2020高考数学大一轮复习第九章平面解析几何第9讲圆锥曲线的综合问题第1课时直线与圆锥曲线试题理新人教
2020年高考数学大一轮复习第九章平面解析几何9.9圆锥曲线的综合问题第1课时直线与圆锥曲线课件理苏教版

代入y2=2px,得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只 有一个公共点,所以除H以外直线MH与C没有其他公共点.
(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交, 且只有一个交点. ①若E为双曲线,则直线l与双曲线的渐近线的位置关系是 平行 ; ②若E为抛物线,则直线l与抛物线的对称轴的位置关系是 平行或重合 . 2.圆锥曲线的弦长 设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点, 则___1_+__k_2|_x2_-__x_1_| _ = 1+k12|y2-y1|.
4 (6)满足“直线y=ax+2与双曲线x2-y2=4只有一个公共点”的a的值有
4个.( √ )
考点自测
1.在同一平面直角坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)表 示的曲线大致是_④__.(填序号) 答案 解析
2.(2016·常 州 模 拟 ) 直 线
y = kx - k + 1
思维升华
(1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点 坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用 判别式的前提是二次项系数不为0. (2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一 元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一 次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.
5.(教材改编)已知与向量v=(1,0)平行的直线l与双曲线
x2 4
-y2=1相交于
A,B两点,则AB的最小值为__4_. 答案 解析
高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9.1 直线的方程考试要求 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式).知识梳理 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)范围:直线的倾斜角α的取值范围为0°≤α<180°. 2.直线的斜率(1)定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α(α≠90°). (2)过两点的直线的斜率公式如果直线经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2),其斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x =x 0 斜截式 y =kx +b不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2) 不含直线x =x 1 和直线y =y 1截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用常用结论直线的斜率k与倾斜角α之间的关系α0°0°<α<90°90°90°<α<180°k 0k>0不存在k<0牢记口诀:1.“斜率变化分两段,90°是分界线;遇到斜率要谨记,存在与否要讨论”.2.“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.3.直线Ax+By+C=0(A2+B2≠0)的一个法向量v=(A,B),一个方向向量a=(-B,A).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.(√)(2)若一条直线的倾斜角为α,则此直线的斜率为tan α.(×)(3)斜率相等的两直线的倾斜角不一定相等.(×)(4)截距可以为负值.(√)教材改编题1.若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或4答案 A解析 由题意得m -4-2-m=1,解得m =1.2.倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0 D .x +y +1=0答案 D解析 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0. 3.过点P (2,3)且在两坐标轴上截距相等的直线方程为________________. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时, 设直线方程为x a +ya =1,则2a +3a =1,解得a =5. 所以直线方程为x +y -5=0.题型一 直线的倾斜角与斜率例1 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的变化范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2 D.⎣⎡⎦⎤π4,2π3答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α. 由于α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 由于θ∈[0,π), 所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的变化范围是⎣⎡⎦⎤π4,π3.(2)过函数f (x )=13x 3-x 2的图象上一个动点作函数图象的切线,则切线倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,3π4 B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎣⎡⎦⎤π2,3π4答案 B解析 设切线的倾斜角为α,则α∈[0,π), ∵f ′(x )=x 2-2x =(x -1)2-1≥-1, ∴切线的斜率k =tan α≥-1, 则α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 教师备选1.(2022·安阳模拟)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( ) A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12答案 D解析 直线l :y =k (x -2)+1经过定点P (2,1),∵k P A =3-11-2=-2,k PB =-1-1-2-2=12, 又直线l :y =k (x -2)+1与线段AB 相交, ∴-2≤k ≤12.2.若直线l 的斜率为k ,倾斜角为α,且α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是________. 答案 [-3,0)∪⎣⎡⎭⎫33,1解析 当α∈⎣⎡⎭⎫π6,π4时,k =tan α∈⎣⎡⎭⎫33,1; 当α∈⎣⎡⎭⎫2π3,π时,k =tan α∈[-3,0). 综上得k ∈[-3,0)∪⎣⎡⎭⎫33,1.思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论. 跟踪训练1 (1)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π答案 B解析 依题意,直线的斜率k =-1a 2+1∈[-1,0),因此其倾斜角的取值范围是⎣⎡⎭⎫3π4,π. (2)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______,______. 答案 13-3解析 如图,在正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图所示的平面直角坐标系.设对角线OB 所在直线的倾斜角为θ,则tan θ=2,由正方形的性质可知,直线OA 的倾斜角为θ-45°,直线OC 的倾斜角为θ+45°,故k OA =tan(θ-45°)=tan θ-tan 45°1+tan θtan 45°=2-11+2=13, k OC =tan(θ+45°)=tan θ+tan 45°1-tan θtan 45°=2+11-2=-3. 