北师大版八年级数学下册3.2《图形的旋转》教案

合集下载

北师大版八年级数学下册3.2《图形的旋转》教案

北师大版八年级数学下册3.2《图形的旋转》教案

《图形的旋转》教案教学目标一、知识与技能1.学生通过欣赏生活中的旋转变换现象,认识旋转,理解旋转的基本要素;2.知道平面直角坐标系中点的左右或上下平移与点的坐标变化规律;二、过程与方法1.培养观察图形的能力,能识别旋转中心和旋转角度;2.经历探索图形旋转的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识;三、情感态度和价值观1.通过学生的观察、对比、发现规律,体验教学活动充满探索性和创造性;2.从学生的动手、动脑等多种思维运动中培养和开发学生的多元智能;教学重点探索发现旋转图形的定义以及性质;教学难点体会旋转点,旋转方向,旋转角度在图形设计中重要;教学方法引导发现法、实验探究法课前准备教师准备课件、多媒体学生准备三角板,练习本课时安排2课时教学过程一、导入上面图片反映的是日常生活中物体运动的一些场景.你还能举出一些类似的例子吗?与同伴交流.(1)上面情景中的转动现象,有什么共同的特征?(2)在转动过程中,其形状、大小、位置是否发生变化呢?二、新课在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的形状和大小.如图3-10,△ABC绕点O按顺时针方向旋转一个角度,得到△DEF,点A,B,C分别旋转到了点D,E,F.点 A 与点D 是一组对应点,线段AB与线段DE是一组对应线段,∠BAC与∠EDF是一组对应角.在这一旋转过程中,旋转中心是什么?旋转角是什么?点O是旋转中心,∠AOD,∠BOE,∠COF都是旋转角.做一做如图3-11,两张透明纸上的四边形ABCD和四边形EFGH完全重合,在纸上选取旋转中心O,并将其固定.把其中一张纸片绕点O旋转一定角度(如图3-12).(1)观察图3-12的两个四边形,你能发现有哪些相等的线段和相等的角?(2)连接AO,BO,CO,DO,EO,FO,GO,HO,你又能发现有哪些相等的线段和相等的角?(3)在图3-12中再取一些对应点,画出它们与旋转中心所连成的线段,你又能发现什么?结论:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.在图3-13(1)~(4)的四个三角形中,哪个不能由△ABC经过平移或旋转得到?(2)不能由△ABC经过平移或旋转得到.例:在图3-14 中,画出线段AB绕点A按顺时针方向旋转60 °后的线段.解:(1)如图3-15,以AB为一边按顺时针方向画∠BAX,使得∠BAX = 60 °.(2)在射线AX上取点C,使得AC= AB.线段AC就是线段AB绕点A按顺时针方向旋转60 °后的线段.做一做如图3-16,△ABC绕点O按逆时针方向旋转后,顶点A旋转到了点D.(1)指出这一旋转的旋转角.(2)画出旋转后的三角形.议一议确定一个图形旋转后的位置,需要哪些条件?旋转中心、旋转方向和旋转角度.三、习题1.如图:画出△ABC绕点C按顺时针方向旋转120°后的对应的三角形.四、拓展1、如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?解:方案一:把正方形ABCD绕点D顺时针旋转90°.方案二:把正方形ABCD绕点C逆时针旋转90°.方案三:把正方形ABCD绕CD的中点O旋转180°.五、小结通过本节课的内容,你有哪些收获?1.旋转的概念2.旋转的三要素3.旋转的性质4.简单的旋转作图。

