等腰三角形中的分类讨论 教案

合集下载

等腰三角形中的分类讨论

等腰三角形中的分类讨论

等腰三角形中的分类讨论一、等腰三角形的定义等腰三角形是指具有两条边相等的三角形,也就是说,等腰三角形的两条边边长相等,而另一条边则较短。

等腰三角形可以有不同的形状和性质,下面将对等腰三角形进行分类讨论。

二、等腰三角形的分类1. 等腰直角三角形等腰直角三角形是一种特殊的等腰三角形,其中的一个内角为直角(即90度)。

在等腰直角三角形中,另外两个内角相等,均为45度。

根据勾股定理,等腰直角三角形的斜边与两条直角边之间的关系为:斜边的长度等于直角边长度的平方根乘以2。

2. 等腰锐角三角形等腰锐角三角形是指两个等腰三角形的顶点角小于90度的三角形。

在等腰锐角三角形中,两个等腰边的边长相等,而顶点角则小于90度。

等腰锐角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。

3. 等腰钝角三角形等腰钝角三角形是指两个等腰三角形的顶点角大于90度的三角形。

在等腰钝角三角形中,两个等腰边的边长相等,而顶点角则大于90度。

等腰钝角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。

4. 等腰等边三角形等腰等边三角形是一种特殊的等腰三角形,其中的三个边全都相等。

等腰等边三角形的三个内角均为60度。

等腰等边三角形具有许多特殊性质,例如:它的三条高线、中线、角平分线和垂直平分线都重合于同一个点;它的外接圆和内切圆都与三个顶点相切。

三、等腰三角形是指具有两条边相等的三角形,根据顶点角的大小和不同属性,可以进一步分类为等腰直角三角形、等腰锐角三角形、等腰钝角三角形和等腰等边三角形。

每种分类的等腰三角形都有其特殊的性质和关系,值得我们深入学习和研究。

注意:此文档仅为示例文档,实际写作时请根据需求进行修改和扩展,结合数学知识以及示例文档提供的内容,形成一篇丰富详尽的文档。

等腰三角形分类讨论示范课教学设计

等腰三角形分类讨论示范课教学设计

小专题:等腰三角形中的分类讨论贵阳二十三中冉昆一、教学任务分析1.教材分析,本节课是缘自人教版八年级上册第十三章《轴对称》第三节《等腰三角形》,是轴对称图形的核心承载,等腰三角形是一种特殊的三角形,根据构成的不唯一的特点,在问题中大多蕴含着分类讨论的数学思想,因此其下启三角形、等腰三角形的进一步认识,上承分类讨论、数形结合等数学思想的运用,旨在让学生掌握分类方法,领会其实质的重要学习素材。

2.具体学习任务,围绕“分类讨论”数学思想方法在等腰三角形中的应用设计了本节专题课,提高学生运用数学思想来解决实际问题的能力,突出方法的灵活性,从而提高学生运用数学思想来解决实际问题的能力。

二、学情分析学生的知识技能基础:在此之前,学生已学习了轴对称图形,这为过渡到本节的学习起着铺垫作用。

学生学习了等腰三角形之后,对等腰三角形的特征、性质及判定方法己有了一定的握,但遇到等腰三角形中有关分类讨论的问题时,大部分学生因分类不当,甚至不考虑分类而导致错解或漏解。

学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力和总结提炼的能力,大多数学生对尺规作图已熟练掌握,为合作探究提供了可靠的经验基础。

三、教学目标1.设计具体的问题情境引导学生探究理解“分类讨论”的数学思想方法,并用此方法指导解决涉及等腰三角形的各类分类问题的计算及作图.2.通过引导,积极自主地参与课堂自主探究和合作交流,并在其中运用、体验“分类讨论”的数学思想,学会提炼,感受知识的形成过程.3.感受知识的严谨性、条理性,发展学生几何直观、推理能力的数学核心素养;培养学生“观察、实践、推理、交流、总结”并有条理地表述活动过程等严谨的学习品质。

