2018-2019学年最新苏科版八年级数学上学期第二次阶段性检测题及解析-精品试题
苏科版数学八年级上册阶段检测试卷及答案(第一、二章)初二数学试题.doc

八(上)数学阶段检测卷(第一、二章)(满分: 一、选择题(每题2分,共16分)1.下列汽车标志不是轴对称图形的是 ⑬(S ) A B2. 如图,AABC 与厶AEC 关于直线/对称,若ZA=78° , ZC=48° ,则ZB 的度数为 ()A ・ 4丁 B. 54° C. 74° D. 78°3.如图,点P 是AB±任意一点,ZABC=/ABD,还应补充一个条件,才能推出厶APC^A 从下列条件中补充一个条件,不一定能推出△APC9AAPD 的是 () BC = BD APD. A- B. D. AC=AD ZCAB = ZDAB OP 2,则下列4. P 是ZAOB 内一点, 结论正确的是 ()A. OP|丄OP?B. OP 】丄OP?且 OP|=OP 2C. OP|=OP2D. OP1HOP25. 如图,ZE=ZF=90° , ZB = ZC, AE=AF,给出下列结论:①Z1 = Z2;②BE=CF ;③厶 CAN^ABAM ;@CD=DN.其中正确的结论是 A.①②③6. 如图,已知在AABC 中, 段BC 的长度为A. 6) B.②③ C.①② ZABC=45°, F 是高AD 和BE 的交点, D.②③④ 若FD=4, AF=2・,则线 ) C. 10 D ・12 第6题图 B. 8 第7题图 B 第8题图100分时间:90分钟)C D7.如图,人。
是厶ABC的屮线,E, F分别在AB, AC上(E, F不与端点重合),若DE丄DF,则()A・ BE+CF>EF C・ BE+CF<EF B. BE+CF=EFD・BE+CF与EF的大小关系不确定8.如图,在由四个小正方形组成的田字格中,AABC的顶点都是小正方形的顶点,若在田字格上画与AABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含厶ABC木身)的个数是()A・1 B・2 C・3二.填空题(每题2分,共20分)D. 49.如图,在3X3的止方形网格中己有两个小止方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形酶办法有 _______ 种. 小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由11. 己知在Z\ABC 中,AB = BCHAC,作与ZiABC 只有一条公共边且与AABC 全等的三角形,这 样的三角形一共能作出_______ 个.12. 如图,在RtAABC 中,ZBAC=90° , AB = AC,分别过点B, C 作过点A 的直线的垂线BD, CE.若 BD=4cm, CE=3cm,则 DE= ______________ cm.13•如图,点D 在边BC 上,DE 丄AB, DF 丄BCL 垂足分另lj 为点E, D, BD = CF, BE=CD.若 ZAFD=145° ,则ZEDF= __________ ・14.如图,在一次夏令营活动屮,小明同学从营地A 出发,要到A 地的北偏东60°的方向的C 处,他先沿正东方向走T 320m 到达B 地,再沿北偏东30°的方向走,恰能到达目的地C,那么,15・如图,在Z\ABC 中,CA = CB, ZC=40° ,点 E 是Z\ABC 内一点,且 EA = EB, AABC 外 一点 D 满足 BD=AC.若 BE 平分ZDBC,则ZBDE= ____________________ .16.如图,在厶ABC 中,ZBAC=2ZC, BD 为ZABC 的角平分线,若BC = 6, AB = 3・5,则AD17・如图,己知点P 为ZAOB 的角平分线上的一点,点D 在边OA 上.爱动脑筋的小刚经过仔细 观察后,进行如下操作:在边OB 上取一点E,使得PE=PD,这时他发现ZOEP 与ZODP 之间有一定的等量关系,请你写出ZOEP 与ZODP 所有可能的数量关系 _______18•如图,在厶ABC 中,AB = AC, ZA = 36° , D 是AC ±一点,冃BD = BC,过点D 分别作 DE 丄AB, DF1BC,垂足分别为点E, F.给出以下四个结论:①DE=DF ;②点D 是AC 的中点; ③DE 垂直平分AB ;④AB = BC+CD,其中正确的结论是 _________________________________ .(填序号)10.如图,为了防止门板变形, 是利用了三角形的 ________ ・由此可知,B, C 两地和距 _______m.第12题图第13题图 第15题图第17题图 第16题图 第18题图三、解答题(共64分)19.(本题5分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内再涂黑两个小正方形,使它们成为轴对称图形.方法一 方法二(1) 求证:AABF^ADCE ;(2) 当ZAEB=50°时,求ZEBC 的度数.21. __________________________________________________________________ (本题6分)如图,已知AB = CD, ZB=ZC, AC 和BD 木£亠…—— __________________________ £申点,连 接OE.⑴求证:AAOB^ADOC ;(2)求ZAEO 的度数.22. (本题5分)如图,己知AD, BF 相交于点O,点E, C 在BF 上,BE=FC, AC=DE, AB = DF. 求证:OA = OD, OB = DF ・23. (本题5分)如图,O 为码头,A, B 两个灯塔与码头的距离相等,OA, OB 为海岸线,一轮 船从码头开出,计划沿ZAOB 的平分线航行,航行途中,测得轮船与灯塔A, B 的距离相等,此 时轮船有没有偏离航线?画出图形并说明你的理由. 24. (本题8分)如图,AB 〃CD,以点A 为圆心、小于AC 的长度为半径作圆弧,分别交AB, AC 于E, F 两点,再分别以E, F 为圆心、大于丄EF 的长度为半径作圆弧,两条圆弧交于点P, ? 作射线AP,交CD 于点M. ⑴若ZACD=114° ,求ZMAB 的度数; (2)若CN 丄AM,垂足为点N,求证:△ACN9AMCN.ii1 1・ 20. (本题6分)如图,在AABC 与厶DCB +, AC 与BD 交于点E,且ZA=ZD, AB = DC ・ DA25. (本题8分)在AABC 中,已知AC = BC, ZACB = 90°,点D 是AB 的中点,点E 是AB 边上一点.(1)直线BF 垂直于CE,垂足为点F,交CD 于点G (图1),求证:AE=CG ;(2)直线AH 垂直于CE,垂足为点H,交CD 的延长线于点M (图2),找出图中与BE 相等的线 段,并加以证明.26. (本题10分)如图,已知点D 为等腰直角三角形ABC 内一点,ZCAD=ZCBD=15° , E 为AD 延长线上的一点,且CE=CA.(1) 求证:DE 平分ZBDC ;(2) 若点 M 在 DE 上,H DC = DM,求证:ME=BD.27. (本题12分)如图,已知在AABC 中,AB = AC=10cm, BC=8cm ,点D 为AB 的中点,(1)如果点P 在线段BC±以3cm/s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点 C向DBE M点A运动.①若点Q的运动速度与点P的运动速度相等,经过Is后,ABPD与AcoP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使ABPD 与厶CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都按逆时针方向沿AABC三边运动,求经过多长时间点P与点Q第一次在AABC的哪条边上相遇.参考答案一、选择题I.C 2.B 3.B 4.C 5.A 6.C 7.A 8.C二、填空题9.5 10.稳定性II.7 12.7 13.55°14.320 15.20°16. 2.5 17,ZOEP=ZODP 或ZOEP+ZODP=180°18.①③④三、解答题19.答案不唯一20.(1)略(2)25°21.⑴略(2)90°22.略23.没有偏离航线24.⑴33 °(2)略25.(1)略(2) BE=CM26.略27.(1)®ABPD^ACQP ;® —cm/s80⑵T。
