北师大版八年级数学上名校课堂单元测试(二)(含答案)
北师大版初中八年级数学上册第二章检测卷含答案

学校 班级 姓名第二章检测卷(时间:60分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列各式不是无理数的是( ).A.π5B.2ππC.π-3.14D.π+π22.|1+√3|+|1-√3|=( ).A.1B.√3C.2D.2√3 3.若实数a ,b ,c ,d 满足a-1=b-√2=c+1=d+2,则a ,b ,c ,d 这四个实数中最大的是( ).A.aB.bC.cD.d 4.下列说法正确的是( ).A.27的立方根是±3B.-8没有立方根C.立方根是它本身的数是±1D.平方根是它本身的数是05.如图,数轴上点A 所表示的数为√3,点B 到点A 的距离为1个单位长度,则点B 所表示的数是( ).A.√3-1B.√3+1C.√3-1或√3+1D.1-√3或1+√3 6.已知√a 3+3a 2=-a √a +3,则a 的取值范围是( ).A.a ≤0B.a>-3C.-3≤a ≤0D.a ≥0或a ≤-3 7.若√2x -1+√1-2x +1在实数范围内有意义,则x 满足的条件是( ).A.x ≥12B.x ≤12C.x=12D.x ≠12 8.把(2-x )√1x -2根号外的因式移到根号内,得( ). A.√2-x B.√x -2 C.-√2-xD.-√x -2 二、填空题(每小题4分,共24分)9.3-√11的绝对值是 .10.(2021遂宁)若|a-2|+√a +b =0,则ab= .11.(2021滨州)计算:√32+√83-|π0-√2|-(13)-1=. 12.当m= 时,最简二次根式12√3m +2和4√2m +3可以合并.13.(2021广元)如图,实数-√5,√15,m 在数轴上所对应的点分别为A ,B ,C ,点B 关于原点O 的对称点为D.若m 为整数,则m 的值为 .14.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b=√a+b a -b (a+b>0),如:3*2=√3+23-2=√5,则7*(6*3)= .三、解答题(共44分)15.(8分)计算:(1)(√2+1)2-√24-1+(√2 024-1)0; (2)(-1)2 023+√273+|-√3|-√16.16.(8分)解方程:(1)(3x+2)2=16;(2)12(2x-1)3=-4.17.(8分)已知3a+2的立方根是2,3a+b-1的算术平方根是3,c 是√2的整数部分.(1)求a ,b ,c 的值;(2)求a+b-c 的平方根.18.(10分)在数轴上表示a ,b ,c 三点的位置如下图所示:。
(北师大版)初中数学八年级上册第二章综合测试02含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第二章综合测试一、选择题(共10小题)1.实数297,1π+,0.010010001−中,无理数是( )A .297B .1π+C .0.010010001−D 2.25的算术平方根是( )A .5B .5−C .12.5D .12.5−3.下列式子为最简二次根式的是( )A B C D 4.下列说法正确的是( )A .5±是25的算术平方根B .4±是64的立方根C .2−是8−的立方根D .()24−的平方根是4− 5.下列运算中,正确的是( )A =B 1=C =D = 6.2764−的立方根是( ) A .34− B .38 C .49− D .9167.+的运算结果应在下列哪两个数之间( ) A .3.5和4.0 B .4.0和4.5 C .4.5和5.0 D .5.0和5.58.已知a 、b 、c 在数轴上的位置如图所示,则a c b +−−的化简结果是( )A .a b c +−B .3a b c −+C .a b c −++D .3a b c −+−9.定义一个新运算,若1i i =,21i =−,3i i =−,41i =,5i i =,61i =−,7i i =−,81i =,…,则2020i =( )A .i −B .iC .1−D .110.的小数部分不可能全部写出来,但因为<.即12<<.1−.的小数部分是m 数部分是n ,那么m n +的值是( )A 2B 1CD 3 二.填空题(共8小题)11.最接近________.12.+=________.13.比较大小:________(填“>”,“=”,“<”号)14.计算:÷=________.15..则a的取值范围是________.16.已知21+−的算术平方根是4,那么2−的平方根是________.a ba ba−的平方根是3±,3117.0==________.18.如图,以原点O为圆心,OB为半径画弧交数轴于点A,则点A所表示的数是________.三.解答题(共7小题)19.|−20.++−−21.互为相反教,z是64的平方根,求x y z−+的平方根.22.已知1n=−的值.m=,123.已知正实数x的平方根是n和n a+.(1)当6a=时,求n;(2)若2222()10n x n a x++=,求x的值.24.观察、发现:1========.(1(2=________;(3⋯+25.观察下列等式:回答问题:①111 111112 =+−=+②111 112216 =+−=+③1111133112=+−=+,…(1)=________;(2)请按照上式反应的规律,试写出用n表示的等式;(3)验证你的结果.第二章综合测试答案解析一、1.【答案】B解:297是分数,属于有理数;0.010010001−是有限小数,属于有理数;2=,是整数,属于有理数;1π+是无理数.故选:B.2.【答案】A解:2525=,25∴的算术平方根是5.故选:A.3.【答案】A解:A、是最简二次根式,故本选项符合题意;B3=,不是最简二次根式,故本选项不符合题意;C=D=故选:A.4.【答案】C解:A、5±是25的平方根,原说法错误,故此选项不符合题意;B、4是64的立方根,原说法错误,故此选项不符合题意;C、2−是8−的立方根,原说法正确,故此选项符合题意;D、()2416−=,16的平方根是4±,原说法错误,故此选项不符合题意.故选:C.5.【答案】C解:A.不是同类二次根式不能合并,选项错误;B.不是同类二次根式不能合并,选项错误;==,选项正确;==,选项错误; 故选:C.6.【答案】A 解:34−的立方等于2764−, 2764∴−的立方根等于34−. 故选:A.7.【答案】B解:原式2=+25 2.5<<,42 4.5∴<+,故选:B.8.【答案】A解:由数轴可知:0c a b <<<,0a c b ∴+−<,0a c +<,0c a −<,∴原式()||||a c b a c c a =−+−−++−()()a c b a c c a =−−+++−−a b c a c c a =−+−++−+a b c =+−,故选:A.9.【答案 】D解:1i i =,21i =−,3i i =−,41i =,5i i =,61i =−,7i i =−,81i =,⋯, ∴每4个数据一循环,20204505÷=,202041i i ∴==.故选:D.10.【答案】B 解:132<<,∴1n =,的小数部分是m ,而23<<,2m ∴=,∴+=−+=.211m n故选:B.二.11.【答案】2−解: 2.2534<<,∴<<,即2 1.5−<<−,1.52∴最接近2−.−.故答案为:212.【答案】解:原式==故答案为:13.【答案】<解:25==,∴<即<.故答案为:<.14.解:原式===,a15.【答案】1a−,解:由题意得:10a,解得:1a.故答案为:116.【答案】1=±解:21±,a−的平方根是3∴−=,219a解得5a=;a b+−的算术平方根是4,31∴+−=,a b3116∴⨯+−=,35116b解得2b=,∴−=−⨯=,25221a b∴−的平方根是:1a b2=±.17.【答案】解:由题意得:20−=,a−=,30b解得:2a=,3b=,==+=,则故答案为:18.【答案】解:如图所示:OB==故点A所表示的数是:.三.19.||=++−22=.420.【答案】解:原式322=+−−1=.21.【答案】解:+=,∴010x ∴+=,20y −−,解得1x =−,2y =, z 是64的平方根,8z ∴=或8z =−所以,1285x y z −+=−−+=,12811x y z −+=−−−=−(舍去),所以,x y z −+ 的平方根是.22.【答案】解:1m =+1n =−m n ∴−=1mn =−.∴原式3===.23.【答案】解:(1)正实数x 的平方根是n 和n a +, 0n n a ∴++=,6a =,260n ∴+=3n ∴=−;(2)正实数x 的平方根是n 和n a +, ()2n a x ∴+=,2n x =,()222210n x n a x ++=, 3310x x ∴+=,35x ∴=,x ∴=24.【答案】解:(1)原式===;(2)原式==;;(3)原式1=+⋯+1=−9=.初中数学 八年级上册 6 / 625.【答案】解:(11120=, 故答案为:1120; (21111n n =+−+. (3==()()111n n n n ++=+()()()111n n n nn n +++−=+1111n n =+−+.。