四、教学重难点分析教学重点:通过独立思考,合作交流,形成“分类讨论”的数学思想并分析解决等腰三角形中的有关问题。

教学难点:层层递进,总结出分类的方法,并应用于其他问题之中,训练熟练而准确的解决问题的能力。

等腰三角形

等腰三角形

等腰三角形性质及分类讨论(讲义)一、知识点睛1. 在等腰三角形中,顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),这是等腰三角形的重要性质.2. 在一个三角形中,当中线,高线,角平分线“三线”中有“两线”重合时,尝试构造等腰三角形.3. 分类讨论的类型: ①定义法则.如绝对值,平方,完全平方式等. ②关键词不明确.如等腰三角形的角(底角与顶角),边(底边与腰)等. ③位置不确定.如线段端点的位置,角的位置,高等. ④对应关系不确定.如两部分的差,全等三角形对应关系等. 4. 分类讨论题目解题要点: ①辨识类型;②画出各种类型的图形并求解; ③根据标准进行取舍.标准包括限制条件,实际意义等.二、精讲精练1. 已知:如图,D ,E 分别是AB ,AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,CD ,BE 交于点O .求证:AB =AC .O EC DB2. 已知:如图,在△ABC 中,∠A =90º,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,求BD 的长.AED3.如图,在△ABC中,延长BC到D,使CD=AC,连接AD,CF平分∠ACB,交AB于F,AF=BF.求证:BC=CD.AF4.如图,在△ABC中,点E在AB上,AE=AC,连接CE,点G为EC的中点,连接AG并延长交BC于D,连接ED,过点E作EF∥BC交AC于点F.求证:EC平分∠DEF.GEBFC A5.(1)若4x2-(m-1)xy+9y2是完全平方式,则m=_________.(2)若x2-4xy+ny2是完全平方式,则n=_________.(3)若9x2-12xy+(m+1)2y2是完全平方式,则m=_________.6.等腰三角形的一个角是另一个角的4倍,则顶角的度数为______________.7.已知一等腰三角形的三边分别是3x-1,x+1,5,则x=________.8.在直线l上任取一点A,截取AB=2cm,再截取AC=3cm,则线段BC的长为______________.9.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为__________.10.若等腰三角形的底边长为5cm,一腰上的中线把其周长分成的两部分之差为3cm,则腰长为__________.11.已知等腰三角形的周长为20cm,两边的差为2cm,则底边长为__________.12.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为30º,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?求出每个等腰三角形顶角的度数.B30°lA13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,在直线BC或AC上取一点P,使得△P AB为等腰三角形,找出所有符合条件的点P.AB C三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】1.证明略(提示:连接BC,证明AC=BC,AB=BC)2.10cm(提示:延长CE交BA的延长线于点F,证明BD=2CE)3.证明略(提示:延长CF到E,使CF=EF,连接BE,证明△AFC≌△BEF,再证明BE=BC)4.证明略(提示:利用等腰三角形“三线合一”,证明AD⊥EC,再证明ED=CD,利用平行导角)5.(1)-11,13 (2)4 (3)1,-36.120°或20°7. 28.1cm或5cm9.65°或115°10. 8cm 11. 8cm 或163cm 12. 作图略 13. 作图略等腰三角形性质及分类讨论(随堂测试)1. 若x 2-(a+1)xy +4y 2是完全平方式,则a =_________.2. 等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形顶角的度数为______________.3. 如图,在△ABC 中,D ,E 为BC 上的点,AC =CD ,CF ⊥AD 交AD 于G ,交AB 于F ,AD 平分∠BAE . 求证:DF ∥AE .【参考答案】1.3或-52.50°或130°3.证明略;(利用等腰三角形“三线合一”得到AG =DG ,得到AF =FD ,证得∠F AD =∠FDA ,由角平分线可得∠FDA =∠EAD ,所以DF ∥AE ) FGEDA等腰三角形性质及分类讨论(作业)14.已知:如图,在△ABC中,AD平分∠BAC,BD=CD,E,F分别为AB,AC边上的点,BE=CF.求证:DE=DF.15.已知:如图,在等边△ABC中,D是AC的中点,E是BC延长线上一点,CE=CD,DM⊥BC,垂足为M.求证:BM=ME.16.如图,在△ABC中,D为BC上一点,DE⊥AB,DF⊥AC,垂足分别为E,F,DE平分∠ADB,AF=FC,连接AD.M DAF DAE求证:BD=CD.AFE17.若4x2-axy+16y2是完全平方式,则a=_________.18.在直线l上任取一点A,截取AB=8cm,点C为AB中点,截取CD=5cm,则线段AD的长为______________.19.若等腰三角形的一个角比另一个角大30°,则此等腰三角形顶角的度数为______________.20.已知一等腰三角形的三边分别是5x 3,3x+3,27,则x=__________.21.等腰三角形一腰的垂直平分线与另一腰所在的直线夹角为30°,则顶角的度数为__________.22.已知等腰三角形的周长为24cm,两边的差为3cm,则底边长为__________.23.在已知直线l上找一点C,和直线外的A,B两点组成一个等腰三角形.一共可以画出几个符合条件的等腰三角形?请你在直线l上找出所有符合条件的点C.l【参考答案】1.证明略(提示:延长AD到H,使DH=AD,连接BH,证明△BHD≌△CAD,导出AB=AC,再证明△BED≌△CFD)2.证明略(提示:连接BD,利用“三线合一”证明∠DBE=∠E=30°)3.证明略(提示:证明AD=DC,AD=BD)4.±165. 