2019学年江苏省八年级上第二次学情调查数学试卷【含答案及解析】

2019学年江苏省八年级上第二次学情调查数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 根据下列表述,能确定位置的是()A.滨海体育馆8排B.西北方向C.教育西路D.东经120°,北纬30°2. 如图,小手盖住的点的坐标可能为()A.(4,6) B.(6,3) C.(5,2) D.(3,-4)3. 在平面直角坐标系中点(1,-3)关于x轴对称的点的坐标为()A.(-3,1) B.(-1,3) C.(-1,-3) D.(1,3)4. 对于函数,下列说法不正确的是()A.其图象经过点(0,0)B.其图象经过点(-1,)C.其图象经过第二、四象限D.y随x的增大而增大5. 一次函数=,当<0,b<0时,它的图象大致为()6. 已知一次函数(为常数),若它的图象过原点,则m=()A. B. C. D.7. 有一天早上,小刚骑车上学,途中用了10 min吃早餐,用完早餐后,小刚发现如果按原来速度上学会迟到,于是他加快了骑车速度,终于在上课前到达学校,下面几个图形中能大致反映小刚上学过程中路程与时间关系的图象是()8. 平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转90°得OB,则点B的坐标为()A.(1,) B.(-1,) C.(0,2) D.(2,0)二、填空题9. 点P(4,)到原点的距离是.10. 点P(m+3, m+1)在平面直角坐标系的x轴上,则m= .11. 将函数y=3x-5的图像向上平移3个单位所得函数图像的解析式为.12. 若直线与直线平行则k = .13. 已知P点坐标为(2a+1,a-3)在第三象限内,则a的取值范围是.14. 若点(-4,y1)、(2,y2)都在直线y=-3x+5上,则y1 y2(填“>”、“=”或“<”).15. 如图,已知棋子“车”的坐标为(-2,-1),棋子“马”的坐标为(1,-1),则棋子“炮”的坐标为.16. 若点(m,n)在函数y=3x+2的图象上,则3m-n的值是.17. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量y(L)与工作时间x(h)之间的函数关系式是.18. 在平面直角坐标系中,已知A(1,1)、B(3,5),要在x轴上找一点P,使得△PAB的周长最小,则点P的坐标为.三、解答题19. 如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(1)若点D与点A关于y轴对称,则点D的坐标为.(2)将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为.(3)求A,B,C,D组成的四边形ABCD的面积。
苏科版八年级数学上册第二次月考真题试卷(一)解析版

苏科版八年级数学上册第二次月考真题试卷(一)解析版 一、选择题1.若a 满足3a a =,则a 的值为( ) A .1 B .0 C .0或1D .0或1或1- 2.下列四组线段a ,b ,c ,能组成直角三角形的是( ) A .1a =,2b =,3c =B .1a =,2b =,3c =C .2a =,3b =,4c =D .4a =,5b =,6c = 3.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒4.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)5.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D .6.下列四个图标中,是轴对称图形的是( )A .B .C .D .7.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣1 8.下列计算,正确的是( ) A .a 2﹣a=a B .a 2•a 3=a 6 C .a 9÷a 3=a 3D .(a 3)2=a 6 9.满足下列条件的△ABC 是直角三角形的是( ) A .∠A :∠B :∠C =3:4:5B .a :b :c =1:2:3C .∠A =∠B =2∠CD .a =1,b =2,c 310.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( )A .﹣2B .﹣1C .0D .2 二、填空题11.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.12.已知点P (m ﹣2,2m ﹣1)在第二象限,则实数m 的取值范围是_____.13.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.14.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.15.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.16.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b =+⎧⎨=+⎩的解为____. 17.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 18.比较大小:-2______-3.19.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是__________。
【K12教育学习资料】八年级数学上学期第二次阶段性检测试题(无答案) 苏科版