第2章 实数 北师大版八年级数学上册单元测试试卷(含答案)

第二章 实数时间:60分钟 满分:100分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·四川成都七中育才学校期末)使x+4有意义的x的取值范围是( )A.x≥-4B.x<-4C.x≠-4D.x>-42.下列各数:3.14,π,0.401,16,2.131 331 333 1…(相邻两个1之间3的个数逐次加1),323,3-9,其中无理数有( ) 21A.2个B.3个C.4个D.5个3.若一个数的算术平方根是8,则这个数的立方根是( )A.±2B.±4C.2D.44.(2022·江苏苏州期末)若最简二次根式1+2a与3是同类二次根式,则a的值为( )A.2B.4C.-1D.15.(2022·浙江宁波期末)已知432=1 849,442=1 936,452=2 025,462=2 116.若n为整数且n<2022<n+1,则n的值为( )A.43B.44C.45D.466.(2021·辽宁本溪期中)已知x,y为实数,且x-3+(y+2)2=0,则y x的立方根是( )A.36B.-2C.-8D.±27.(2022·河北石家庄晋州期末)如图是嘉嘉的试卷,答对1题得25分,答错或者不答不得分,则嘉嘉的得分是( )姓名: 嘉嘉 成绩: ①-(-8)2= 8 ;②2 7-5 7= -3 7 ;③27-2 3= 6 ;④(5+2)2= 9+4 5 .A.25分B.50分C.75分D.100分8.(2022·河南郑州三中期末)如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为( ) A.10-1 B.5-1C.2D.5(第8题) (第10题)9.对实数a,b,定义运算a*b=a 2b(a≥b),ab2(a<b),已知3*m=36,则m的值为( )A.4B.±23C.23D.4或±2310.(2021·河北唐山遵化模拟)在一个大正方形中,按如图的方式粘贴面积分别为12,10的两个小正方形,粘贴后,这两个小正方形重合部分的面积为3,则空白部分的面积为( ) A.8B.19C.67D.230-6二、填空题(共6小题,每小题3分,共18分)11.如果x(x-6)=x·x-6,请写出一个满足条件的x的值 .12.如果20n是一个整数,那么最小的正整数n是 .13.若a,b互为相反数,c,d互为倒数,则a2-b2+3cd= .14.(2022·北京平谷区期末)如图,∠AOB=90°,按以下步骤作图:①以点O为圆心,任意长为半径作弧,交OA于点C,交OB于点D;②分别以点C,D为圆心,以大于12CD的长为半径作弧,两弧交于点P;③作射线OP.如图,点M在射线OP上,过M作MH⊥OB于点H,若MH=2,则OM= .15.(2022·河北邢台信都区期中)一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是 .16.(2022·福建三明三元区期中)对于任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72第一次→[72]=8第二次→[8]=2第三次→[2]=1.类似地,只需进行3次操作后变为1的所有正整数中,最大的是 .三、解答题(共6小题,共52分)17.(共3小题,每小题3分,共9分)计算:(1)12×3-982;(2)|-38|-214-3(-1)2020;(3)33+(π+3)0-27+|3-2|.18.(6分)求下列各式中x的值.(1)4(x-3)2=9;(2)(x+10)3+125=0.19.(9分)小丽想用一块面积为36 cm2的正方形纸片,如图所示,沿着边的方向裁出一块面积为20 cm2的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?20.(9分)(2022·湖南邵阳期末)如图(1),这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图(2),使得A与-1重合,那么D在数轴上表示的数是 . 图(1) 图(2)21.(9分)(2022·山西太原期中)高空抛物是一种不文明的危险行为.据研究,从高处坠落的物品,其下落的时间t (s)和高度h (m)近似满足公式t=ℎ5(不考虑阻力的影响).(1)求物体从40 m 的高空落到地面的时间.(2)小明说物体从80 m 的高空落到地面的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由.(3)已知从高空坠落的物体所带能量(单位:J)=10×物体质量(kg)×高度(m).某质量为0.05 kg 的鸡蛋经过6 s 落在地上,这个鸡蛋在下落过程中所带能量有多大?你能得到什么启示?22.(10分)(2021·辽宁朝阳期末)在进行二次根式化简时,我们有时会碰上如53,23,23+1一样的式子,这样的式子我们可以将其进一步化简:53=5×33×3=533,23=2×33×3=63,23+1=2(3-1)(3+1)(3-1)=3-1.以上这种化简的方法叫做分母有理化,请利用分母有理化解答下列问题:(1)化简:25+3.(2)若a 是2的小数部分,求3a 的值.(3)化简:13+1+15+3+17+5+…+12023+2021.第二章 实数12345678910ABDDBBBAC D11.7(答案不唯一,大于等于6的数均可)12.513.114.2215.73.5 cm 216.2551.A 使式子4+x 有意义,则4+x ≥0,即x ≥-4,则x 的取值范围是x ≥-4.2.B 在所列的7个数中,无理数是π3,2.131 331 333 1…(相邻两个1之间3的个数逐次加1),3-9,共3个,故选B .3.D 由题意得这个数为64,∴这个数的立方根为364=4.4.D 由题意,得1+2a=3,解得a=1.5.B ∵442=1 936,452=2 025,1 936<2 022<2 025,∴44<2022<45,∵n 为整数且n<2022<n+1,∴n 的值为44.6.B ∵x -3+(y+2)2=0,∴x-3=0,y+2=0,∴x=3,y=-2,∴y x =(-2)3=-8.∵-8的立方根是-2,∴y x 的立方根是-2.7.B序号分析正误①-(-8)2=-8×② 27-5 7=-3 7√③27-2 3=3 3-2 3=3×④(5+2)2=9+4 5√∵答对1题得25分,答错或者不答不得分,∴嘉嘉的得分是25×2=50(分).8.A 由勾股定理,得AC=AB 2+BC 2=10,AM=AC=10,所以M 点的坐标是10-1.9.C ①若m ≤3,则32×m=36,解得m=4>3(舍);②若m>3,则3m 2=36,解得m=±23,∵m=-23<3,应舍去,∴m=23.10.D ∵两个小正方形的面积分别为12,10,∴两个小正方形的边长分别为23,10,∴两个小正方形重合部分的边长为(23+10-大正方形的边长).∴两个小正方形的重合部分是正方形.