1cm 或9cm6. 80°或40°7. 6或88. 60°或120°9. 10cm 或6cm 10. 点C 有5个,作图略等腰三角形(讲义)一、知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________.二、精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.ABC DABDC第2题图第3题图3. 如图,在等腰△ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =_________.4. 如图,在Rt △ABC 中,∠B =90°,DE 垂60°108°BA C ABC A BCA直平分AC ,交AC 于D ,交BC 于E ,连接AE ,若 ∠BAE :∠BAC =1:5,则∠C =_____.5. 如图,在△ABC 中,BE 平分∠ABC ,DE ∥BC . (1)若∠ADE =80°,则∠DEB =________.(2)若F 为BE 中点,则DF 与BE 的位置关系是________.C DAB EF6. 已知:如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,且CE =CD ,DM ⊥BC 于M . 求证:M 是BE 的中点.7. 已知:如图,在△ABC 中,AB =AC ,D 为AC 上任意一点,延长BA 到E ,使AE =AD ,连接DE .求证:DE ⊥BC .E DCAECMAD B8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的周长是25cm ,一腰上的中线将周长分为3:2的两部分,则此三角形的底边长为_____________.11. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.12. 若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.13. 已知:如图,线段AB 的端点A 在直线l 上(AB 与l 不垂直),请在直线l上另找一点C ,使△ABC 是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.14.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】一、知识点睛1.有两边相等的三角形叫做等腰三角形.2.等腰三角形是轴对称图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.3.等腰三角形的两个底角相等,简称等边对等角.如果一个三角形有两个角相等,那么它们所对的边也相等,简称等角对等边.4.三边都相等的三角形是等边三角形.等边三角形三边都相等,三个内角都是60°.1.60°,60°;45°,45°;36°,36°2.80°3.108°4.40°5.(1)40°;(2)DF⊥BE6.提示:连接BD,由三线合一得∠DBC=∠E=30°,从而得到BD=ED,△BDE是等腰三角形,利用三线合一可以知道底边BE上的高DM也是BE边上的中线,所以M是BE的中点.7.提示:延长ED与BC交于点F,根据已知条件可以知道△AED和△ABC是等腰三角形,设∠E=α,可以表示出∠CDF=α,∠BAC=2α,∠C=90 α,得到∠EFC=90°,所以DE⊥BC.8.提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE.9.3cm10.5cm或353cm11.40°或100°12.50°或130°13.这样的点有4个14.这样的点有2个等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.DC2. 等腰三角形的周长为28cm ,其中一边长为10cm ,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .E DCB A【参考答案】1. 20°2. 10cm 或8cm3. 提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得到BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD .等腰三角形(作业)1. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,交AC 于点D ,点E 在BC 边上,且BD =BE .若∠A =84°,则∠DEC =______.E DC BA2. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.DCB AN MEA第2题图第3题图3. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N .若BM +CN =9,则线段MN 的长为( ) A .6B .7C .8D .94. 如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于D ,12CD BC.求证:∠ACD =∠B .DB A5. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .DBAP6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE . 求证:BD =CE .AB CD E7. 等腰三角形两边长分别为4和8,则这个等腰三角形的周长为________. 8. 等腰三角形的一个角比另一个角大30°,则这个三角形的顶角的度数为_____________.9. 已知:如图,线段AB 的端点A 在直线l 上,AB 与l 的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.1.78°2.36°3. D4.提示:过点A作AE⊥BC于E,可证Rt△ADC≌Rt△AEB(HL),从而得到∠ACD=∠B.5.提示:利用等腰三角形三线合一的性质,得AD垂直平分BC,从而得到PB=PC.6.提示:根据等边对等角可以得到∠B=∠C,∠ADE=∠AED,进而可以得到∠BAD=∠CAE,从而证明△ABD≌△ACE(ASA),根据全等三角形对应边相等,可以得到BD=CE.7.208.80°或40°9.共有4个,图略.。