2021年北师大版数学八年级下册3.2《图形的旋转》教案

2021年北师大版数学八年级下册3.2《图形的旋转》教案

2021年北师大版数学八年级下册3.2《图形的旋转》教案一. 教材分析《图形的旋转》是北师大版数学八年级下册第三章《几何变换》的一部分。

本节课主要让学生掌握图形旋转的性质,了解旋转变换在实际问题中的应用。

通过学习,学生能理解旋转的概念,掌握旋转的性质,能运用旋转变换解决一些简单的问题。

二. 学情分析学生在七年级时已经学习了图形的平移,对图形的变换有一定的认识。

但旋转与平移存在很大的差异,学生需要通过实例对比,进一步理解旋转的性质。

此外,学生需要通过操作活动,体会旋转变换在实际问题中的应用。

三. 教学目标1.知识与技能:理解旋转变换的概念,掌握旋转变换的性质,能运用旋转变换解决一些简单问题。

2.过程与方法:通过观察、操作、讨论,培养学生的空间想象能力和动手操作能力。

3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的联系。

四. 教学重难点1.重点:旋转变换的概念,旋转变换的性质。

2.难点:旋转变换在实际问题中的应用。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立知识体系。

2.操作法:学生通过动手操作,直观地感受旋转变换的性质。

3.讨论法:学生分组讨论,分享彼此的想法,培养合作意识。

六. 教学准备1.教学课件:教师准备课件,展示旋转变换的实例和性质。

2.学生活动材料:学生准备剪刀、纸张等材料,进行旋转变换的操作活动。

七. 教学过程1.导入(5分钟)教师通过提问:“同学们,你们知道什么是图形的旋转吗?”引导学生回顾旋转的概念。

然后,教师展示一些实例,如旋转向量、旋转变换在实际问题中的应用等,让学生初步感受旋转变换的特点。

2.呈现(10分钟)教师引导学生观察、分析旋转变换的性质,如旋转变换不改变图形的大小和形状,只改变图形的位置等。

学生通过观察、操作,总结旋转变换的性质。

3.操练(10分钟)学生分组进行旋转变换的操作活动。

教师提供一些实际问题,如旋转变换在几何作图、物体运动等方面的应用,学生运用旋转变换解决问题。

八年级数学下册 3.2.1 图形的旋转教案1 (新版)北师大版

八年级数学下册 3.2.1 图形的旋转教案1 (新版)北师大版

课题:3.2.1图形的旋转教学目标:1.通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.2.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.3.引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.教学重点与难点:重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的性质,特别是,对应点到旋转中心的距离相等.课前准备:教师:多媒体课件。

教学过程:一、创设情境,引入新课在我们的生活中存在着许多运动形式,大家来想一下,我们生活中主要还有什么运动形式(平移除外)?处理方式:向学生展示有关生活中的旋转,引导学生感知旋转的特点.引出课题:3.2.1图形的旋转(教师板书).设计意图:从学生熟悉的现实生活出发,在教学中创设问题情境,开门见山引入新课,并且引导学生从实际生活中去体会旋转应用的广泛性,提高了学生的学习兴趣.二、合作探究,形成概念 活动1:建立旋转的概念 思考:(1)上面情景中的转动现象,有什么共同的特征?(2)钟表的指针、秋千、车轮在转动过程中,其形状、大小、位置是否发生变化呢? 处理方式:结合旋转着的图形,小组合作尝试用自己的语言来描述旋转的特点,在此基础上归纳出旋转的概念: 在同一平面内,把一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

教师说明:这个定点叫做旋转中心,转动的角叫做旋转角。

强调:旋转的决定因素( 三要素):旋转中心、 旋转角、 旋转方向。

感知:旋转不改变图形的形状和大小,只改变图形的位置。

活动2:认识旋转(1) 秋千的转动由位置A 旋转45°到B ,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?(2)在同一平面内,线段AB 旋绕90°得到线段CD ,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?(3)在同一平面内,三角形ABC 绕着某定点旋转100°得到三角形DEF ,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?·OABCD(图2)处理方式:结合具体问题,重点引导学生认识旋转的三个要素:旋转中心、旋转方向和旋转角度。

北师大版数学八年级下册:3.2 图形的旋转 教案

北师大版数学八年级下册:3.2 图形的旋转  教案

出 一 些 具 有 旋 转 现 象 的 生 活 实 例 , 引 出 课 学,学生 画生动形象
题 “图形的旋转”。
感到快
教师板书:3.2 图形的旋转(1)
乐学习。
2.学生切身感
2. 实践操作
2. 学 生 受 到 转 动 现
利用课室现有的物体进行旋转运动,在生活中 蠢 蠢 欲 象,从而产生
还有哪些蕴含旋转运动的现象,举例说明
一、 目标展示, 心中有数.
用 动 画 推广课前展示 的 形 式 学习目标的要 展 示 学 求,是我市课 习 目 标 改的一个特
让 学 生 色,其目的是
更 能 关 课前要让学生
注。
知道本节课要
学什么而做到
心中有数。
二、 自主学习 探究新知
1. 看视频
1. 儿 歌 1.数学来自于
播放动画视频(儿歌“大风车”),引导学生列举 中 有 数 生活,播放动
三、 图 1 小组合作 交流展示
A(E)
D(H)
B(F)
C(G)
图2
O
D A
B
C
(1)观察图 2 的两个三角形,你能发现哪些相 等的线段和相等的角?
(2)连接 AO,BO,CO,DO,EO,FO,你又能发现些 相等的线段和相等的角?
(3)在图 2 中再选取一些对应点,画出它们与
精神上的准 备。
培养学生的动 手能力、观察 能力和探究问 题的能力,以 及与人合作交 流的能力,充 分体现了教师 为主导,学生 为主体的教学 方法。同时以 问题为导引, 逐步对旋转的 性质进行探 究,这样既突 出了重点,又 突破了难点。
∆ABC 经过平移或旋转得到的?
C
让学生及时巩 固Biblioteka 理解旋转BAA(1)