∵两个小正方形重合部分的面积为3,∴重合部分的边3,∴大正方形的边长是23+10-3=3+10,∴空白部分的面积为(3+10)2-(12+10-3)=230-6.11.7(答案不唯一,大于等于6的数均可) ∵x (x -6)=x ·x -6,∴x ≥0,x -6≥0,解得x ≥6,故写一个满足条件的x 的值即可,例如:7(答案不唯一,大于等于6的数均可).12.5 ∵20n 是一个整数,∴25n 是一个整数,∴最小正整数n 的值为5.13.1 根据题意得a+b=0,cd=1,则原式=(a +b )(a -b )+3cd =0+1=1.14.22 由作图可知,OM 平分∠AOB ,∴∠AOM=∠BOM=45°.∵MH ⊥OB ,∴∠OHM=90°,∴∠HOM=∠HMO=45°,∴OH=MH ,∴OM=2MH=22.15.73.5 cm 2∵正方体木块的体积是343 cm 3,∴正方体木块的棱长为3343=7(cm),要将该正方体锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为7÷2=3.5(cm),∴每个小正方体木块的表面积为6×3.52=73.5(cm 2).16.255 (逆推法)∵[3]=1,[15]=3,[255]=15,∴只需进行3次操作后变为1的所有正整数中,最大的是255.17.【参考答案】(1)原式=12×3-982(1分)=36-49(2分)=6-7=-1.(3分)(2)原式=38-94-31(1分)=2-32-1(2分)=-12.(3分)(3)原式=3+1-33+2-3(2分)=3-33.(3分)18.【参考答案】(1)因为4(x-3)2=9,所以(x-3)2=94,所以x-3=32或x-3=-32,解得x=92或x=32.(3分)(2)因为(x+10)3+125=0,所以(x+10)3=-125,所以x+10=3-125,所以x+10=-5,解得x=-15.(3分)19.【参考答案】不同意,小丽不能裁出符合要求的长方形纸片.(4分)理由如下:因为正方形的面积为36 cm 2,所以正方形的边长为6 cm .根据已知可设长方形的宽为x cm,则长为2x cm .长方形面积=x ·2x=2x 2=20,解得x=10,则2x=210,因为210 cm >6 cm,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.(9分)20.【参考答案】(1)这个魔方的棱长为364=4.(3分)(2)∵魔方的棱长为4,∴小立方体的棱长为2,(4分)∴阴影部分的面积为12×2×2×4=8,(5分)8=22.(6分)(3)-1-22(9分)21.【参考答案】(1)由题意得,当h=40 m 时,t=ℎ5=405=8=22(s).(3分)(2)不正确.(4分)理由:当h=80 m 时,t=805=16=4(s),∵4≠2×22,∴小明的说法不正确.(6分)(3)当t=6 s 时,6=ℎ5,解得h=180(m).该鸡蛋在下落过程中所带能量=10×0.05×180=90(J).(8分)启示:严禁高空抛物.(答案不唯一).(9分)22.【参考答案】(1)25+3=2(5-3)(5+3)(5-3)=2(5-3)2=5-3.(3分)(2)因为a 是2的小数部分,所以a=2-1,所以3a =32-1=3(2+1)(2-1)(2+1)=3(2+1)=32+3.(6分)(3)13+1+15+3+17+5+…+12023+2021=3-12+5-32+7-52+…+2023-20212=-1+3-3+5-5+7-…-2021+20232=-1+20232=2023-12.(10分)。
北师大版八年级数学上名校课堂专题训练(二)(含答案)

专题训练(二) 利用勾股定理解决最短路径问题1.如图,一圆柱体的底面周长为24 cm,高AB为5 cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是()A.6 cm B.12 cmC.13 cm D.16 cm2.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.521 B.25C.105+5 D.353.如图,长方体的底面边长分别为2 cm和4 cm,高为5 cm,若一只蚂蚁从点P开始经过4个侧面爬行一圈达到点Q,则蚂蚁爬行的最短路径长为多少?4.(青岛中考改编)如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底3 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离的平方是多少?5.如图,一个长方体形状的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.参考答案1.C2.B3.如图是长方体的展开图,连接PQ,则PQ即为蚂蚁爬行的最短路程.易知PP′=12 cm,QP′=5 cm.由勾股定理,得PQ2=PP′2+P′Q2=122+52=169.所以PQ=13 cm.所以蚂蚁爬行的最短路径长为13 cm.4.如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′C即为最短距离.A′C2=A′D2+CD2=92+132=250(cm2).5.(1)如图,木柜的表面展开图是两个长方形ABC′1D1和ACC1A1.蚂蚁能够最快到达目的地的可能路径有如图所示的AC′1和AC1两种.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长l2=(4+4)2+52=89.∵l1>l2,∴最短路径的长是89.。
北师大版八年级上册数学第二章检测试题(附答案)

北师大版八年级上册数学第二章检测试题(附答案)一、单选题(共12题;共24分)1.计算: ()A. 5B. 7C. -5D. -72.的平方根是()A. B. ±5 C. 5 D. ±3.若的整数部分为a,小数部分为b,则a﹣b的值为()A. ﹣B. 6-C. 8﹣D. ﹣64.在3.14,,﹣,π这四个数中,无理数有()A. 1个B. 2个C. 3个D. 4个5.估计介于()之间.A. 1.4与1.5B. 1.5与1.6C. 1.6与1.7D. 1.7与1.86.下列计算正确的是()A. B.C. D.7.下列各式中,正确的是()A. B. =1 C. D. =±0.58.设点P的坐标是(1+ ,-2+a),则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.16的算术平方根是()A. 4B. ±4C. ±2D. 210.下列各式计算正确的是()A. B. C. D.11.下列根式中,最简二次根式是()A. B. C. D.12.计算的结果是()A. B. C. D.13.化简: =________.14.下列各数:,,,1.414,,3.12122,,3.161661666…(每两个1之间依次多1个6)中,无理数有________个,有理数有________个,负数有______个,整数有________个.15.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3 ,按此规定,=________16.写出两个无理数,使它们的和为有理数________.17.已知为两个连续的整数,且,则 = ________ .18.我们在二次根式的化简过程中得知:,…,则________三、计算题(共3题;共30分)19.已知a=5+ ,b=5﹣2 ,求a2﹣3ab+b2的值.20.计算21.设a,b,c为△ ABC的三边,化简四、解答题(共4题;共20分)22.实数a,b在数轴上的位置如图所示,则化简|a+b|+23.已知x+12平方根是± ,2x+y﹣6的立方根是2,求3xy的算术平方根.24.已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.25.阅读下面材料:随着人们认识的不断深入,毕达哥拉斯学派逐渐承认不是有理数,并给出了证明.假设是有理数,那么存在两个互质的正整数p,q,使得= ,于是p= q,两边平方得p2=2q2.因为2q2是偶数,所以p2是偶数,而只有偶数的平方才是偶数,所以p也是偶数.因此可设p=2s,代入上式,得4s2=2q2,即q2=2s2,所以q也是偶数,这样,p和q都是偶数,不互质,这与假设p,q互质矛盾,这个矛盾说明,不能写成分数的形式,即不是有理数.请你有类似的方法,证明不是有理数.26.计算:(1)+ ﹣(2)|1﹣|+| ﹣|+| ﹣2|27.