等腰三角形的分类讨论问题教学设计

等腰三角形的分类讨论问题教学设计
情感态度
与价值观
使学生感受数学解题的严谨性、条理性,使学生形成独立思考、合作学习的习惯,让其克服困难,从而获得成就感,并树立信心。
教学重点
利用分类讨论的思想方法解决等腰三角形的相关问题。
教学难点
依据题意正确画出图形,正确求解。
学 法
独立思考 主动探究 合作交流
教 学 过 程
师 生 互 动
设 计 意 图
跟踪练习:
若在△ABC中,AB=AC,AB的垂直平分线与
AC所在的直线相交的锐角为50°,求∠B的度
数。
四、【知识升华,巩固提高】(8分钟)
下面是数学课堂的一个片段,阅读后请回答下面的问题:
学习了等腰三角形内容后,老师请给同学们交流讨论这样一个问题:“已知C、D两点在线段AB的垂直平分线l上,且∠ACB=40°,
一、情境导入(2分钟)
多媒体出示“如何寻宝”
板书课题:等腰三角形的分类讨论
吸引学生的注意力,增强学生的好奇心和求知欲。
通过“寻宝”,引出本节内容。
二、定向学习】(2分钟)
出示分类讨论的定义、实质、原则。
让学生了解本节课的分类讨论,掌握分类的实质和原则。
三、【自主学习 探究分类】
分类(一):(3分钟)
∠ADB=100°,求(1)∠CAD的度数。(2)若AC=√6,则CD=___________”
同学们经过片刻的思考和交流后,张明同学举手讲:“C、D在AB的同侧。所以∠CAD=30°” 李华同学说:“C、D在AB的异侧。所以∠CAD = 110°”还有一些同学有不同的看法……
假如你也在这堂课中,你的意见如何?为什么?
通过跟踪练习进一步体验与角有关的分类;顶角或底角不确定。
学生思考,尝试用分类

等腰三角形的分类讨论

等腰三角形的分类讨论

等腰三角形的分类讨论模块一等腰三角形的分类讨论例1(1)等腰三角形的一边长为3,一边长为7,那么它的周长是。

(2)等腰三角形的一边长为4,周长为9,那么它的腰长是。

(3)已知等腰三角形一腰上的中线将它的周长分为6和12两部分,求此等腰三角形的腰长。

练习(1)已知一个等腰三角形两内角的度数之比为1:2,求这个等腰三角形顶角的度数。

(2)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为。

例2(1)若等腰三角形一腰上的高和另一腰的夹角为25°,求该三角形的底角的度数。

(2)(2016—2017武昌区八上期中第16题)已知△ABC是等腰三角形,由点A作BC边上的高恰好等于BC的一半,则∠BAC的度数为。

练习例3如图,在△ABC 中,∠ABC=90°,∠A=30°.将△ABC 绕B 点逆时针旋转α(0<α≤60°)角度后得到△A ’BC ’,A ’C ’与AC 交于点F ,与AB 交于点E ,连BF 。