题型二 求直线的方程例2 求满足下列条件的直线方程:(1)经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍; (2)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)当直线不过原点时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0; 当直线过原点时,设直线方程为y =kx , 则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为 x -y +1=0或x +y -7=0.教师备选1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的边BC 上的高所在的直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0 D .x -y =0答案 B解析 因为B (3,1),C (1,3),所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A (-1,1),所以其所在的直线方程为x -y +2=0.2.已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( ) A .x +y -3=0 B .x -3y -2=0 C .3x -y +6=0 D .3x +y -6=0 答案 D解析 设直线l 的倾斜角为α,则tan α=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k ′=tan ⎝⎛⎭⎫α+π4=2+11-2×1=-3, 又点M (2,0),所以y =-3(x -2),即3x +y -6=0. 思维升华 求直线方程的两种方法(1)直接法:由题意确定出直线方程的适当形式.(2)待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数.跟踪训练2 (1)已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0答案 C解析 由题知M (2,4),N (3,2),中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.(2)过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为______________. 答案 x +y -3=0或x +2y -4=0 解析 由题意可设直线方程为x a +yb =1.则⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得a =b =3或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0.题型三 直线方程的综合应用例3 已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为原点,当△AOB 面积最小时,求直线l 的方程. 解 方法一 设直线l 的方程为y -1=k (x -2)(k <0), 则A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ), S △AOB =12(1-2k )·⎝⎛⎭⎫2-1k =12⎣⎡⎦⎤4+-4k +⎝⎛⎭⎫-1k ≥12×(4+4)=4, 当且仅当-4k =-1k ,即k =-12时,等号成立.故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.方法二 设直线l :x a +yb =1,且a >0,b >0,因为直线l 过点M (2,1), 所以2a +1b =1,则1=2a +1b≥22ab,故ab ≥8, 故S △AOB 的最小值为12×ab =12×8=4,当且仅当2a =1b =12时取等号,此时a =4,b =2,故直线l 的方程为x 4+y2=1,即x +2y -4=0.延伸探究 1.在本例条件下,当|OA |+|OB |取最小值时,求直线l 的方程. 解 由本例方法二知,2a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝⎛⎭⎫2a +1b =3+a b +2ba≥3+22,当且仅当a =2+2,b =1+2时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y =2+ 2.2.本例中,当|MA |·|MB |取得最小值时,求直线l 的方程. 解 方法一 由本例方法一知A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0).所以|MA |·|MB |=1k 2+1·4+4k 2 =2×1+k 2|k |=2⎣⎡⎦⎤-k +1-k ≥4.当且仅当-k =-1k ,即k =-1时取等号.此时直线l 的方程为x +y -3=0.方法二 由本例方法二知A (a ,0),B (0,b ),a >0,b >0,2a +1b =1.所以|MA |·|MB |=|MA →|·|MB →| =-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2⎝⎛⎭⎫b a +a b ≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 教师备选如图所示,为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪,但△EF A 内部为文物保护区,不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解 如图所示,以A 为坐标原点建立平面直角坐标系,则E (30,0),F (0,20),∴直线EF 的方程为x 30+y20=1.易知当矩形草坪的两邻边在BC ,CD 上,且一个顶点在线段EF 上时,可使草坪面积最大,在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =|PQ |·|PR |=(100-m )(80-n ), 又m 30+n20=1(0≤m ≤30), ∴n =20-23m ,∴S =(100-m )⎝⎛⎭⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30),∴当m =5时,S 有最大值,此时|EP ||PF |=5,∴当矩形草坪的两邻边在BC ,CD 上,一个顶点P 在线段EF 上,且|EP |=5|PF |时,草坪面积最大.思维升华 直线方程综合问题的两大类型及解法(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识来解决. 跟踪训练3 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程. (1)证明 直线l 的方程可化为 k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线l 总经过定点(-2,1). (2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k <-2,1+2k >1, 解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0, 解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·1+2k 2k=12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.课时精练1.已知直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程是( )A .x +y +1=0B .y =-12xC .x +2=0D .y -1=0答案 C解析 由于直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程为x =-2,即x +2=0.2.(2022·清远模拟)倾斜角为120°且在y 轴上的截距为-2的直线方程为( ) A .y =-3x +2 B .y =-3x -2 C .y =3x +2 D .y =3x -2答案 B解析 斜率为tan 120°=-3,利用斜截式直接写出方程,即y =-3x -2. 3.