著名数学家斐波那契曾研究一列数,被称为斐波那契数列(按照一定顺序排列的一列数称为数列),这个数列的第n个数为[()n﹣()n](n为正整数),例如这个数列的第8个数可以表示为[()8﹣()8].根据以上材料,写出并计算:(1)这个数列的第1个数;(2)这个数列的第2个数.28.我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题,求的立方根.华罗庚脱口而出,你知道怎样迅速准确地计算出结果的吗?请按照下面的问题试一试:(1)由,确定的立方根是________位数;(2)由的个位数是确定的立方根的个位数是________;(3)如果划去后面的三位得到数,而,由此能确定的立方根的十位数是________;所以的立方根是________;(4)用类似的方法,请说出的立方根是________.29.计算:(1)=________,=________,=________,=________,=________,(2)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(3)利用你总结的规律,计算:.答案一、单选题1. A2. D3. B4.B5.C6.C7.B8.D9. A 10. A 11. D 12. B二、填空题13. 14.3;5;4;2 15.2 16.等17.7 18. 2019三、计算题19.解:a=5+ ,b=5﹣2 ,∴a2﹣3ab+b2的值=(5+2 )2﹣3×(5+2 )×(5﹣2 )+(5﹣2 )2=25+20 +24﹣3×(25﹣24)+25﹣20 +24=95.20. 解:原式=-8+1-9 =-16.21.解:由三角形三边关系(两边之和大于第三边),原式=a+b+c+b+c-a+a+c-b+a+b-c=2(a+b+c)四、解答题22.解:由数轴可得:a<0<b,且|a|>|b|,则a+b<0,b﹣a>0,所以|a+b|+=|a+b|+|b﹣a|=﹣a﹣b+b﹣a=﹣2a.23.解:由题意可知:x+12=13,2x+y﹣6=8,∴x=1,y=12,∴3xy=3×1×12=36,∴36的算术平方根为624. 【解答】解:由已知得,2a﹣1=9解得:a=5,又3a+b+9=27∴b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:± =±4.25.解:假设是有理数,则存在两个互质的正整数m,n,使得= ,于是有2m3=n3,∵n3是2的倍数,∴n是2的倍数,设n=2t(t是正整数),则n3=8t3,即8t3=2m3,∴4t3=m3,∴m也是2的倍数,∴m,n都是2的倍数,不互质,与假设矛盾,∴假设错误,∴不是有理数五、综合题26. (1)解:原式=0.2﹣2﹣=﹣2.3(2)解:原式= ﹣1+ ﹣+2﹣=127. (1)解:第1个数,当n=1时,(﹣)= × =1(2)解:第2个数,当n=2时,[()2﹣()2]= (+ )(﹣)= ×1× =128. (1)两(2)9(3)3;39(4)29. (1);0.7;0;6;(2)解:分类讨论:当时,;当时,;当时,;综上所述:= ;(3)解:利用(2)中得到的规律,可得原式=|3.14﹣π|=π﹣3.14.。
(常考题)北师大版初中数学八年级数学上册第二单元《实数》测试卷(有答案解析)(2)

一、选择题1.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 2.估算65-的值,它的整数部分是( ) A .2B .3C .4D .5 3.若2x -+|y+1|=0,则x+y 的值为( )A .-3B .3C .-1D .1 4.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 5.与数轴上的点一—对应的数是( ) A .分数或整数B .无理数C .有理数D .有理数或无理数 6.一个正方形的面积为29,则它的边长应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 7.计算()()202020203232-⨯+的结果为( ) A .-1 B .0 C .1 D .±1 8.如图,点A 表示的数可能是( )A 21B 6C 11D 17 9.在实数3.14,227-,9 1.750,-π中,无理数有( ) A .2个B .3个C .4个D .5个 10.设12211112a =++,22211123a =++,32211134a =++,……,22111(1)n a n n =+++,其中n 1232020a a a a +( ) A .201920202020 B .202020202021 C .202020212021 D .20212021202211.估计()122+432⨯的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间12.下列说法中正确的是( ) A .81的平方根是9 B .16的算术平方根是4C .3a -与3a -相等D .64的立方根是4±二、填空题13.已知|a +1|+2b -=0,则ab =_____.14.计算()()2323-⨯+的结果是_____.15.若2|1|0++-=a b ,则2020()a b +=_________.16.如图,设AB 是已知线段,经过点B 作BD AB ⊥,使12BD AB =,连接DA ,在DA 上截取DE DB =;在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.已知线段AB 的长为80cm ,则线段AC 的长为____cm .17.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知min{21,}21a =min{21,}b b =,且a 和b 是两个连续的正整数,则a+b =_____.18.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.19.2x +有意义,则实数x 的取值范围是_________. 20.有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m .三、解答题21.计算:(12105 (2)2(13)27-+22.(1()03853 3.14π-+-;(2)解方程:()321160x --=.23.计算:(1)(π﹣2020)0﹣233+-84+|1﹣3|. (2)12273+﹣()()3-232+.24.规定一种新运算a bad bc c d=-,如213(2)23218=⨯-⨯-=-. (1)若1xy =-,则2363x y-=________; (2)当1x =-时,求223213222x x x x -++--+--的值. 25.(1)计算:81812+⨯; (2)如图,已知//a b ,把三角板的直角顶点放在直线b 上.若140∠=︒,求2∠的度数.26.求下列各式中x 的值.(1)2(2)36x --=(2)33(1)24x -=-【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 2.B解析:B【分析】-1,最后两边都加上6,即可求出它的整数部分.【详解】 解:253<<,32∴-<-,364∴<<, ∴63和4之间,它的整数部分是3,故选:B .【点睛】本题考查了估算无理数的大小,主要考查学生的计算能力,属于基础题,能够确定带根号无理数的范围是解题的关键.3.D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可.【详解】解:∵∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D .【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.4.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.5.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.6.C解析:C【分析】一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.C解析:C【分析】利用二次根式的运算法则进行计算,即可得出结论.