【最新北师大版精选】北师大初中数学八下《3.2.图形的旋转》word教案 (1).doc

【最新北师大版精选】北师大初中数学八下《3.2.图形的旋转》word教案 (1).doc

《图形的旋转》第1课时教学目标1、通过具体实例认识旋转,理解旋转的基本涵义.2、探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.3、经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.教学重难点教学重点:旋转的基本性质.教学难点:探索旋转的基本性质.教学过程一、知识回顾下列现象哪些是平移?平移的特点有哪些?①平移是指整个图形平行移动,包括图形的每一条线段,每一个点.经过平移,图形上的每一个点都沿同一个方向移动相同的距离.②平移不改变图形的形状、大小,方向,只改变图形的位置.日常生活中,我们经常见到(钟表、风扇、汽车方向盘,摩天轮,旋转木马……)钟表指针的转动、风扇扇叶的转动、汽车方向盘的转动等情景.(1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?风扇扇叶的转动、汽车方向盘的转动呢?二、新知要点1、旋转在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的大小和形状.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.例题:如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的置.2、旋转的性质(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等;(4)图形的旋转由旋转中心和旋转角度决定.三、新知巩固如图所示,如果把钟表的指针看作四边形AOBC,它绕O点按顺时针方向旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移到什么位置?(3)AO与DO的长有什么关系?BO与EO呢?(4)∠AOD与∠BOE有什么大小关系?F四、归纳小结1、认识了旋转的图形;2、旋转图形的三要素:旋转中心、旋转角、旋转方向;3、旋转图形的性质.第2课时教学目标1、简单平面图形旋转后的图形的作法.2、确定一个三角形旋转后的位置的条件.3、能够按要求作出简单平面图形旋转后的图形.教学重难点教学重点:简单平面图形旋转后的图形的作法.教学难点:简单平面图形旋转后的图形的作法.教学过程一、知识回顾1、旋转的概念.2、旋转的三要素.3、旋转的性质.如图,在方格上作出“小旗子”绕O点按顺时针方向旋转90度后的图案,并简述理由.二、新知要点1、简单图形的旋转作图两种情况:①给出绕着旋转的定点,旋转方向和旋转角的大小;②给出定点和图形的一个特殊点旋转后的对应点.作图步骤:①作出图形的几个关键点旋转后的对应点;②顺次连接各点得到旋转后的图形.例题:如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连结DB′,则△DB′C就是△ABC绕C点旋转后的图形.2、试一试:怎样将下图中的甲图变成乙图?3、做一做:在下图,将大写字母A绕着它右下侧的顶点按顺时针方向旋转90度,请作出旋转后的图案.三、归纳小结1、图形的旋转;2、图形旋转的性质;3、简单图形的旋转作图步骤.。

2024北师大版数学八年级下册3.2《图形的旋转》教案

2024北师大版数学八年级下册3.2《图形的旋转》教案

2024北师大版数学八年级下册3.2《图形的旋转》教案一. 教材分析《图形的旋转》是北师大版数学八年级下册3.2的内容。

本节课主要让学生理解旋转的性质,学会用旋转的观点来分析和解决问题。

通过本节课的学习,学生能够掌握图形旋转的定义,理解旋转中心、旋转角、旋转前后的对应点等概念,并能够运用这些概念解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了图形的平移、翻转等变换,对图形的变换有一定的了解。

但学生对旋转的概念和性质可能还比较陌生,需要通过实例和操作来加深理解。

此外,学生可能对坐标系中的旋转问题感到困惑,需要教师进行有针对性的讲解和辅导。

三. 教学目标1.知识与技能:学生能够理解旋转的性质,掌握图形旋转的定义,学会用旋转的观点来分析和解决问题。

2.过程与方法:学生通过观察、操作、思考、交流等活动,培养空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生能够积极参与课堂活动,克服困难,自主学习,体验成功解决问题的乐趣,增强对数学的兴趣和信心。