直线l 经过点(1,-2),且在两坐标轴上的截距相等,则直线l 的方程为( ) A .x -y -1=0或x -2y =0 B .x +y +1=0或x +2y =0 C .x -y +1=0或2x -y =0 D .x +y +1=0或2x +y =0 答案 D解析 若直线l 过原点, 设直线l 的方程为y =kx , 则k =-2,此时直线l 的方程为y =-2x , 即2x +y =0; 若直线l 不过原点, 设直线l 的方程为x a +ya =1,则1a -2a =1,解得a =-1, 此时直线l 的方程为x +y +1=0.综上所述,直线l的方程为x+y+1=0或2x+y=0.4.若直线y=ax+c经过第一、二、三象限,则有()A.a>0,c>0 B.a>0,c<0C.a<0,c>0 D.a<0,c<0答案 A解析因为直线y=ax+c经过第一、二、三象限,所以直线的斜率a>0,在y轴上的截距c>0. 5.(2022·衡水模拟)1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的连接线,α≈16°,则第三颗小星的一条边AB所在直线的倾斜角约为()A.0°B.1°C.2°D.3°答案 C解析∵O,O3都为五角星的中心点,∴OO3平分第三颗小星的一个角,又五角星的内角为36°,可知∠BAO3=18°,过O3作x轴的平行线O3E,如图,则∠OO 3E =α≈16°,∴直线AB 的倾斜角为18°-16°=2°.6.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ) A .-1<k <15B .k >1或k <12C .k >1或k <15D .k >12或k <-1答案 D解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得k >12或k <-1.7.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞) 答案 C解析 令x =0,得y =b 2,令y =0,得x =-b , 所以所求三角形的面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,14b 2≤1, 所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].8.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴与y 轴上的截距之和的最小值为( )A .1B .2C .3D .4 答案 D解析 因为直线ax +by =ab (a >0,b >0), 当x =0时,y =a ,当y =0时,x =b ,所以该直线在x 轴与y 轴上的截距分别为b ,a , 又直线ax +by =ab (a >0,b >0)过点(1,1), 所以a +b =ab ,即1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥2+2b a ·ab=4, 当且仅当a =b =2时等号成立.所以直线在x 轴与y 轴上的截距之和的最小值为4.9.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 答案 5x +3y =0或x -y +8=0解析 ①当直线过原点时,直线方程为y =-53x ,即5x +3y =0;②当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a ,代入点(-3,5),得a =-8,即直线方程为x -y +8=0.综上,直线方程为5x +3y =0或x -y +8=0.10.直线l 过(-1,-1),(2,5)两点,点(1 011,b )在l 上,则b 的值为________. 答案 2 023解析 直线l 的方程为y --15--1=x --12--1,即y +16=x +13,即y =2x +1. 令x =1 011,得y =2 023, ∴b =2 023.11.设直线l 的方程为2x +(k -3)y -2k +6=0(k ≠3),若直线l 的斜率为-1,则k =________;若直线l 在x 轴、y 轴上的截距之和等于0,则k =______. 答案 5 1解析 因为直线l 的斜率存在,所以直线l 的方程可化为y =-2k -3x +2,由题意得-2k -3=-1,解得k =5.直线l 的方程可化为x k -3+y2=1,由题意得k -3+2=0,解得k =1.12.已知点M 是直线l :y =3x +3与x 轴的交点,将直线l 绕点M 旋转30°,则所得到的直线l ′的方程为________________________. 答案 x =-3或y =33(x +3) 解析 在y =3x +3中,令y =0,得x =-3,即M (-3,0).因为直线l 的斜率为3,所以其倾斜角为60°.若直线l 绕点M 逆时针旋转30°,则得到的直线l ′的倾斜角为90°,此时直线l ′的斜率不存在,故其方程为x =-3;若直线l 绕点M 顺时针旋转30°,则得到的直线l ′的倾斜角为30°,此时直线l ′的斜率为tan 30°=33,故其方程为y =33(x +3).13.直线(1-a 2)x +y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎭⎫π4,π2 B.⎣⎡⎭⎫0,3π4 C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,πD.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 答案 C解析 直线的斜率k =-(1-a 2)=a 2-1, ∵a 2≥0,∴k =a 2-1≥-1. 倾斜角和斜率的关系如图所示,∴该直线倾斜角的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 14.已知直线2x -my +1-3m =0,当m 变动时,直线恒过定点( ) A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 答案 D解析 直线方程可化为2x +1-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0,y +3=0,得⎩⎪⎨⎪⎧x =-12,y =-3,∴直线恒过定点⎝⎛⎭⎫-12,-3.15.已知直线x sin α+y cos α+1=0(α∈R ),则下列命题正确的是( ) A .直线的倾斜角是π-αB .无论α如何变化,直线始终过原点C .直线的斜率一定存在D .当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积不小于1 答案 D解析 根据直线倾斜角的范围为[0,π),而π-α∈R ,所以A 不正确;当x =y =0时,x sin α+y cos α+1=1≠0,所以直线必不过原点,B 不正确;当α=π2时,直线斜率不存在,C 不正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积为S =12⎪⎪⎪⎪1-sin α·⎪⎪⎪⎪1-cos α=1|sin 2α|≥1,所以D 正确. 16.若ab >0,且A (a ,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 答案 16解析 根据A (a ,0),B (0,b )确定直线的方程为x a +yb =1,又因为C (-2,-2)在该直线上, 故-2a +-2b=1, 所以-2(a +b )=ab . 又因为ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号,即ab 的最小值为16.。
高三数学一轮复习第九章平面解析几何第九节圆锥曲线的

x2
= 3kt
1 3k
2
,
y0=kx0+t= 1 t3k 2 ,
所以H
3kt 1 3k
2
,t 1 3k
2
,
由于| DP
|=| DQ
|,
所以DH⊥PQ,则kDH=- 1k ,
即
t
1 3k 2 3kt
1 3k
2 2 0
=- 1 ,
k
化简得t=1+3k2, ② 所以t>1,将②代入①得,t2<4t,故1<t<4. 所以t的范围是(1,4). 综上可得t∈(-2,4).
文数
课标版
第九节 圆锥曲线的综合问题
考点突破
考点一 圆锥曲线中的范围、最值问题
典例1 已知点A(0,-2),椭圆E: ax22 + by22 =1(a>b>0)的离心率为 23 ,F是椭圆 E的右焦点,直线AF的斜率为 2 3 ,O为坐标原点.
3
(1)求E的方程; (2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的 方程.
2-1 已知椭圆C: ax22 +y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:
(x-3)2+(y-1)2=3相切.