【详解】解:))2020202022⨯ 202022)⎡⎤⎦⎣=2020222⎡⎤=-⎣⎦ 2020(1)=-1=.故选:C .【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则,并能结合乘法公式进行简便运算是解答此题的关键.8.C解析:C【分析】先确定点A 表示的数在3、4之间,再根据夹逼法逐项判断即得答案.【详解】解:点A 表示的数在3、4之间,A 、因为12<<,所以213<<,故本选项不符合题意;B <<23<<,故本选项不符合题意;C <,所以34<<,故本选项符合题意;D <<,所以45<<,故本选项不符合题意;故选:C .【点睛】本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键.9.A解析:A【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案.【详解】3=-,∴3.14,227-,- 1.7,0都是有理数,-π是无理数,共2个,故选:A.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.10.B解析:B【分析】11(1)n n=++,然后把代数式进行化简,再进行计算,即可得到答案.【详解】解:∵n为正整数,∴==21(1)n nn n+++=11(1)n n++;∴2020a+=(1+112⨯)+(1+123⨯)+(1+134⨯)+…+(1+120202021⨯)=2020+1﹣1111111 2233420202021 +-+-++-=2020+1﹣1 2021=2020 20202021.故选:B.【点睛】本题考查了二次根式的化简求值,解题的关键是用裂项法将分数1n(n1)+代成111n n-+,,寻找抵消规律求和.11.C解析:C【分析】原式利用二次根式乘法运算法则计算得到结果,估算即可.【详解】解:(2+∵16<24<25,即42<2<52,∴4<<5,∴6<2+<7,∴(6和7之间.故选:C.【点睛】此题考查了估算无理数的大小,以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.12.C解析:C【分析】根据平方根,立方根,算术平方根的定义解答即可.【详解】A.81的平方根为9±,故选项错误;B2,故选项错误;C,故选项正确;D.64的立方根是4,故选项错误;故选:C.【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键.二、填空题13.-2【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:由题意得a+1=0b﹣2=0解得a=﹣1b=2所以ab=﹣1×2=﹣2故答案为:﹣2【解答】本题考查了非负数的性解析:-2【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,所以,ab=﹣1×2=﹣2.故答案为:﹣2.【解答】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431 -=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.15.1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2b=1代入计算即可【详解】∵且∴a+2=0b-1=0∴a=-2b=1∴故答案为:1【点睛】此题考查代数式的求值正确掌握算术平方根的非负性及解析:1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2,b=1,代入计算即可.【详解】∵|1|0-=b0,|1|0b -≥,∴a+2=0,b-1=0,∴a=-2,b=1,∴202020201()(21)a b +-+==,故答案为:1.【点睛】此题考查代数式的求值,正确掌握算术平方根的非负性及绝对值的非负性求出a=-2,b=1是解题的关键.16.【分析】根据通过勾股定理计算得AD ;结合计算得AE 从而得到AC 的值即可得到答案【详解】∵∴∵的长为80cm ∴cm ∴cm ∵∴cm ∴cm ∴cm 故答案为:【点睛】本题考查了勾股定理二次根式线段和与差的知识解析:)401 【分析】 根据BD AB ⊥、12BD AB =,通过勾股定理计算得AD ;结合DE DB =,计算得AE ,从而得到AC 的值,即可得到答案.【详解】∵BD AB ⊥ ∴90ABD ∠= ∵12BD AB =,AB 的长为80cm ∴40BD =cm ∴AD ==cm∵DE DB =∴40DE =cm∴)401AE AD DE =-=cm∴)401AC AE ==cm故答案为:)401. 【点睛】本题考查了勾股定理、二次根式、线段和与差的知识;解题的关键是熟练掌握勾股定理和二次根式的性质,从而完成求解. 17.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9根据新定义得出a ,b 的值,再求和即可.【详解】解:∵,b}=b , ∴a ,b又∵a 和b 为两个连续正整数,∴a=5,b=4,则a+b=9.故答案为:9.【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a ,b 的值是解题关键. 18.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.19.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.20.1【分析】先根据正方体的体积得出其棱长再求出体积达到125m3时的棱长进而可得出结论【详解】解:设正方体集装箱的棱长为a∵体积为64m3∴a==4m;设体积达到125m3的棱长为b则b==5m∴b-解析:1【分析】先根据正方体的体积得出其棱长,再求出体积达到125m3时的棱长,进而可得出结论.【详解】解:设正方体集装箱的棱长为a,∵体积为64m3,∴=4m;设体积达到125m3的棱长为b,则,∴b-a=5-4=1(m).故答案为:1.【点睛】本题考查的是立方根,熟知正方体的体积公式是解题的关键.三、解答题21.(12)4.【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:(1=(1-+(2)2=13-+=4.【点睛】本题考查了二次根式的混合运算,熟知二次根式的运算法则是解题关键.x=22.(1)4-;(2)3【分析】(1)根据立方根,绝对值,零指数幂分别计算,然后在相加减即可(2)先变形得()318x -=,再利用立方根的定义得到12x -=,解方程即可【详解】(1)原式(231=--+231=--+4=(2)()32116x -=则()318x -=故12x -=解得3x =【点睛】本题考查了实数的混合运算,以及立方根解方程,掌握立方根的定义,零指数幂的性质是解题关键.23.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()1221--+=121+=2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键.24.(1)12;(2)7-【分析】(1)利用新定义的运算得到618xy +,将xy 的值代入即可求解(2)先将x 的值代入求解,再利用新定义的运算求解即可【详解】(1)2363x y -=618xy +1xy =-∴原式=()618611812xy +=⨯-+=(2)当1x =-时,223321222x x x x --++--+-=4352----=()()()()42357-⨯---⨯-=- 【点睛】本题考查了新定义的计算,解题关键是能熟练运用新定义中的计算规律结合实数的运算法则求解.25.(1)1;(2)50°【分析】(1)先化成最简二次根式,再利用二次根式混合运算的法则计算即可;(2)先利用平角的定义求得∠3的度数,再利用平行线的性质即可求解.【详解】解:(1)8181223222212++⨯=⨯=⨯=. (2)∵140︒∠=,∴3180190180409050︒︒︒︒︒︒∠=-∠-=--=,∵//a b ,∴2350︒∠=∠=.【点睛】本题考查了二次根式的混合运算,平行线的性质,熟记性质并准确识图是解题的关键. 26.(1)32x =±;(2)1x =- 【分析】(1)利用平方根的概念解方程;(2)利用立方根的概念解方程【详解】解:(1)2(2)36x --= 2436x -=249x =294x =∴32x =± (2)33(1)24x -=-3(1)8x -=- ∴12x -=- ∴1x =-【点睛】本题考查平方根和立方根概念的应用,理解相关概念正确计算是解题关键.。