江苏省东海县六校联动2015-2016学年八年级数学上学期第二次阶段性检测试题(考试时间:100分钟 分值:150分) 一、选择题(每题3分,共30分)1.下列属于一元一次方程的是 A .xx 1=B .1=-y xC .0)2(=-x xD .)1(2)3(+=-x x 2.如图,数一数,图中共有线段 A .5条 B .6条 C .7条 D .8条3.下列一元一次方程中,解为3-的是A .x x 334=-B .4325+=-x xC .1223-=+x xD .1334+=-x x 4.下列说法中,正确的有①圆锥和圆柱的底面都是圆 ②棱锥底面边数与侧棱数相等 ③棱柱的上下底面是形状、大小相同的多边形 ④正方体是四棱柱,四棱柱是正方体 A .1个 B .2个 C .3个 D .4个 5.下列图形中,是正方体表面展开图的是( )(A ) (B ) (C ) 6几何体的俯视图是7.下列说法中正确的是A .不相交的两条直线叫做平行线B .相等的角是对顶角C .过一点有且只有一条直线与已知直线平行D .过一点有且只有一条直线与已知直线垂直 8.射线OE 在∠AOB 的内部,下列四个式子中,不能判断OE 是∠AOB 的平分线的是A .∠AOE=∠EOB B.∠AOE+∠EO B=∠AOB C.∠AOB=2∠B OE D.∠AOE=21∠AOB 9.如图,下面分别给出的直线a 、b ,射线OA ,线段AB 中,不能相交的个数是 A .1个 B .2个 D 10.如图所示,∠1=20O ,∠AOB =90 O,点则∠2的度数为A .70 OB .80 OC .160 O 二、填空题(每题3分,共30分)B DC A b B AO a b a • • • •A C D B(第2题)A BD12.如果一个角是68 O,那么它的余角是13.三个连续奇数的和为27,这三个连续奇数中最大的一个奇数为 14.如图折成正方体纸盒时“你”的对面是 15.当x = 时,代数式x x -+823与的值互为相反数。
苏科版八年级数学上册第二次月考真题试卷(一)解析版

苏科版八年级数学上册第二次月考真题试卷(一)解析版一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( )A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形3.下列四个图标中,是轴对称图形的是( ) A .B .C .D .4.下列四组数,可作为直角三角形三边长的是 A .456cm cm cm 、、 B .123cm cm cm 、、 C .234cm cm cm 、、 D .123cm cm cm 、、5.关于x 的分式方程7m3x 1x 1+=--有增根,则增根为( ) A .x=1B .x=-1C .x=3D .x=-3 6.某种鲸的体重约为,关于这个近似数,下列说法正确的是( )A .精确到百分位B .精确到0.01C .精确到千分位D .精确到千位7.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( )A .B .C .D .8.如果0a b -<,且0ab <,那么点(),a b 在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m≥-C .3nx m-≤≤ D .以上都不对10.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数( ) A .1个B .2个C .3个D .4个二、填空题11.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值, x … ﹣2 ﹣1 0 … y…m2n…则m +n 的值为_____.12.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -.把一条长为2020个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A -----…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.13.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .14.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.15.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____. 16.3的平方根是_________.17.如图,在Rt ABC ∆中,90B =∠,6AB =,8BC =,将ABC ∆折叠,使点B 恰好落在斜边AC 上,与点'B 重合,AE 为折痕,则'EB 的长度是__________.18.如图,在坐标系中,一次函数21y x =-+与一次函数y x k =+的图像交于点(2,5)A -,则关于x 的不等式21x k x +>-+的解集是__________.19.如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为_____.20.如图,在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是 .三、解答题21.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =.CF 平分DCE ∠.求证:(1)ACD BEC ≅; (2)CF DE ⊥ .22.解方程:(1)22(1)8x -= (2)214111x x x +-=-- 23.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE . (1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.24.(1)计算:203(12)125(39)(45)(45);π--+---+⨯- (2)求x 的值:23(3)27.x +=25.如图,在△ABC 中,AC=BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,当△PCD 的周长最小时,在图中画出点P 的位置,并求点P 的坐标.四、压轴题26.如图,在平面直角坐标系中,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,过点B 的另一条直线交x 轴正半轴于点C ,且OC =3.图1 图2 (1)求直线BC 的解析式;(2)如图1,若M 为线段BC 上一点,且满足S △AMB =S △AOB ,请求出点M 的坐标; (3)如图2,设点F 为线段AB 中点,点G 为y 轴上一动点,连接FG ,以FG 为边向FG 右侧作正方形FGQP ,在G 点的运动过程中,当顶点Q 落在直线BC 上时,求点G 的坐标;27.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B 在第二象限.(1)点B 向平移单位,再向下平移(用含m 的式子表达)单位可以与点A 重合;(2)若点B 向下移动 3 个单位,则移动后的点B 和点A 的纵坐标相等,且有点 C(m−2,0).①则此时点A、B、C 坐标分别为、、.②将线段AB 沿y 轴负方向平移n 个单位,若平移后的线段AB 与线段CD 有公共点,求n 的取值范围.③当m<−1 式,连接AD,若线段AD 沿直线AB 方向平移得到线段BE,连接DE 与直线y=−2 交于点F,则点F 坐标为.(用含m 的式子表达)28.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.∆中,线段AM为BC边上的中线.动点D在直线AM上时,以29.如图,在等边ABC∆,连结BE.CD为一边在CD的下方作等边CDE(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.30.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可. 【详解】∵点P (a ,2a-1)在一、三象限的角平分线上,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a、b,斜边为c.则满足a2+b2=c2.