(1)求椭圆C的标准方程;
(2)若不过点A的动直线l与椭圆C交于P,Q两点,且 AP
· AQ
=0,求证:直线l
考点二 圆锥曲线中的定点、定值问题
典例2 (2016北京,19,14分)已知椭圆C: ax22 + by22 =1过A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
高考数学一轮复习 第九章 平面解析几何9 (1)

高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。
2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文

2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文1.如图,抛物线W:y2=4x与圆C:(x-1)2+y2=25交于A,B两点,点P为劣弧AB上不同于A,B的一个动点,与x轴平行的直线PQ交抛物线W于点Q,则△PQC的周长的取值范围是( )A.(10,14)B.(12,14)C.(10,12)D.(9,11)2.(xx湖南湘中名校联考)已知抛物线y2=2px(p>0)的焦点为F,△ABC的顶点都在抛物线上,且满足++=0,则++= .3.已知椭圆+=1(a>0,b>0)过点(0,1),其长轴长、焦距和短轴长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于点Q、P,与椭圆分别交于点M、N,各点均不重合且满足=λ1,=λ2.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l过定点,并求此定点.4.已知椭圆+=1(a>b>0)的左、右焦点分别是F1、F2,其离心率e=,点P为椭圆上的一个动点,△PF1F2面积的最大值为 4.(1)求椭圆的方程;(2)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点F1,·=0,求||+||的取值范围.B组提升题组1.(xx湖南长沙模拟)如图,P是直线x=4上一动点,以P为圆心的圆Γ过定点B(1,0),直线l是圆Γ在点B处的切线,过A(-1,0)作圆Γ的两条切线分别与l交于E,F两点.(1)求证:|EA|+|EB|为定值;(2)设直线l交直线x=4于点Q,证明:|EB|·|FQ|=|FB|·|EQ|.2.(xx山东,21,14分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为 2.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,☉N的半径为|NO|.设D为AB的中点,DE,DF与☉N分别相切于点E,F,求∠EDF的最小值.答案精解精析A组基础题组1.C 作出抛物线的准线:x=-1.过点Q向准线引垂线,垂足为H.故|QC|=|QH|.∵PC为圆的半径,∴|PC|=5.∴△PCQ的周长=|PQ|+|QC|+|PC|=|PQ|+|QH|+5.又∵PQ与x轴平行,∴△PCQ的周长=|PH|+5.∵点P为劣弧AB上不同于A,B的动点,A(4,4),B(4,-4),∴5<|PH|<7,∴10<|PH|+5<12.∴△PCQ的周长的取值范围为(10,12).2.答案0解析设A(x1,y1),B(x2,y2),C(x3,y3),F,由++=0,得y1+y2+y3=0.易得k AB==,同理k AC=,k BC=,所以++=++=0.3.解析(1)设椭圆的焦距为2c,由题意知b=1,且(2a)2+(2b)2=2(2c)2,又a2=b2+c2,所以a2=3.所以椭圆的标准方程为+y2=1.(2)证明:由题意设P(0,m),Q(x0,0),M(x1,y1),N(x2,y2),直线l的方程为x=t(y-m),由=λ1知(x1,y1-m)=λ1(x0-x1,-y1),∴y1-m=-y1λ1,由题意得y1≠0,∴λ1=-1.同理由=λ2知λ2=-1.∵λ1+λ2=-3,∴y1y2+m(y1+y2)=0,①由得(t2+3)y2-2mt2y+t2m2-3=0,由题意知Δ=4m2t4-4(t2+3)(t2m2-3)>0,②且有y1+y2=③,y1y2=,④将③④代入①,得t2m2-3+2m2t2=0,∴(mt)2=1,由题意得mt<0,∴mt=-1,满足②,∴直线l的方程为x=ty+1,则直线l过定点(1,0).4.解析(1)由题意得,当点P是椭圆的上、下顶点时,△PF1F2的面积取得最大值, 此时=|F1F2|·|OP|=bc,∴b c=4,因为e=,所以b=2,a=4,所以椭圆的方程为+=1.(2)由(1)得,F1的坐标为(-2,0),因为·=0,所以AC⊥BD,①当直线AC与BD中有一条直线的斜率不存在时,易得||+||=6+8=14.②当直线AC的斜率k存在且k≠0时,设其方程为y=k(x+2),A(x1,y1),C(x2,y2),由得(3+4k2)x2+16k2x+16k2-48=0,x1+x2=,x1x2=,||=|x1-x2|=,此时直线BD的方程为y=-(x+2).同理由可得||=,||+||=+=,令t=k2+1,则||+||=(t>1),因为t>1,0<≤,所以|+||=∈,综上,||+||的取值范围是.B组提升题组1.证明(1)设AE切圆Γ于点M,直线x=4与x轴的交点为N,故|EM|=|EB|.从而|EA|+|EB|=|AM|======4.所以|EA|+|EB|为定值 4.(2)由(1)同理可知|FA|+|FB|=4,故E,F均在椭圆+=1上.设直线EF的方程为x=my+1(m≠0).令x=4,求得y=,即Q点的纵坐标y Q=.由得(3m2+4)y2+6my-9=0.