北师大版八年级数学上名校课堂单元测试(二)(含答案)

单元测试(二) 实数(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分)1.顽皮的小聪同学在黑板上写出了下面四个实数,你认为是无理数的是( )A.13B.3 C .3 D .0.3· 2.下列运算中,正确的是( )A.9=±3B.3-8=2C .(-2)0=0D .2-1=123.下列说法中,正确的有( )①-64的立方根是-4;②49的算术平方根是±7;③127的立方根是13;④116的平方根是14. A .1个 B .2个 C .3个 D .4个4.下列一定没有平方根的是( )A .-xB .-2x -1C .-x 2D .-2-x 25.在实数2,0,5,π3,327,0.101 001 000 1…(每两个1之间依次多1个0)中,无理数有( )A .2个B .3个C .4个D .5个6.下列二次根式中,属于最简二次根式的是( )A.14B.48C.a bD.4a +47.一个自然数的算术平方根是x ,则下一个自然数的算术平方根是( )A .x +1B .x 2+1 C.x +1 D.x 2+18.下列各组数中互为倒数的一组是( )A .-2与(-2)2 B.||-2与 2C .-2与3-8D .-2与-229.小马虎同学在作业本上做了以下四道题,其中正确的是( )A.2+3= 5 B .2+2=2 2C .a x -b x =(a -b)x D.8+182=4+9=2+3=5 10.如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个二、填空题(每小题4分,共16分)11. 16的平方根是________. 12.计算||2-5+||3-5的结果为________.13.已知a 是10的整数部分,b 是10的小数部分,则(b -10)a 的立方根是________.14.我们规定:“如果x n =a ,那么x 叫做a 的n 次方根,例如:因为24=16,(-2)4=16, 所以16的四次方根就是2和-2.”请你计算:81的四次方根是________,32的五次方根是________.三、解答题(共54分)15. (12分)把下列各数填入相应的集合内:-12,0,0.16,312,0.15,3,-53,π3,16,3-8,3.141 592 6,0.101 001 000 1…. 整数集合{ …};分数集合{ …};正数集合{ …};负数集合{ …};有理数集合{ …};无理数集合{ …}.16.(12分)计算:(1)(-6)2-25+(-3)2; (2)50×8-6×32.17.(8分)对于任意实数a、b规定两种运算:a※b表示a2+b2的算术平方根,a☆b表示(a +1)×(b-1)的立方根,按照上述规则计算(5※12)+[2☆(-8)]的值.18.(8分)已知m+n-5的算术平方根是3,m-n+4的立方根是-2,试求2m+13m-n+2的值.19.(14分)(黔西南州中考)阅读材料:小明在学习二次根式后,发现在一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a、b、m、n均为整数),则有a+b2=m2+2n2+2mn 2.所以a=m2+2n2,b=2mn,这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得:a=________,b=________;(2)利用所探索的结论,找一组正整数a、b、m、n填空:________+________3=(______+______3)2;(3)若a+43=(m+n3)2,且a、m、n均为正整数,求a的值.参考答案1.B2.D3.B4.D5.C6.A7.D8.D9.C 10.C 11.±2 12.1 13.-3 14.±3 215.0,16,3-8-12,0.16,312,0.15,3.141 592 6 0.16,312,0.15,3,π3,16,3.141 592 6,0.101 001 000 1 -12,-53,3-8 -12,0,0.16,312,0.15,16,3-8,3.141 592 6 3,-53,π3, 0.101 001 000 1…, 16.(1)原式=4.(2)原式=17.17. 由题意得(5※12)+[2☆(-8)]=52+122+3(2+1)×(-8-1)=13-3 =10.18.根据题意得⎩⎪⎨⎪⎧m +n -5=9,m -n +4=-8,解得⎩⎪⎨⎪⎧m =1,n =13. 所以3m -n +2=-8,2m +1=3,所以2m +13m -n +2=3-8=-2.19.(1)因为a +b 3=(m +n 3)2,所以a +b 3=m 2+3n 2+2mn 3,所以a =m 2+3n 2,b =2mn.故答案为:m 2+3n 2,2mn.(2)设m =1,n =1,所以a =m 2+3n 2=4,b =2mn =2.故答案为4、2、1、1.(30由题意,得:a =m 2+3n 2,b =2mn.因为4=2mn ,且m 、n 为正整数,所以m =2,n =1或者m =1,n =2,所以a =22+3×12=7,或a =12+3×22=13.。
(常考题)北师大版初中数学八年级数学上册第二单元《实数》检测卷(有答案解析)(4)

一、选择题1.若表示a ,b 两个实数的点在数轴上的位置如图所示,则化简()2a b a b -++的结果等于( )A .2b -B .2bC .2a -D .2a 2.估算65 ) A .2B .3C .4D .5 3.下列各数中,介于6和7之间的数是( ) A 72+B 45C 472D 354.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 5.a 2a 的值不可以是( )A .12B .8C .18D .286.172178a a b --=+a b - ).A .3±B .3C .5D .5± 7.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .81111911=8.在实数3.14,227-,9 1.750,-π中,无理数有( ) A .2个B .3个C .4个D .5个 9.已知:23-,23+,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等 10.3大的实数是( )A .﹣5B .0C .3D 211.下列说法正确的是( )A 5B .55C .25 3D 5的点12.在代数式13x -中,字母x 的取值范围是( ) A .x >1 B .x ≥1 C .x <1 D .x 13≤ 二、填空题13.计算()()2323-⨯+的结果是_____.14.如图,数轴上点A 表示的数是__________.15.以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <;164±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号) 16.用“<”连接2的平方根和2的立方根_________.17.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:431232-7543)2=※________. 18.1248________________. 19.2(1)10a b -+=,则20132014a b +=___________.20.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 三、解答题21.