四. 教学重难点1.重点:学生能够理解旋转的性质,掌握图形旋转的定义。

2.难点:学生能够理解旋转中心、旋转角、旋转前后的对应点等概念,并能够运用这些概念解决实际问题。

五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生的兴趣和思考,引导学生主动探索和解决问题。

2.启发式教学法:教师提出问题,引导学生思考和讨论,激发学生的学习积极性和创造力。

3.合作学习法:学生分组讨论和操作,培养学生的团队协作能力和沟通能力。

4.归纳总结法:教师引导学生总结旋转的性质和应用,帮助学生形成知识体系。

六. 教学准备1.教学课件:制作课件,包括图片、动画、实例等,帮助学生直观地理解旋转的概念和性质。

2.教学素材:准备一些实际的图形和问题,用于引导学生操作和思考。

3.坐标系图:准备一些坐标系图,方便学生理解和解决坐标系中的旋转问题。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、旋转木马等,引导学生关注旋转现象,并提出问题:“什么是旋转?旋转有哪些特点?”2.呈现(10分钟)教师通过课件呈现旋转的定义和性质,如旋转中心、旋转角、旋转前后的对应点等,并用实例进行解释和演示。

北师大版八年级数学下册3.2图形的旋转(2) 教案设计

北师大版八年级数学下册3.2图形的旋转(2) 教案设计

八年级下册数学第三章 3.2图形的旋转(第2课时)教案一、目标引领1.课题名称:北师大版八年级下册数学第三章 3.2图形的旋转(第2课时)2.达成目标:(1)能够根据旋转的基本性质进行简单作图.(2)会用旋转等图形变换设计方案.3.课前准备建议:(1)画图及作图的掌握:会画一线段等于已知线段,会画一角等于已知角.(2)准备必要的数学用具:刻度尺、量角器等文具.二、学习指导知识回顾(3-5分钟)动手操作,自主探究(8-13分钟)观察上图回忆知识点:1、什么叫旋转?2、旋转的基本性质是什么?点的旋转【例1】试着找一找如图A点绕O点顺时针旋转30°后所在的位置A′,并尝试写一下你的画法.线段的旋转【例2】在下图中,画出线段AB绕A点顺时针方向旋转60°后的线段,并尝试写一下你的画法.探究总结,形成认知(1-3分钟)新知应用(1-2分钟)问题再探,提高升华(8-10分钟)图形的旋转【例3】如图,△ABC绕点O按逆时针方向旋转后,顶点A旋转到了点D,并尝试写一下你的画法.(1)指出这一旋转的旋转角.(2)画出旋转后的三角形.并尝试写一下你的画法.确定一个图形旋转后的位置,需要哪些条件?你能作出“将方格中的小旗子绕O点按顺时针方向旋转90˚”后的图案吗?【例4】如图,△ABC绕C点旋转后,顶点A的对应点为点D.试确定旋转后的三角形的位置,并叙述你的做法.知识运用,指导生活(1-3分钟)新知应用(5-6分钟)2.用旋转变换设计图案怎样将甲图案变成乙图案?并叙述你的做法.下图由四部分组成,每部分都包括两个小“十字”,红色部分A 能经过适当的图形变换得到其他三部分B、C、D吗?知识总结(1-2分钟)从知识和思想上写一写本节课的收获.三、当堂检测(课堂检测:5分钟)1、同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是在万花筒中看到的一个图案.图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是四边形ABCD以A为旋转中心( )A.顺时针旋转60°得到的 B.顺时针旋转120°得到的C.逆时针旋转60°得到的 D.逆时针旋转120°得到的2、将如图所示的五边形绕点O按顺时针方向旋转90°,画出旋转后的图形.四、作业布置A组:1、在图中画出线段AB绕点O按顺时针方向旋转50°后的线段.B组:2、如图,四边形ABCD绕O点旋转后,顶点A的对应点为E,试确定B、C、D对应的点的位置,以及旋转后的四边形.C组:3、在五边形ABCDE中,AB=AE、BC+DE=CD,∠ABC+∠AED=180°.求证:DA平分∠CDE.五、总结反思(学生填写)。

北师大版八年级数学下册3.2图形的旋转(教案)