当△BEF 为等腰三角时,α= 。

A模块二 两圆一中垂知识导航已知线段AB ,在平面上找一点C ,使△ABC 为等腰三角形。

图1 图2 图3AABB① 如图1,以A 为圆心,AB 为半径作圆,此圆上的所有点C 均满足AC=AB 。

② 如图2,以B 为圆心,BA 为半径作圆,此圆上的所有点C 均满足BC=BA 。

③ 如图3,作AB 的垂直平分线,此垂直平分线上的所有点C 均满足CA=CB 。

“两圆一中垂”上的所有点C 均满足△ABC 为等腰三角形,即满足“等腰”条件的C 点有无数个。

因此,题目会对C 点再加上另外一个限定条件----例如还限定C 点在坐标轴上或格点,这样,C 点的个数就只有几个了。

例4(2014—2016江岸区八上期末)如图:在4×4的网格中存在线段AB ,每格表示一个单位长度,并构建了平面直角坐标系。

在现有的网格中(包括网格的边界)存在一点P,点P 的横纵坐标都为整数,连接PA 、PB 后得到△PAB 为等腰三角形,则满足条件的点P 有 个。

专题14图形中的等腰三角形分类讨论(解析版)

专题14图形中的等腰三角形分类讨论(解析版)

专题14图形中的等腰三⾓形分类讨论(解析版)专题14 图形中的等腰三⾓形分类讨论教学重难点1.理解等腰三⾓形的性质和判定定理;2.能⽤等腰三⾓形的判定定理进⾏相关计算和证明;3.初步体会等腰三⾓形中的分类讨论思想;4.体会在函数动点中寻找某些特殊的点形成的等腰三⾓形;5.培养学⽣进⾏独⽴思考,提⾼独⽴解决问题的能⼒。

【备注】:1.此部分知识点梳理,根据第1个图先提问引导学⽣回顾学过的等腰三⾓形的性质,可以在⿊板上举例让学⽣画图;2再根据第2个图引导学⽣总结出题⽬中经常出现的⼀些等腰三⾓形的题型;3.和学⽣⼀起分析⼆次函数背景下等腰三⾓形的基本考点,为后⾯的例题讲解做好铺垫。

建议时间5分钟左右。

等腰三⾓形的性质:等腰三⾓形常见题型分类:函数背景下的等腰三⾓形的考点分析:1.求解相应函数的解析式;2.根据函数解析式求解某些特殊点的坐标;3.根据点的位置进⾏等腰三⾓形的讨论:分“指定腰长”和“不指定腰长”两⼤类;4.根据点的位置和形成的等腰三⾓形⽴等式求解。

【备注】:1.以下每题教法建议,请⽼师根据学⽣实际情况参考;2.在讲解时:不宜采⽤灌输的⽅法,应采⽤启发、诱导的策略,并在读题时引导学⽣发现⼀些题⽬中的条件(相等的量、不变的量、隐藏的量等等),使学⽣在复杂的背景下⾃⼰发现、领悟题⽬的意思;3.可以根据各题的“参考教法”引导学⽣逐步解题,并采⽤讲练结合;注意边讲解边让学⽣计算,加强师⽣之间的互动性,让学⽣参与到例题的分析中来;4.例题讲解,可以根据“教法指导”中的问题引导学⽣分析题⽬,边讲边让学⽣书写,每个问题后⾯有答案提⽰;5.引导的技巧:直接提醒,问题式引导,类⽐式引导等等;6.部分例题可以先让学⽣⾃⼰试⼀试,之后再结合学⽣做的情况讲评;7.每个题⽬的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间⾜够的情况下讲解。