若各边都扩大k倍(k>0),则三边分别为ak、bk、ck(ak)2+(bk)2=k2(a2+b2)=(ck)2∴三角形仍为直角三角形.故选:A.【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.3.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.D解析:D【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.A解析:A【解析】当x=1时,分母为零,没有意义,所以是增根.故选A.6.D解析:D【解析】【分析】先写出其原数,看看近似数的最末一位在原数什么数位上,那么它就是精确到了哪个数位.【详解】解:1.36×105kg=136000kg的最后一位的6表示6千,即精确到千位.故选D.【点睛】本题考查了近似数,掌握用科学记数法表示的数的精确度是解题关键.近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.7.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y 轴的交点在x 轴上方,∴一次函数y=kx+b 的图象经过第一、二、四象限. 故选A .考点:一次函数的图象.8.B解析:B 【解析】 【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答. 【详解】解:∵0a b -<,且0ab <, ∴a 0,0b <> ∴点(),a b 在第二象限 故选:B 【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.C解析:C 【解析】 【分析】 首先根据交点得出3b nm k-=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1) ∴31,31m n k b +=-+=- ∴33m n k b +=+,即3b nm k-=- 由图象,得0,0m k <> ∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m ≥-∴不等式组的解集为:3nx m-≤≤ 故选:C. 【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.10.C解析:C【解析】【分析】直接利用轴对称图形的性质分别分析得出答案.【详解】解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.二、填空题11.【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+解析:【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=4.故答案为:4.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.12.【解析】【分析】根据各个点的坐标,分别求出AB、BC、CD和DA的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵,,,∴AB=2,BC=3,CD解析:()1,1【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵()1,1A ,()1,1B -,()1,2C --,()1,2D -∴AB=2,BC=3,CD=2,DA=3∴细线绕一圈所需:AB+BC+CD+DA=10个单位长度2020÷10=202(圈),即细线正好绕了202圈故细线另一端所在位置正好为点A ,它的坐标为()1,1故答案为:()1,1.【点睛】此题考查的是探索点的坐标规律题,掌握把坐标转化为线段的长是解决此题的关键.13..【解析】【分析】【详解】如图,过点C 作CD⊥y 轴于点D ,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO 与△BCD 中,∠CBD=∠BAO,解析:(21)-,. 【解析】【分析】【详解】如图,过点C 作CD ⊥y 轴于点D ,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO ,在△ABO 与△BCD 中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB ,∴△ABO ≌△BCD (AAS ),∴CD=OB ,BD=AO ,∵点A (1,0),B (0,2),∴CD=2,BD=1, ∴OD=OB-BD=1,又∵点C 在第二象限,∴点C 的坐标是(-2,1).14.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.15.y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y解析:y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y=2x+2﹣2=2x.故答案为:y=2x.【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x左加右减;上下平移,b上加下减”是解此题的关键.16.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为17.3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算解析:3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算出答案.【详解】解:根据折叠可得BE=EB′,AB′=AB=6,设BE=EB′=x,则EC=8-x,∵∠B=90°,AB=6,BC=8,∴在Rt△ABC中,由勾股定理得,AC=10,∴B′C=10-6=4,在Rt△B′EC中,由勾股定理得,x2+42=(8-x)2,解得x=3,故答案为:3.【点睛】此题主要考查了翻折变换,以及勾股定理,关键是分析清楚折叠以后哪些线段是相等的.直角三角形两条直角边的平方和等于斜边的平方.18.【解析】【分析】根据图像解答即可.【详解】由图像可知,关于的不等式的解集是.故答案为:.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细解析:2x >-【解析】【分析】根据图像解答即可.【详解】由图像可知,关于x 的不等式21x k x +>-+的解集是2x >-.故答案为:2x >-.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y 1>y 2时x 的范围是函数y 1的图象在y 2的图象上边时对应的未知数的范围,反之亦然.19.k =±1.【解析】【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当 解析:k =±1.【解析】【分析】根据一次函数y =kx +4(k ≠0)图象一定过点(0,4),点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y =kx +4(k ≠0)与直线AB 平行时,②当直线y =kx +4(k ≠0)与直线AB 不平行时分别进行解答即可.