设E(x1,y1),F(x2,y2),则有y1+y2=-,y1y2=-.因为E,B,F,Q在同一条直线上,所以|EB|·|FQ|=|FB|·|EQ|等价于(y B-y1)(y Q-y2)=(y2-y B)(y Q-y1), 即-y1·+y1y2=y2·-y1y2,即2y1y2=(y1+y2)·.将y1+y2=-,y1y2=-代入,知上式成立.所以|EB|·|FQ|=|FB|·|EQ|.2.解析(1)由椭圆的离心率为,得a2=2(a2-b2),又当y=1时,x2=a2-,得a2-=2,所以a2=4,b2=2.因此椭圆方程为+=1.(2)设A(x1,y1),B(x2,y2),联立方程得(2k2+1)x2+4kmx+2m2-4=0,由Δ>0得m2<4k2+2,(*)且x1+x2=-,因此y1+y2=,所以D,又N(0,-m),所以|ND|2=+,整理得|ND|2=,因为|NF|=|m|,所以==1+.令t=8k2+3,t≥3,故2k2+1=,所以=1+=1+.令y=t+,所以y'=1-.当t≥3时,y'>0,从而y=t+在[3,+∞)上单调递增,因此t+≥,当且仅当t=3时等号成立,此时k=0,所以≤1+3=4,由(*)得-<m<且m≠0.故≥.设∠EDF=2θ,则sin θ=≥.所以θ的最小值为,从而∠EDF的最小值为,此时直线l的斜率是0.综上所述:当k=0,m∈(-,0)∪(0,)时,∠EDF取到最小值.。
高三数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能

第九节圆锥曲线的综合问题A组基础题组1.(2015课标Ⅱ,20,12分)已知椭圆点在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.2.(2016山西太原模拟)已知椭圆的一个焦点为F(-1,0),左,右顶点分别为A,B.经过点F 的直线l与椭圆M交于C,D两点.(1)当直线l的倾斜角为45°时,求线段CD的长;(2)记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.3.(2016吉林长春模拟)设F1、F2分别是椭圆的左、右焦点,若P是该椭圆上的一个动点,1.(1)求椭圆E的方程;(2)设直线l:x=ky-1与椭圆E交于不同的两点A、B,且∠AOB为锐角(O为坐标原点),求k的取值范围.B组提升题组4.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,证明直线AE过定点,并求出定点坐标.5.已知椭圆的右焦点为F2(2,0),点C上.(1)求椭圆C的标准方程;(2)是否存在斜率为-1的直线l与椭圆C相交于M,N两点,使得|F1M|=|F1N|(F1为椭圆的左焦点)?若存在,求出直线l的方程;若不存在,说明理由.答案全解全析A组基础题组1.解析(1)解得a2=8,b2=4.所以C(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b得(2k2+1)x2+4kbx+2b2-8=0.故x M M=k·x M于是直线OM的斜率k OM即k OM·k=所以直线OM的斜率与直线l的斜率的乘积为定值.2.解析(1)由题意知c=1,b2=3,所以a2=4,所以椭圆M易求得直线方程为y=x+1,联立方程,消去y,得7x2+8x-8=0,Δ=288>0,设C(x1,y1),D(x2,y2),所以x1+x21x2所以1-x2(2)当直线l的斜率不存在时,直线方程为x=-1,此时△ABD与△ABC的面积相等,|S1-S2|=0;当直线l的斜率存在时,设直线方程为y=k(x+1)(k≠0),联立方程,消去y,得(3+4k2)x2+8k2x+4k2-12=0,Δ=(8k2)2-4(3+4k2)(4k2-12)=144k2+144>0,故x1+x21x2此时|S1-S2|=2||y2|-|y1||=2|y2+y1|=2|k(x2+1)+k(x1+1)|=2|k(x2+x1因为k≠0,所以|S1-S2,所以|S1-S2|.3.解析(1)解法一:易知2<4,所以F12设P(x,y),则2+y2-4+b2=x2+b222+2b2-4.因为x∈[-2,2],所以当x=±2,即点P为椭圆长轴端点时1,即2-4,解得b2=1.故所求椭圆E的方程为2=1.解法二:由题意知a=2,c=2<4,所以F12设P(x,y),则2+1PF2y22+y2-16+4b22+2b2-4.因为x∈[-2,2],所以当x=±2,即点P为椭圆长轴端点时有最大值1,即2-4,解得b2=1.故所求椭圆E的方程为2=1.(2)设A(x1,y1),B(x2,y2),(k2+4)y2-2ky-3=0,Δ=(-2k)2+12(4+k2)=16k2+48>0,故y1+y21·y2.又∠AOB为锐角,·=x1x2+y1y2>0,又x1x2=(ky1-1)(ky2-1)=k2y1y2-k(y1+y2)+1,所以x1x2+y1y2=(1+k2)y1y2-k(y1+y2)+1=(1+k2所以k2解得故kB组提升题组4.解析(1)由题意知设D(t,0)(t>0),则FD又|FA|=|FD|,则由抛物线的定义知,当点A的横坐标为3时,有解得t=3+p或t=-3(舍去).此时,可得p=2.所以抛物线C的方程为y2=4x.(2)由(1)知F(1,0),。
2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文(I)