1.(2019青浦⼆模)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂⾜为点D,C为线段OD上⼀点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三⾓形时,求x的值.整体分析:(1)先判断出∠ABM=∠DOM,进⽽判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进⽽得出,进⽽得出AE=,再判断出,即可得出结论;(3)分三种情况利⽤勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)当OA=OC时.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三⾓形时,x的值为.点睛:本题是圆的综合题,主要考查了相似三⾓形的判定和性质,圆的有关性质,勾股定理,等腰三⾓形的性质,建⽴y关于x 的函数关系式是解答本题的关键.图形背景下等腰三⾓形分类讨论的解题⽅法和策略:1.先寻找题⽬中的条件:相等的⾓、相等的边、相似的三⾓形等;2.根据题⽬中的条件求解相关线段的长度;3.等腰三⾓形讨论中,分三步⾛:分类、画图、计算;4.等腰讨论中,当不能直接利⽤边长相等求解时,⼀般情况下通过“画底边上的⾼”辅助线结合三⾓⽐计算求解;5.注意点的位置取舍答案;6.根据题⽬条件,注意快速、正确画图,⽤好数形结合思想;7.利⽤⼏何定理和性质或者代数⽅法建⽴⽅程求解都是常⽤⽅法。

等腰三角形的分类讨论

等腰三角形的分类讨论

等腰三角形的分类讨论关键信息项1、等腰三角形的定义和性质定义:至少有两边相等的三角形叫做等腰三角形。

性质:两腰相等;两底角相等;顶角平分线、底边上的中线、底边上的高相互重合。

2、等腰三角形的分类依据边的长度:分为等边三角形(三边相等)和一般等腰三角形(只有两边相等)。

角的大小:锐角等腰三角形、直角等腰三角形、钝角等腰三角形。

3、分类讨论的情况已知三角形的两边长度,求第三边长度时,需分情况讨论。

已知三角形的一个角的度数,求其他角的度数时,需分情况讨论。

已知三角形的周长和边的关系,求边长时,需分情况讨论。

11 等腰三角形的定义和性质的详细说明等腰三角形是一种特殊的三角形,其定义为至少有两边相等的三角形。

这一特征使得等腰三角形具有独特的性质。

首先,两腰长度相等,这是等腰三角形的最基本特征。

其次,两底角(即两腰所对的角)相等。

这一性质在解决与角度相关的问题时经常被用到。

再者,顶角平分线、底边上的中线、底边上的高相互重合,这条性质被称为“三线合一”,它为证明线段相等、角相等以及解决相关几何问题提供了重要的依据。

111 等腰三角形性质的应用在实际解题中,等腰三角形的性质经常被用于构建等式、求解未知量。

例如,已知一个等腰三角形的顶角为 80 度,由于两底角相等,根据三角形内角和为 180 度,可以计算出底角的度数为(180 80)÷ 2 =50 度。

12 等腰三角形的分类依据121 边的长度分类从边的长度来看,等腰三角形可以分为等边三角形和一般等腰三角形。

等边三角形是特殊的等腰三角形,其三条边长度均相等。

一般等腰三角形则只有两条边长度相等。

122 角的大小分类根据角的大小,等腰三角形可分为锐角等腰三角形(三个角均为锐角)、直角等腰三角形(其中一个角为直角)和钝角等腰三角形(其中一个角为钝角)。

13 分类讨论的情况131 已知两边长度求第三边当已知等腰三角形的两边长度时,求第三边的长度需要分情况讨论。

初中数学《等腰三角形分类讨论思想》教案基于学科核心素养的教学设计及教学反思

初中数学《等腰三角形分类讨论思想》教案基于学科核心素养的教学设计及教学反思
初中数学《等腰三角形分类讨论思想》教案基于学科核心素养的教学设计及教学反思
基于学科核心素养的教学设计
课程名称:《等腰三角形分类讨论思想》
姓名
教师姓名
任教学科
数学
学校
学校名称
教龄
5年
教学内容分析
教学内容
对等腰三角形的边角进行分类
教学目标
借助等腰三角形的特点,理解分类讨论思想的应用
教学重点与难点
分类讨论的原因和分类的方法
.......
说明:问题1、2形成对比,体会问题2为什么要进行分类讨论。
........
学生通过分析交流,初步体会分类思想。
......
板书设计
1、等腰三角形中,已知一角(顶角或底角),.......
2、等腰三角形中,已知一边(底边或腰),.........