已知a 的平方等于4,b 的算术平方根等于4,c 的立方等于8,d 的立方根等于8, (1)求a ,b ,c ,d 的值;(2d a bc的值. 22.计算:(1)()2412--⨯;(2)()3393+-.23.计算:()22021(3)333-⎛⎫--+- ⎭+⎪⎝. 24.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年12月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算:281156415497-⨯=-==2241731576527497-⨯=-==不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证;(2)请你利用代数式的运算对以上规律加以证明.25.(1)计算:818152+⨯; (2)如图,已知//a b ,把三角板的直角顶点放在直线b 上.若140∠=︒,求2∠的度数.26.如图,一只蚂蚁从点A 沿数轴向右爬22个单位长度后到达点B ,点A 表示的数是2-,设点B 所表示的数为m .(1)求m 的值;(2)求2m m -+【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由数轴可判断出a <0<b ,|a|>|b|,得出a−b <0,a +b <0,然后再根据这两个条件对式子化简.【详解】解:∵由数轴可得a <0<b ,|a|>|b|,∴a−b <0,a +b <0,∴a b -|a−b|+|a +b|=b- a −(a +b )=b- a –a-b=−2a .故选:C .【点睛】此题考查数轴,二次根式的化简,绝对值的化简,先利用条件判断出绝对值符号里代数式的正负性,掌握求绝对值的法则以及二次根式的性质,是解题的关键.2.B解析:B【分析】-1,最后两边都加上6,即可求出它的整数部分.【详解】 解:253<<,32∴-<-,364∴<<,∴63和4之间,它的整数部分是3,故选:B .【点睛】本题考查了估算无理数的大小,主要考查学生的计算能力,属于基础题,能够确定带根号无理数的范围是解题的关键.3.B解析:B【分析】根据夹逼法逐项判断即得答案.【详解】解:A 、47<<425∴<<,故本选项不符合题意;B 、∵<<67∴<<,故本选项符合题意;C 、36<425∴<<,故本选项不符合题意;D 、25<<56∴<<,故本选项不符合题意.故选:B .【点睛】本题考查了无理数的估算,属于常考题型,掌握夹逼法解答的方法是关键.4.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确; 故选D .【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.5.D解析:D【分析】是否为同类二次根式即可.【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D.【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.6.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a≥0,∴a=17,∴b+8=0,解得b=-8,∴==,5故选:C.【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键.7.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.8.A解析:A【分析】由于无理数就是无限不循环小数,利用无理数的定义即可判断得出答案.【详解】=-,3∴3.14,22-,- 1.7,0都是有理数,7-π是无理数,共2个,故选:A .【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.9.C解析:C【解析】 因为1a b ⨯==,故选C. 10.C解析:C【详解】1.732≈ ,A,B,D 选项都比1.732小,只有故选C.11.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D 错误;故选:C .【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.12.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x ﹣1≥0,解得x≥1,故选:B .【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;二、填空题13.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431 -=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.14.【分析】根据勾股定理得到圆弧的半径长利用数轴上两点间的距离公式即可求解【详解】解:根据题意可得:圆的半径为则点A表示的数是故答案为:【点睛】本题考查勾股定理数轴上两点间的距离利用勾股定理求出半径长是解析:1【分析】根据勾股定理得到圆弧的半径长,利用数轴上两点间的距离公式即可求解.【详解】=则点A表示的数是1,故答案为:1【点睛】本题考查勾股定理、数轴上两点间的距离,利用勾股定理求出半径长是解题的关键.15.②【分析】根据有理数近似数字平方根立方根等概念即可判断【详解】解:①正有理数负有理数和零统称为有理数故原说法错误;②根据四舍五入可知近似数170所表示的准确数的范围是说法正确;③的平方根是原说法错误解析:②【分析】根据有理数、近似数字、平方根、立方根等概念即可判断.【详解】解:①正有理数、负有理数和零统称为有理数,故原说法错误;②根据四舍五入可知,近似数1.70所表示的准确数a的范围是1.695 1.705a<,说法正确;=的平方根是2±,原说法错误;4④立方根是它本身的数是0和±1,原说法错误;故答案为:②.【点睛】本题考查学生对概念的理解,解题的关键是正确理解有理数、近似数字、平方根、立方根等概念,本题属于基础题型.16.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义解析:【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案.【详解】解:2的平方根为,2∴,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义.17.【分析】先将新定义的运算化为一般运算再计算二次根式的混合运算即可【详解】解:=====故答案为:【点睛】本题考查新定义的实数运算二次根式的混合运算能根据题意将新定义运算化为一般运算是解题关键解析:1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】-※解:2=2-=2=2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.18.【分析】利用二次根式的乘法运算法则进行计算即可【详解】解:=故答案为:【点睛】本题考查二次根式的乘法熟练掌握二次根式的乘法运算法则是解答的关键【分析】利用二次根式的乘法运算法则进行计算即可.【详解】=【点睛】本题考查二次根式的乘法,熟练掌握二次根式的乘法运算法则是解答的关键.19.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值 解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 20.7【分析】由无理数的估算先求出ab 的值再进行计算即可【详解】解:∵∴∵为两个连续的整数∴∴;故答案为:7【点睛】本题考查了无理数的估算解题的关键是正确求出ab 的值从而进行解题解析:7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵<< ∴34<<,∵a、b 为两个连续的整数,a b <<,∴3a =, 4b =,∴ 347a b +=+=;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a 、b 的值,从而进行解题.