【详解】一次函数y =kx +4(k ≠0)图象一定过(0,4)点,①当直线y =kx +4(k ≠0)与直线AB 平行时,如图1,设直线AB 的关系式为y =kx +b ,把A (3,0),B (4,1)代入得,3041k b k b +=⎧⎨+=⎩,解得,k =1,b =﹣3, ∴一次函数y =kx +4(k ≠0)中的k =1;②当直线y =kx +4(k ≠0)与直线AB 不平行时,如图2,根据题意,直线y =kx +4(k ≠0)垂直平分线段AB ,此时一定经过点C ,∴点C 的坐标为(4,0),代入得,4k +4=0,解得,k =﹣1,因此,k =1或k =﹣1.故答案为:k =±1.【点睛】本题考查了一次函数的图象和性质,掌握两条平行直线的k 值相等和一次函数的图象和性质是解决问题的关键.20.(﹣4,3).【解析】试题分析:解:如图,过点A 作AB⊥x 轴于B ,过点A′作A′B′⊥x 轴于B′, ∵OA 绕坐标原点O 逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′解析:(﹣4,3).【解析】试题分析:解:如图,过点A 作AB ⊥x 轴于B ,过点A′作A′B′⊥x 轴于B′,∵OA 绕坐标原点O 逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB 和△OA′B′中,,∴△AOB ≌△OA′B′(AAS ),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为(﹣4,3).考点:坐标与图形变化-旋转三、解答题21.(1)见解析;(2)见解析【解析】试题分析:(1)根据平行线性质求出∠A=∠B ,根据SAS 推出即可.(2)根据全等三角形性质推出CD=CE ,根据等腰三角形性质求出即可.试题解析:()1∵//AD BE ,∴A B ∠=∠,在ACD 和BEC 中AD BC A B AC BE =⎧⎪∠=∠⎨⎪=⎩∴()ACD BEC SAS ≅,()2∵ACD BEC ≅,∴CD CE =,又∵CF 平分DCE ∠,∴CF DE ⊥.22.(1) x 1=3, x 2=-1 ;(2)无解.【解析】【分析】(1)利用直接开平方法求解即可;(2)方程两边都乘以最简公分母(x+1)(x-1),可把分式方程转化为整式方程求解.【详解】解:(1)22(1)8x -=2(1)4x -=,12x -=±,1=3x ,2=1-x(2)214111x x x +-=-- ()()()214=11x x x +-+-,2223=1x x x +--,2=2x=1x ,检验:将x=1代入()()11x x +-中,()()11=0x x +-x=1是增根,∴原方程无解.【点睛】本题考查解一元二次方程和解分式方程.注意:(1)利用直接开平方法;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要验根.23.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.24.(1)4--2)120,6x x ==-【解析】【分析】(1)根据二次根式混合的运算、立方根、以及零指数幂的法则计算即可(2)利用直接开平方法解方程即可【详解】解:(1)原式=3511654---+=--(2)23(3)27.x +=2(3)9.x +=3 3.x +=±120,6x x ==-【点睛】本题考查了二次根式的混合运算和解一元二次方程,熟练掌握法则是解题的关键25.图见详解;P (197,127) 【解析】【分析】过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ,DP CP DP EP ED +=+=的值最小,即可得到P 点;通过A 和B 点的坐标,运用待定系数法求出直线AB 的函数表达式,再通过D 和E 点的坐标,运用待定系数法求出直线DE 的函数表达式,联合两个表达式解方程组求出交点坐标即可.【详解】解:如图所示,过C 作CF AB ⊥于F ,延长CF 到E ,使CF FE =,连接DE ,交AB 于P ,连接CP ;∵△PCD 的周长=CD DP CP ++∴DP CP DP EP ED +=+=时,可取最小值,图中P 点即为所求;又∵BD =3,DC =1∴平面直角坐标系中每一个小方格的边长为1,即:A(5,4),B(1,0),D(4,0),E(1,4) 设直线AB 的解析式为AB AB AB y k x b =+,代入点A 和B 得:540AB AB k b k b +=⎧⎨+=⎩解得:11AB ABk b =⎧⎨=-⎩ ∴1AB y x =-设直线DE 的解析式为DE DE DE y k x b =+,代入点D 和E 得:404DE DE DE DE k b k b +=⎧⎨+=⎩解得:43163DE DE k b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴416+33DE y x =- ∴联合两个一次函数可得: ∴1416+33y x y x =-⎧⎪⎨=-⎪⎩解得197127x y ⎧=⎪⎪⎨⎪=⎪⎩∴P (197,127) 【点睛】 本题主要考查了轴对称最短路径的画法,待定系数法求一次函数解析式,两直线的交点与二元一次方程组的解,求出一次函数的解析式组建二元一次方程组是解题的关键.四、压轴题26.(1)443y x =-+;(2)612(,)55M ;(3)23(0,)7G 或(0,-1)G 【解析】【分析】 (1)求出点B ,C 坐标,再利用待定系数法即可解决问题;(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,∴A (-2,0),B (0,4),,又∵OC=3,∴C (3,0),设直线BC 的解析式为y=kx+b ,将B 、C 的坐标代入得:304k b b +=⎧⎨=⎩, 解得:434k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为443y x =-+; (2)连接OM ,∵S △AMB =S △AOB ,∴直线OM 平行于直线AB ,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组2443y x y x =⎧⎪⎨=-+⎪⎩,解得:65125xy⎧=⎪⎪⎨⎪=⎪⎩故点612(,)55M;(3)∵FA=FB,A(-2,0),B(0,4),∴F(-1,2),设G(0,n),①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.∵四边形FGQP是正方形,易证△FMG≌△GNQ,∴MG=NQ=1,FM=GN=n-2,∴Q(n-2,n-1),∵点Q在直线443y x=-+上,∴41(2)43n n-=--+,∴23=7n,∴23(0,)7G.②当n<2时,如图2-2中,同法可得Q(2-n,n+1),∵点Q 在直线443y x =-+上, ∴4+1(2)43n n =--+, ∴n=-1,∴(0,-1)G . 综上所述,满足条件的点G 坐标为23(0,)7G 或(0,-1)G 【点睛】 本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.27.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S △COD = S △OB'C + S △OB'D∴''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222n ⨯⨯-⨯=+ 解得:193n =, 综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.28.