教学反思
1、复习旧知,点明主题。
2、设计题目有梯度,符合学生认知。
教师活动
预设学生活动
设计意图
一、复习巩固、引入新课
1、△ABC中,AB=AC,∠A=80°,则底角为____________.
2、等腰△ABC中,∠A=80°,则底角为____________.
3、等腰三角形的周长为10cm,其中一边长为2cm,则另外两边长为__________.
二、学习新知、提升方法
学科核心素养分析
1、加强数学Biblioteka 维、方法的训练,形成学生数学探究能力。
2、提高分析问题、解决问题的能力以及空间想象能力。
学生学情分析
学生已经对等腰三角形的定义以及边角的性质有了一定的认识和掌握,能够简单地进行等腰三角形的分类计算,但是对于等腰三角形的分类作图没有接触,故在图中准确作图有一定的困难。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形中的分类讨论(A层)教案
华舍中学盛金华
【教学目标】
1、知识目标:了解“分类讨论思想”的意义;理解分类讨论的步骤以及分类讨论法解题必须遵循总的原则;感受“分类讨论思想”在解决特殊三角形问题中的作用。

2、能力目标:通过“情景—感知—概括—运用—反思”的途径培养学生的观察、发现、类比、归纳、概括、发散以及进行合情推理的能力;
3、情感目标:体验数学学习活动中的成功与快乐,增强他们的求知欲及学好数学的信心;又通过联系与发展、对立与统一的思考方法向学生渗透辩证唯物主义认识论的思想。

【重点】让学生逐步领会等腰三角形中分类讨论思想的应用,建构用分类讨论思想解决问题的模型。

【难点】概括得到用分类讨论思想解决问题的步骤,及提高练习。

【教学手段】多媒体
【教学过程】
一、创设情境,引出分类
1、已知等腰三角形的一个内角为80°,则另两个角的度数是
2、等腰三角形的周长为14,其一边长为4,那么它的底边为
3、等腰三角形的顶角为80°,则它的底角是
设计说明:用简单的中考题引出本节课的主题,让学生能在这些题中初步回忆并感受分类讨论思想。

二、观察分析,探究分类
例1 关于角的分类
一个等腰三角形的一个外角等于110 ,则这个三角形的三个角应该为。

设计说明:本节课例题主要是围绕两条主线,一是关于角的分类,二是关于边的分类,因为平时接触到的角的分类都比较简单,边的分类则比较复杂,所以重心放在边的分类上面。

变式1:等腰三角形的一个内角为140o,则等腰三角形的底角为
变式2:等腰三角形的一个外角为40o,则等腰三角形的顶角为
变式3:等腰三角形ABC,∠A=40o,则∠B=
例2 关于边的分类
1、已知实数x=4,y=8,则以x,y的值为两边长的等腰三角形的周长是()
A. 20或16 B. 20 C. 16 D.以上答案均不对
2、等腰三角形一腰上的中线把周长分成15和11两部分,则它的底边长等于
小结解分类讨论问题的步骤:
(1)分类的原因(为何分类):条件不确定时
(2)分类的标准(如何分类):对不确定的条件进行合理分类
(3)逐类讨论:对各类问题详细讨论,逐步解决.
(4)检验总结:将各类情况总结归纳。

3、如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )
A.6 B.7 C.8 D.9
B
A
4、如图,已知△ABC中,∠B=90 º,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其
中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求PQ的长;
(2)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
设计说明:本组有关边分类的题组是按照由简单到复杂的顺序编排的,这样便于学生循序渐进地掌握。

三、师生互动,运用分类
1、一个等腰三角形的三边长分别为3x-2 ,4x-3 ,6-2x ,求等腰三角形的周长。

2 、如图,直线1l 和2l 相交于点B ,点A 是直线1l 上的点,在直线2l 上寻找一点,使△ABC
设计说明:这组练习是在例题讲解完之后给出的,目的是帮助学生及时巩固分类讨论思想的应用,达到及时反馈的目的。

四、这节课你有何收获?
温馨提示:同学们可在以后的学习中将涉及到分类讨论思想的问题摘录到笔记本上,可供复习时使用,当然其他内容也是一样。

总之所学为所用,要学会举一反三!
l2。

相关文档
最新文档