2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文(I)1.(xx北京,19,14分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点.若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.2.(xx北京东城一模)已知椭圆W:+=1(a>b>0)的左右焦点分别为F1,F2,且|F1F2|=2,椭圆上一动点P满足|PF1|+|PF2|=2.(1)求椭圆W的标准方程及离心率;(2)如图,过点F1作直线l1与椭圆W交于点A,C,过点F2作直线l2⊥l1,且l2与椭圆W交于点B,D,l1与l2交于点E,试求四边形ABCD的面积的最大值.3.(xx北京西城期末)已知椭圆C:+=1(a>b>0)的离心率为,点A在椭圆C上,O为坐标原点.(1)求椭圆C的方程;(2)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1·k2为定值.4.(xx北京朝阳一模)已知椭圆C:+=1的焦点分别为F1,F2.(1)求以线段F1F2为直径的圆的方程;(2)过点P(4,0)任作一条直线l与椭圆C交于不同的两点M,N.在x轴上是否存在点Q,使得∠PQM+∠PQN=180°?若存在,求出点Q的坐标;若不存在,请说明理由.B组提升题组5.(xx北京海淀二模)已知F1(-1,0)、F2(1,0)分别是椭圆C:+=1(a>0)的左、右焦点.(1)求椭圆C的方程;(2)若A,B分别在直线x=-2和x=2上,且AF1⊥BF1.(i)当△ABF1为等腰三角形时,求△ABF1的面积;(ii)求点F1,F2到直线AB距离之和的最小值.6.(xx北京海淀二模)已知曲线C:+=1(y≥0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.(1)当点B坐标为(-1,0)时,求k的值;(2)记△OAD的面积为S1,四边形ABCD的面积为S2.(i)若S1=,求|AD|的值;(ii)求证:≥.答案精解精析A组基础题组1.解析(1)由题意,知椭圆C的标准方程为+=1.所以a2=4,b2=2,从而c2=a2-b2=2.因此a=2,c=.故椭圆C的离心率e==.(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x0≠0.因为OA⊥OB,所以·=0,即tx0+2y0=0,解得t=-.又+2=4,所以|AB|2=(x0-t)2+(y0-2)2=+(y0-2)2=+++4=+++4=++4(0<≤4).因为+≥4(0<≤4),当且仅当=4时等号成立,所以|AB|2≥8.故线段AB长度的最小值为2.2.解析(1)由已知,得解得所以椭圆W的标准方程为+=1,离心率e==.(2)连接EO.由题意知EF1⊥EF2,所以|EO|=|F1F2|=1.所以点E的轨迹是以原点为圆心,1为半径的圆.显然点E在椭圆W的内部.S四边形ABCD=S△ABC+S△ADC=|AC|·|BE|+|AC|·|DE|=|AC|·|BD|.①当直线l1,l2中的一条直线与x轴垂直时,不妨令l2⊥x轴,此时AC为长轴,BD⊥x轴,把x=1代入椭圆方程,可求得y=±,则|BD|=,此时S四边形ABCD=|AC|·|BD|=4.②当直线l1,l2的斜率都存在时,设直线l1:x=my-1(m≠0),A(x1,y1),B(x2,y2).联立消去x,得(2m2+3)y2-4my-4=0.所以y1+y2=,y1y2=,则|AC|==.同理,|BD|=.S四边形ABCD=|AC|·|BD|=××====4<4.综上,四边形ABCD的面积的最大值为4.3.解析(1)由题意,得=,a2=b2+c2,又因为点A在椭圆C上,所以+=1,解得a=2,b=1,c=,所以椭圆C的方程为+y2=1.(2)证明:当直线l的斜率不存在时,由题意知l的方程为x=±2,易得直线OP1,OP2的斜率之积k1·k2=-.当直线l的斜率存在时,设l的方程为y=kx+m(k≠0).由得(4k2+1)x2+8kmx+4m2-4=0,因为直线l与椭圆C有且只有一个公共点,所以Δ=(8km)2-4(4k2+1)(4m2-4)=0,即m2=4k2+1.由得(k2+1)x2+2kmx+m2-5=0,设P1(x1,y1),P2(x2,y2),则x1+x2=,x1x2=,所以k1·k2=====,将m2=4k2+1代入上式,得k1·k2==-.综上,k1·k2为定值-.4.解析(1)因为a2=4,b2=2,所以c2=2.所以以线段F1F2为直径的圆的方程为x2+y2=2.(2)假设存在点Q(m,0),使得∠PQM+∠PQN=180°,则直线QM和QN的斜率存在,分别设为k1,k2.则k1+k2=0.依题意,知直线l的斜率存在,故设直线l的方程为y=k(x-4).由得(2k2+1)x2-16k2x+32k2-4=0.因为直线l与椭圆C有两个交点,所以Δ>0.即(-16k2)2-4(2k2+1)(32k2-4)>0,解得k2<.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,y1=k(x1-4),y2=k(x2-4). k1+k2=+=0,即(x1-m)y2+(x2-m)y1=0,即(x1-m)k(x2-4)+(x2-m)k(x1-4)=0,当k≠0时,2x1x2-(m+4)(x1+x2)+8m=0,所以2·-(m+4)·+8m=0,化简得=0,所以m=1.当k=0时,也成立.所以存在点Q(1,0),使得∠PQM+∠PQN=180°.B组提升题组5.解析(1)由题意可得a2-3=1,所以a2=4,所以椭圆C的方程为+=1.(2)由题意可设A(-2,m),B(2,n),因为AF1⊥BF1,所以·=0,所以(1,-m)·(-3,-n)=0,所以mn=3①.(i)因为AF1⊥BF1,所以当△ABF1为等腰三角形时,只能是|AF1|=|BF1|,即=,化简得m2-n2=8②.由①②可得或所以=|AF1||BF1|=×()2=5.