、4-2x
D 、2
8、若2440y y ++=,则xy 的值等于( ). A 、-6 B 、-2 C 、2 D 、6
9、下列各式中错误的是( ).
A 、6.036.0±=±
B 、6.036.0=
C 、2.144.1-=-
D 、2.144.1±= 10、下列说法正确的是( );
A 、任何有理数均可用分数形式表示 ;
B 、数轴上的点与有理数一一对应 ;
C 、1和2之间的无理数只有2 ;
D 、只有同类二次根式才可以相乘除 。

二、填空题
1、2
(6)-的算术平方根是______;(2004·深圳)16的平方根是____;38
3
的立方根是_______;2的平方根是_______,
2、(2001·镇江市)2(2)0n -=,则m=_______,n=________.
3、若x x -+有意义,则=+1x ___________.
4、当x>1时,=_______.
5、当x 时,x 23-有意义;当______m 时,33-m 有意义。

6、当642
=a 时,
.___________3
=a 。

7、比较大小:(1) (2。

8、若一个数的平方根是8±,则这个数的立方根是 。

三、解答题
1、求下列各数的平方根:
(1)4
25 (2)()2
4- (3)()()82-⋅- (4)81
2、计算:
(1)256 (2)44.1- (3)2516± (4)01.0 (5)2
32⎪⎭

⎝⎛±;
3、计算: (1)3125.0-1613+23)871(-. (2)312564-38+-100
1(-2)3×3064.0.
4、已知a ,b 两数在数轴上表示如下:化简:
()()()22
2
22b a b a ++
--
+.
2
1
b
a O
5、解方程:
(1)942
=x (2)()112=+x (3)()049
121
352
=-
-x。

相关文档
最新文档