北师大版八年级数学下册3.2图形的旋转(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“图形旋转在实际生活中的应用”这一主题展开讨论。他们将被讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.能够运用旋转变换解决实际问题,如求旋转后的图形的面积、周长等。
二、核心素养目标
1.培养学生的空间观念和几何直观,通过观察和操作,理解旋转的运动规律,提高对图形旋转变换的认识。
2.发展学生的逻辑思维和推理能力,运用旋转变换的性质分析和解决实际问题,培养严谨的数学思维。
3.增强学生的动手操作和实践能力,通过旋转作图,提高空间想象力和创造力,激发学生对数学学习的兴趣。
4.培养学生的团队协作和交流能力,在小组讨论和合作中,分享旋转知识,提高合作解决问题的能力。
三、教学难点与重点
1.教学重点
-旋转变换的基本概念:使学生掌握旋转的定义,理解旋转中心、旋转方向和旋转角度的概念。
-旋转变换的性质:通过实例,使学生掌握旋转变换的性质,如对应角相等、对应边相等等。
-旋转作图方法:指导学生运用直尺和圆规进行旋转作图,掌握作图步骤和技巧。
北师大版八年级数学下册3.2图形的旋转(教案)
一、教学内容
本节课选自北师大版八年级数学下册第三章第二节“图形的旋转”。教学内容主要包括以下三个方面:
1.理解旋转的概念,掌握图形旋转的基本要素:旋转中心、旋转方向和旋转角度。
2.学会运用旋转作图,掌握旋转变换的性质,如对应角相等、对应边相等、对应点所连的线段平行且相等等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《图形的旋转》教案
教学目标
一、知识与技能
1.学生通过欣赏生活中的旋转变换现象,认识旋转,理解旋转的基本要素;
2.知道平面直角坐标系中点的左右或上下平移与点的坐标变化规律;
二、过程与方法
1.培养观察图形的能力,能识别旋转中心和旋转角度;
2.经历探索图形旋转的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识;
三、情感态度和价值观
1.通过学生的观察、对比、发现规律,体验教学活动充满探索性和创造性;
2.从学生的动手、动脑等多种思维运动中培养和开发学生的多元智能;
教学重点
探索发现旋转图形的定义以及性质;
教学难点
体会旋转点,旋转方向,旋转角度在图形设计中重要;
教学方法
引导发现法、实验探究法
课前准备
教师准备
课件、多媒体
学生准备
三角板,练习本
课时安排
2课时
教学过程
一、导入
上面图片反映的是日常生活中物体运动的一些场景.你还能举出一些类似的例子吗?与同伴交流.
(1)上面情景中的转动现象,有什么共同的特征?
(2)在转动过程中,其形状、大小、位置是否发生变化呢?
二、新课
在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.
旋转不改变图形的形状和大小.
如图3-10,△ABC绕点O按顺时针方向旋转一个角度,得到△DEF,点A,B,C分别旋转到了点D,E,F.点 A 与点D 是一组对应点,线段AB与线段DE是一组对应线段,∠BAC与∠EDF是一组对应角.在这一旋转过程中,旋转中心是什么?旋转角是什么?
点O是旋转中心,∠AOD,∠BOE,∠COF都是旋转角.
做一做
如图3-11,两张透明纸上的四边形ABCD和四边形EFGH完全重合,在纸上选取旋转中心O,并将其固定.把其中一张纸片绕点O旋转一定角度(如图3-12).
(1)观察图3-12的两个四边形,你能发现有哪些相等的线段和相等的角?
(2)连接AO,BO,CO,DO,EO,FO,GO,HO,你又能发现有哪些相等的线段和相等的角?
(3)在图3-12中再取一些对应点,画出它们与旋转中心所连成的线段,你又能发现什么?
结论:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.在图3-13(1)~(4)的四个三角形中,哪个不能由△ABC经过平移或旋转得到?
(2)不能由△ABC经过平移或旋转得到.
例:在图3-14 中,画出线段AB绕点A按顺时针方向旋转60 °后的线段.
解:(1)如图3-15,以AB为一边按顺时针方向画∠BAX,使得∠BAX = 60 °.(2)在射线AX上取点C,使得AC= AB.
线段AC就是线段AB绕点A按顺时针方向旋转60 °后的线段.
做一做
如图3-16,△ABC绕点O按逆时针方向旋转后,顶点A旋转到了点D.(1)指出这一旋转的旋转角.
(2)画出旋转后的三角形.
议一议
确定一个图形旋转后的位置,需要哪些条件?
旋转中心、旋转方向和旋转角度.
三、习题
1.如图:画出△ABC绕点C按顺时针方向旋转120°后的对应的三角形.
四、拓展
1、如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?
解:方案一:把正方形ABCD绕点D顺时针旋转90°.
方案二:把正方形ABCD绕点C逆时针旋转90°.
方案三:把正方形ABCD绕CD的中点O旋转180°.
五、小结
通过本节课的内容,你有哪些收获?
1.旋转的概念
2.旋转的三要素
3.旋转的性质
4.简单的旋转作图。

相关文档
最新文档