三、解答题21.(1)a =±2,b =16,c =2,d =512;(2)6或2【分析】(1)结合题意,根据乘方、算数平方根、立方根的性质计算,即可得到答案;(2)结合(1)的结论,根据有理数混合运算以及算数平方根的性质计算,即可得到答案.【详解】(1)∵a 2=4,∴a =±2 b 4=,∴b =16∵c 3=8,∴c =2 3d 8=,∴d =512;(2)当a =2a 26==当a =-2a 22==∴a 的值为6或2. 【点睛】本题考查了乘方、算数平方根、立方根、有理数混合运算的知识;解题的关键是熟练掌握乘方、算数平方根、立方根的性质,从而完成求解.22.(1)2;(2)0.【分析】(1)先计算乘方,再计算乘法和减法,即可得到答案;(2)由算术平方根和立方根进行化简,即可得到答案.【详解】解:(1)原式412422=-⨯=-=;(2)()3393330+-=-=. 【点睛】本题考查了有理数的混合运算,算术平方根,立方根,解题的关键是熟练掌握运算法则进行解题.23.【分析】先计算零指数幂、负整数指数幂以及平方,再计算加减混合运算.【详解】解:原式111999=+-+ 10=.【点睛】本题主要考查了实数的混合运算,解题的关键是熟练掌握零指数幂、负整数指数幂以及平方的性质.24.(1)见解析;(2)见解析【分析】(1)答案不唯一,如选择6,13,20这三个数,按照已知等式方法计算即可; (2)设中间那个数为n ,列得2(7)(7)n n n --+,根据平方差公式及合并同类项法则计算即可.【详解】解:(1)答案不唯一,如:在图中框出如图,213620169120497-⨯=-==;(2)证明:设中间那个数为n ,则:2(7)(7)497n n n --+==∴2(7)(7)7n n n --+=..【点睛】此题考查数字计算规律探究,掌握有理数混合运算法则,整式的混合运算法则以及化简算术平方根是解题的关键.25.(1)1;(2)50°【分析】(1)先化成最简二次根式,再利用二次根式混合运算的法则计算即可;(2)先利用平角的定义求得∠3的度数,再利用平行线的性质即可求解.【详解】解:(1)818122322221 52522++⨯=⨯=⨯=.(2)∵140︒∠=,∴3180190180409050︒︒︒︒︒︒∠=-∠-=--=,∵//a b,∴2350︒∠=∠=.【点睛】本题考查了二次根式的混合运算,平行线的性质,熟记性质并准确识图是解题的关键.26.(12;(2)22【分析】(1)根据题意得出B表示的数,确定出m的值即可;(2)把m的值代入,然后根据绝对值的性质进行计算即可得解.【详解】(1)根据题意得:2222m=-=∴m2;(2)当2m=2222m m-+222222=+22=-22=22=【点睛】本题考查了数轴,绝对值的性质,二次根式的加减,理解数轴上的数向右移动加是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试(二) 实数
(时间:45分钟 满分:100分)
一、选择题(每小题3分,共30分)
1.顽皮的小聪同学在黑板上写出了下面四个实数,你认为是无理数的是( )
A.13
B.3 C .3 D .0.3· 2.下列运算中,正确的是( )
A.9=±3
B.3-8=2
C .(-2)0=0
D .2-1=12
3.下列说法中,正确的有( )
①-64的立方根是-4;②49的算术平方根是±7;③127的立方根是13;④116的平方根是14
. A .1个 B .2个 C .3个 D .4
个
4.下列一定没有平方根的是( )
A .-x
B .-2x -1
C .-x 2
D .-
2-x 2
5.在实数2,0,5,π3,327,0.101 001 000 1…(每两个1之间依次多1个0)中,无理数有( )
A .2个
B .3个
C .4个
D .5
个
6.下列二次根式中,属于最简二次根式的是( )
A.14
B.48
C.a b
D.4a +4
7.一个自然数的算术平方根是x ,则下一个自然数的算术平方根是( )
A .x +1
B .x 2+1 C.x +1 D.x 2+1
8.下列各组数中互为倒数的一组是( )
A .-2与(-2)2 B.||-2与 2
C .-2与3-8
D .-2与-22
9.小马虎同学在作业本上做了以下四道题,其中正确的是( )
A.2+3= 5 B .2+2=2 2
C .a x -b x =(a -b)x D.8+182
=4+9=2+3=5 10.如图,数轴上A 、B 两点表示的数分别为2和5.1,则A 、B 两点之间表示整数的点共有( )
A .6个
B .5个
C .4个
D .3个
二、填空题(每小题4分,共16分)
11. 16的平方根是________. 12.计算||2-5+||3-5的结果为________.
13.已知a 是10的整数部分,b 是10的小数部分,则(b -10)a 的立方根是________.
14.我们规定:“如果x n =a ,那么x 叫做a 的n 次方根,例如:因为24=16,(-2)4=16, 所以16的四次方根就是2和-2.”请你计算:81的四次方根是________,32的五次方根是________.
三、解答题(共54分)
15. (12分)把下列各数填入相应的集合内:
-12,0,0.16,312,0.15,3,-53,π3
,16,3-8,3.141 592 6,0.101 001 000 1…. 整数集合{ …};
分数集合{ …};
正数集合{ …};
负数集合{ …};
有理数集合{ …};
无理数集合{ …}.
16.(12分)计算:
(1)(-6)2-25+(-3)2; (2)50×8-
6×32
.
17.(8分)对于任意实数a、b规定两种运算:a※b表示a2+b2的算术平方根,a☆b表示(a +1)×(b-1)的立方根,按照上述规则计算(5※12)+[2☆(-8)]的值.
18.(8分)已知m+n-5的算术平方根是3,m-n+4的立方根是-2,试求2m+1
3m-n+2
的值.
19.(14分)(黔西南州中考)阅读材料:
小明在学习二次根式后,发现在一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:
设a+b2=(m+n2)2(其中a、b、m、n均为整数),则有a+b2=m2+2n2+2mn 2.
所以a=m2+2n2,b=2mn,这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得:a=________,b=________;
(2)利用所探索的结论,找一组正整数a、b、m、n填空:________+________3=(______+______3)2;
(3)若a+43=(m+n3)2,且a、m、n均为正整数,求a的值.
参考答案
1.B
2.D
3.B
4.D
5.C
6.A
7.D
8.D
9.C 10.C 11.±2 12.1 13.-3 14.±3 2
15.0,16,3-8
-12,0.16,312
,0.15,3.141 592 6 0.16,312,0.15,3,π3,16,3.141 592 6,0.101 001 000 1 -12,-53
,3-8 -12,0,0.16,312
,0.15,16,3-8,3.141 592 6 3,-53,π3
, 0.101 001 000 1…, 16.(1)原式=4.
(2)原式=17.
17. 由题意得(5※12)+[2☆(-8)]=52+122+3(2+1)×(-8-1)=13-3 =10.
18.根据题意得⎩⎪⎨⎪⎧m +n -5=9,m -n +4=-8,解得⎩
⎪⎨⎪⎧m =1,n =13. 所以3m -n +2=-8,2m +1=3,
所以2m +13m -n +2=3-8=-2.
19.(1)因为a +b 3=(m +n 3)2,
所以a +b 3=m 2+3n 2+2mn 3,
所以a =m 2+3n 2,b =2mn.
故答案为:m 2+3n 2,2mn.
(2)设m =1,n =1,
所以a =m 2+3n 2=4,b =2mn =2.
故答案为4、2、1、1.
(30由题意,得:a =m 2+3n 2,b =2mn.
因为4=2mn ,且m 、n 为正整数,
所以m =2,n =1或者m =1,n =2,
所以a =22+3×12=7,或a =12+3×22=13.。