(ii)直线AB:y=(x+2)+m,化简得(n-m)x-4y+2(m+n)=0,设点F1,F2到直线AB的距离分别为d1,d2,则d1+d2=+.因为点F1,F2在直线AB的同一侧,所以d1+d2==4.因为mn=3,所以m2+n2≥2mn=6(当且仅当m=n时取等号),d1+d2=4=4,所以d1+d2=4≥2.当m=n=或m=n=-时,点F1,F2到直线AB的距离之和取得最小值2.6.解析(1)因为B(-1,0),所以设A(-1,y0),代入+=1(y≥0),解得y0=,将A代入直线y=kx+1,得k=-.(2)(i)解法一:设点E(0,1),A(x1,y1),D(x2,y2).由得(3+4k2)x2+8kx-8=0,所以因为S1=|OE|(|x1|+|x2|)=×1·|x1-x2|=|x1-x2|,而|x1-x2|=,所以S1=·=,所以=,所以=,解得k=0,所以|AD|==.解法二:设点E(0,1),A(x1,y1),D(x2,y2). 由得(3+4k2)x2+8kx-8=0,所以点O到直线AD的距离d=,|AD|=|x1-x2|=·.所以S1=|AD|·d=·==.所以=,解得k=0.所以|AD|==.(ii)证明:因为S2=(y1+y2)|x1-x2|,所以==,而y1+y2=kx1+1+kx2+1=k(x1+x2)+2,所以==≥=.。
超实用高考数学重难点专题复习:专题九 平面解析几何 第九讲 圆锥曲线的综合问题(精讲课件)

知识拓展 1.圆锥曲线中的最值和范围问题的求解方法. 求解有关圆锥曲线的最值、参数范围的问题:一是注意题目中的几何特征, 充分考虑图形的性质,二是运用函数思想,建立目标函数, 求解最值,在利用代数法解决最值和范围问题时常从五个方面考虑:
(1)利用判别式来构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围, 解决这类问题的核心是两个参数之间建立等量关系;
核心知识整合
考点2:定点与定值问题
1.定点问题 定点问题通常情况下要建立含参数的曲线方程, 选取合适的坐标(可通过取参数的不同特殊值及对应的方程组的根的求解来完成), 即可说明此坐标适合该曲线方程且与参数无关.
2.定值问题 (1)定值问题的求解:可先考虑能否用特殊点或特殊值求出定值, 再推广到一般结论.
• 专题九 平面解析几何 • 第九讲 圆锥曲线的综合问题
01 能通过不同的方法解决圆锥曲线的综合问题.
重点
01 能通过不同的方法解决圆锥曲线的综合问题.
难点
距离高考还有一段时间,不少有经验的老师都会提醒考生,愈是临近高考,
能否咬紧牙关、学会自我调节,态度是否主动积极,安排是否科学合理,能不 能保持良好的心态、以饱满的情绪迎接挑战,其效果往往大不一样。以下是本 人从事10多年教学经验总结出的超实用新高考数学专题复习讲义希望可以帮助 大家提高答题的正确率,希望对你有所帮助,有志者事竟成!
也组成一个点集
F,上述定义中,
条件 条件
(1) C (2) F
F C
C
F
.
2.求动点的轨迹方程的步骤 (1)建系—建立适当的坐标系; (2)设点—设轨迹上的任意一点 P(x, y) ;
(3)列式—列出动点 P 的坐标所满足的关系式; (4)代换—依条件的特点,选用距离公式、斜率公式等将 其转化为关于 x,y 的方程式,并化简. (5)证明—证明所求方程即为符合条件的动点的轨迹方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2019最新】精选高考数学大一轮复习第九章平面解析几何第9讲圆锥曲线的综合问题第1课时直线与圆锥曲线试题理新人教
基础巩固题组
(建议用时:40分钟)
一、选择题
1.过抛物线y2=2x的焦点作一条直线与抛物线交于A,B两点,它们的横坐标之和等于2,则这样的直线( )
A.有且只有一条
B.有且只有两条
C.有且只有三条
D.有且只有四条
解析∵通径2p=2,又|AB|=x1+x2+p,∴|AB|=3>2p,故这样的直线有且只有两条.
答案B
2.直线y=x+3与双曲线-=1(a>0,b>0)的交点个数是( )
A.1
B.2
C.1或2
D.0
解析因为直线y=x+3与双曲线的渐近线y=x平行,所以它与双曲线只有1个交点.
答案A
3.经过椭圆+y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A,B两点,设
O为坐标原点,则·等于( )
A.-3
B.-1
3
C.-或-3
D.±1
3
解析依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y-0=tan 45°(x -1),即y=x-1,代入椭圆方程+y2=1并整理得3x2-4x=0,解得x=0或x=,
所以两个交点坐标分别为(0,-1),,∴·=-,同理,直线l经过椭圆的左焦点时,也可得·=-.
答案B
4.抛物线y=x2到直线x-y-2=0的最短距离为( )
A. B.72
8
C.2
D.52
6
解析设抛物线上一点的坐标为(x,y),则d===,∴x=时, dmin=.
答案B
5.(2017·石家庄调研)椭圆ax2+by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为,则的值为( )
A. B. C. D.23
27
解析设A(x1,y1),B(x2,y2),线段AB中点M(x0,y0),
由题设kOM==.
由+by=1,,ax+by=1,))得=-.
又=-1,==.
所以=.
答案A
二、填空题
6.已知椭圆C:+=1(a>b>0),F(,0)为其右焦点,过F且垂直于x轴的直线与椭圆相交所得的弦长为2.则椭圆C的方程为________.
解析由题意得解得∴椭圆C的方程为+=1.