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D (0,﹣4),M (4,﹣4),∴DM // x 轴,∴CH // OG // DM,∴∠AOG =∠ACH,∠DEC =∠HCE,∴∠DEC+∠AOG =∠ACB =90°,∴∠DEC =90°﹣55°=35°,∴∠CEF =180°﹣∠DEC =145°;(3)证明:由(2)得∠AOG+∠HEC =∠ACB =90°,而∠HEC+∠CEF =180°,∠NEC+∠CEF =180°,∴∠NEC =∠HEC,∴∠NEF =180°﹣∠NEH =180°﹣2∠HEC,∵∠HEC =90°﹣∠AOG,∴∠NEF =180°﹣2(90°﹣∠AOG )=2∠AOG .【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.29.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC∴=,CD CE=,60ACB DCE∠=∠=︒,60ACD ACE BCE ACE∴∠+∠=∠+∠=︒,ACD BCE∠∠∴=,在ACD∆和BCE∆中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS∴∆≅∆,CBE CAD∴∠=∠,同理可得:30CAM∠=︒150CBE CAD∴∠=∠=︒30CBO∴∠=︒,∵30BAM∠=︒,903060BOA∴∠=︒-︒=︒.综上,当动点D在直线AM上时,AOB∠是定值,60AOB∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.30.(1)45°;(2)PE的值不变,PE=4,理由见详解;(3)D(828-,0).【解析】【分析】(1)根据(42,0)A,(0,2)B,得△AOB为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC⊥AB,再证明△POC≌△DPE,根据全等三角形的性质得到OC=PE,即可得到答案;(3)证明△POB≌△DPA,得到PA=OB=2,DA=PB,进而得OD的值,即可求出点D的坐标.【详解】(1)A,(0,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.。
最新苏科版2018-2019学年八年级数学上册《轴对称图形》单元测试题5解析版-精品试题

第2章轴对称图形一、选择题(共29小题)1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.4.下列“数字”图形中,有且仅有一条对称轴的是()A.B.C.D.5.下列四个艺术字中,不是轴对称的是()A.B.C.D.6.下列学习用具中,不是轴对称图形的是()A.B.C.D.7.下列图形中,是轴对称图形的是()A.B.C.D.8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条9.下列图形中,不是轴对称图形的是()A.B.C.D.10.正方形是轴对称图形,它的对称轴有()A.2条B.4条C.6条D.8条11.下列图形中,不是轴对称图形的是()A.B.C.D.12.下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形13.下列交通标志图案是轴对称图形的是()A.B.C.D.14.下列标志中,可以看作是轴对称图形的是()A.B. C.D.15.下列图案中,不是轴对称图形的是()A.B.C.D.16.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形 C.菱形 D.正方形17.下列图形是轴对称图形的是()A.B.C.D.18.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.19.以下是回收、节水、绿色包装、低碳四个标志,其中轴对称图形是()A.B.C.D.20.如图,下面图形中不是轴对称图形的是()A.B.C.D.21.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.422.下列四个图形中,不是轴对称图形的是()A.B. C.D.23.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.824.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C.D.25.下面四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个26.下列图形中,是轴对称图形的是()A.B.C.D.27.在下列图形中,是轴对称图形的是()A.B.C.D.28.下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D.4个29.下列图形既是轴对称图形,又是中心对称图象的是()A.B.C. D.二、解答题(共1小题)30.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第2章轴对称图形参考答案与试题解析一、选择题(共29小题)1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称的定义,结合各选项进行判断即可.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.【点评】本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴.3.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(2013•绵阳)下列“数字”图形中,有且仅有一条对称轴的是()A.B. C.D.【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,找到各选项中的对称轴即可.【解答】解:A、有一条对称轴,故本选项正确;B、没有对称轴,故本选项错误;C、有两条对称轴,故本选项错误;D、有两条对称轴,故本选项错误;故选:A.【点评】本题考查了轴对称图形,解答本题的关键是掌握轴对称图及对称轴的定义,属于基础题.5.(2013•台州)下列四个艺术字中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称的定义,结合各选项进行判断即可.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误;故选C.【点评】本题考查了轴对称图形的知识,判断是轴对称图形的关键是寻找对称轴.6.下列学习用具中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.【解答】解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选:C.【点评】本题考查了轴对称图形的知识,属于基础题,判断轴对称图形的关键是寻找对称轴.7.下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:所给图形有4条对称轴.故选C.【点评】本题考查了轴对称图形的知识,解答本题的关键掌握轴对称及对称轴的定义.9.