答案+=1
7.已知抛物线y=ax2(a>0)的焦点到准线的距离为2,则直线y=x+1截抛物线所得的弦长等于________.
解析由题设知p==2,∴a=.
抛物线方程为y=x2,焦点为F(0,1),准线为y=-1.
联立消去x,
整理得y2-6y+1=0,∴y1+y2=6,∵直线过焦点F,
∴所得弦|AB|=|AF|+|BF|=y1+1+y2+1=8.
答案8
8.过椭圆+=1内一点P(3,1),且被这点平分的弦所在直线的方程是________.
解析设直线与椭圆交于A(x1,y1),B(x2,y2)两点,
由于A,B两点均在椭圆上,
故,16)+,4)=1,,16)+,4)=1,
两式相减得
(x1+x2)(x1-x2)
+=0.
16
又∵P是A,B的中点,∴x1+x2=6,y1+y2=2,
∴kAB==-.
∴直线AB的方程为y-1=-(x-3).
即3x+4y-13=0.
答案3x+4y-13=0
三、解答题
9.设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求E的离心率;
(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.
解(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,
又2|AB|=|AF2|+|BF2|,得|AB|=a,
l的方程为y=x+c,其中c=.
设A(x1,y1),B(x2,y2),则A,B两点的坐标满足方程组消去y,化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=,x1x2=.
因为直线AB 的斜率为1,所以|AB|=|x2-x1|=,即a =,故a2=2b2, 所以E 的离心率e ===.
(2)设AB 的中点为N(x0,y0),由(1)知
x0===-,y0=x0+c =.
由|PA|=|PB|,得kPN =-1,即=-1, 得c =3,从而a =3,b =3. 故椭圆E 的方程为+=1.
10.已知椭圆C :+=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y =k(x -1)与椭圆C 交于不同的两点M ,N. (1)求椭圆C 的方程;
(2)当△AMN 的面积为时,求k 的值.
解
(1)由题意得⎩⎪⎨⎪⎧a =2,c a =2
2,a2=b2+c2.
解得b =,所以椭圆C 的方程为+=1. (2)由得(1+2k2)x2-4k2x +2k2-4=0. 设点M ,N 的坐标分别为(x1,y1),(x2,y2), 则y1=k(x1-1),y2=k(x2-1),
x1+x2=,x1x2=,
所以|MN|=(x2-x1)2+(y2-y1)2
=(1+k2)[(x1+x2)2-4x1x2] =
2(1+k2)(4+6k2)
1+2k2
又因为点A(2,0)到直线y =k(x -1)的距离d =, 所以△AMN 的面积为S =|MN|·d=,由=,解得k =±1.
能力提升题组 (建议用时:25分钟)
11.已知椭圆+=1(0<b <2)的左、右焦点分别为F1,F2,过F1的直线l 交椭圆于A ,B 两点,若|BF2|+|AF2|的最大值为5,则b 的值是( ) A.1
B.
C.
D.
3
解析 由椭圆的方程,可知长半轴长为a =2,由椭圆的定义,可知|AF2|+|BF2|+|AB|=4a =8,
所以|AB|=8-(|AF2|+|BF2|)≥3.
由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即=3,可求得b2=3,即b =. 答案 D
12.(2016·四川卷)设O 为坐标原点,P 是以F 为焦点的抛物线y2=2px(p>0)上任意一点,M 是线段PF 上的点,且|PM|=2|MF|,则直线OM 的斜率的最大值是( ) A.
B.
C.
D.1
解析 如图所示,设P(x0,y0)(y0>0),则y =2px0, 即x0=,2p).
设M(x′,y′),由=2,
得⎩⎪⎨⎪⎧x′-x0=2⎝ ⎛⎭⎪⎫p 2-x′,y′-y0=2(0-y ′),
解之得x′=,且y′=. ∴直线OM 的斜率k ===2p 2p2
y0+y0
又y0+≥2p,当且仅当y0=p 时取等号. ∴k ≤=,则k 的最大值为. 答案 C
13.设抛物线y2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为-,那么|PF|=________.
解析 直线AF 的方程为y =-(x -2),联立得y =4,所以P(6,4).由抛物线的性质可知|PF|=6+2=8. 答案 8
14.已知抛物线C :y2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=|PQ|. (1)求C 的方程;
(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 解 (1)设Q(x0,4),代入y2=2px 得x0=. 所以|PQ|=,|QF|=+x0=+.
由题设得+=×,解得p =-2(舍去)或p =2. 所以C 的方程为y2=4x.
(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0).代入y2=4x 得y2-4my -4=0.
设A(x1,y1),B(x2,y2),则y1+y2=4m ,y1y2=-4. 故AB 的中点为D(2m2+1,2m), |AB|=|y1-y2|=4(m2+1).
又l′的斜率为-m ,所以l′的方程为x =-y +2m2+3. 将上式代入y2=4x ,并整理得y2+y -4(2m2+3)=0. 设M(x3,y3),N(x4,y4),则y3+y4=-,
y3y4=-4(2m2+3).
故MN 的中点为E , |MN|=|y3-y4|=.
由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=|MN|, 从而|AB|2+|DE|2=|MN|2,
即4(m2+1)2++⎝ ⎛⎭
⎪⎫2
m2+22
=.
化简得m2-1=0, 解得m =1或m =-1.
所求直线l的方程为x-y-1=0或x+y-1=0.。