(2014•成都)下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.正方形是轴对称图形,它的对称轴有()A.2条B.4条C.6条D.8条【考点】轴对称图形.【专题】常规题型.【分析】正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.【解答】解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选:B.【点评】本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.11.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.(2014•甘孜州)下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不一定是轴对称图形.故本选项错误;B、是轴对称图形.故本选项正确;C、不一定是轴对称图形.故本选项错误;D、不一定是轴对称图形.故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.(2014•黑龙江)下列交通标志图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】常规题型.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.下列标志中,可以看作是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.15.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.16.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形 C.菱形 D.正方形【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分别判断出各图形的对称轴条数,继而可得出答案.【解答】解:A、等边三角形有3条对称轴;B、矩形有2条对称轴;C、菱形有2条对称轴;D、正方形有4条对称轴;故选D.【点评】本题考查了轴对称图形的知识,注意掌握轴对称及对称轴的定义.17.下列图形是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.18.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.19.以下是回收、节水、绿色包装、低碳四个标志,其中轴对称图形是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.20.如图,下面图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.21.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.4【考点】轴对称图形.【分析】根据轴对称图形及对称轴的定义求解.【解答】解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;∴对称轴的条数为2的图形的个数是3;故选:C.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;22.下列四个图形中,不是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项判断即可.【解答】解:A、是轴对称图形,不符合题意,故A选项错误;B、不是轴对称图形,符合题意,故B选项正确;C、是轴对称图形,不符合题意,故C选项错误;D、是轴对称图形,不符合题意,故D选项错误;故选:B.【点评】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.23.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8【考点】轴对称图形.【分析】根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.【解答】解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;第三个图形是轴对称图形,有2条对称轴;第四个图形是轴对称图形,有6条对称轴;则所有轴对称图形的对称轴条数之和为11.故选:B.【点评】本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.24.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.25.下面四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的定义即可得出结论.【解答】解:由轴对称图形的性质可知,四个字中的轴对称图形有:美、赤.故选B.【点评】本题考查的是轴对称图形,熟知轴对称图形的定义是解答此题的关键.26.下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.27.在下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】计算题.【分析】利用轴对称图形的性质判断即可得到结果.【解答】解:是轴对称图形,故选:D.【点评】此题考查了轴对称图形,轴对称图形即为在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形.28.下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】利用关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:圆弧、角、等腰梯形都是轴对称图形.故选:C.【点评】此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.29.(2014•湘西州)下列图形既是轴对称图形,又是中心对称图象的是()A.B.C. D.【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、解答题(共1小题)30.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出平移后对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键.新课标---最新苏科版。
最新苏科版2018-2019学年八年级数学上学期12月份月考检测题及答案解析-精品试题

苏科版八年级数学上学期12月份月考测试一、选择题(每小题3分,共24分)1下列不是轴对称图形是( )A BC D 2 计算9的结果是( )A .3B .3±C 3- D93.在3.14,2-,39,π,0.2020020002…五个数中,无理数有( )A .1个B .2个C 3个D4个4.下列各数中,不能作为直角三角形三边长度的是( ).A.8,15,17B.11,60,61C.12,35,36D.43,45,1 5. 已知一次函数y=mx+n-3的图像如图所示,则m 、n 的取值范围是( )A .3,0<>n mB 3,0>>n mC 3,0<<n mD 3,0><n m6 老王以每千克0.8元的价格批发进若干千克西瓜到市场销售,在销售了部分西瓜后,余下的每千克降价0.2元,全部售完,销售金额与卖瓜的千克数之间的关系如图所示,那么老王赚了( )A .32元 B36元 C 38元 D 44元7.如图,在x 轴、y 轴的正半轴上分别截取OA 、OB ,使OA=OB ;再分别以点A 、B 为圆心,以大于1/2AB 长为半径画弧,两弧交于点C .若点C 的坐标为(m -1,2n),则m 与n 的关系为( )A. m -2n=1 B. m+2n=1 C.2n -m=1 D.n -2m=18.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②若等腰三角形一腰上的高与底边的夹角为20°,则顶角为40°;③如果直角三角形的两边长分别为3、4,那么斜边长为5;④斜边上的高和一直角边分别相等的两个直角三角形全等.其中正确的说法有( ) A.1个 B.2个 C.3个 D.4个二、填空:(本大题共有10小题,每小题4分,共40分。
)9.16的平方根是.10.某电子显微镜的分辨率为cm 000000014.0,请用科学计数法表示为 ___________.11.如图,△ABC 中,AB =AC ,点D 、E 在边BC 上,请添一条件__________,使△ABD 与△ACE 全等.12.在平面直角坐标系中,把直线12+=x y 向上平移两个单位后,得到的直线解析式为.13.如图,Rt△ABC 中,∠C=90°,BC=6,∠ABC 的平分线BD 交AC 于D, 且BD=8,点E 是AB 边上的一动点,则DE 的最小值为.14.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于D ,沿DE 所在直线折叠,使点B 恰好与点A 重合,若CD =3,AB=8,则DB 的值为.15.一次函数b kx y +=的图象如图,则不等式0≤b kx +<5的解集为 .16.如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-3,-1),白棋③的坐标是(-2,-3),则黑棋②的坐标是.17.如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差km/h .18.如图,△ABC 是第1个等腰直角三角形,∠C=90°,AC=BC=1,D 是斜边AB 的中点,以BD 为一直图6E D C B A E D C BA DBC A角边向形外作第2个等腰直角三角形BDE ,……,如此继续下去,第n 个等腰直角三角形的面积为________.三、解答题:(共9小题,满分86分。
苏科版八年级数学上册第二次月考真题试卷(一)解析版

苏科版八年级数学上册第二次月考真题试卷(一)解析版一、选择题1.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四C .一、二、四D .一、三、四2.把分式22xyx y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( )A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的123.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .4.在下列分解因式的过程中,分解因式正确的是( ) A .-xz +yz =-z(x +y) B .3a 2b -2ab 2+ab =ab(3a -2b) C .6xy 2-8y 3=2y 2(3x -4y) D .x 2+3x -4=(x +2)(x -2)+3x 5.已知a >0,b <0,那么点P(a ,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.下列实数中,无理数是( ) A .227B .3πC .4-D 3277.某篮球运动员的身高为1.96cm ,用四舍五人法将1.96精确到0.1的近似值为( ) A .2B .1.9C .2.0D .1.908.下列交通标志图案是轴对称图形的是( )A .B .C .D .9.点P (1,﹣2)关于y 轴对称的点的坐标是( ) A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)10.下列调查中,调查方式最适合普查(全面调查)的是( ) A .对全国初中学生视力情况的调查 B .对2019年央视春节联欢晚会收视率的调查 C .对一批飞机零部件的合格情况的调查 D .对我市居民节水意识的调查二、填空题11.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值, x … ﹣2 ﹣1 0 … y…m2n…则m +n 的值为_____.12.若点(1,35)P m m +-在x 轴上,则m 的值为________.13.如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,若3PE =,则点P 到AB 的距离是______.14.圆周率π=3.1415926…精确到千分位的近似数是_____.15.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.16.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________. 17.已知直角三角形的两边长分别为3、4.则第三边长为________.18.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.19.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.20.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,则△ABC 周长的最小值是_____.三、解答题21.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-. (1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.22.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A 、B 两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A 水果x 箱,B 水果y 箱. (1)求y 关于x 的函数表达式;(2)若要求购进A 水果的数量不少于B 水果的数量,则应该如何分配购进A 、B 水果的数量并全部售出才能获得最大利润,此时最大利润是多少? 23.计算:(1)23(5)427-+; (2)12426(8)18÷+-. 24.小明和小华加工同一种零件,己知小明比小华每小时多加工15个零件,小明加工300个零件所用时间与小华加工200个零件所用的时间相同,求小明每小时加工零件的个数. 25.已知2y +与x 成正比,当x =1时,y =﹣6. (1)求y 与x 之间的函数关系式;(2)若点(a ,2)在这个函数图象上,求a 的值.四、压轴题26.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为轴和轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足a 6b 80-+-=. (1)a = ;b = ;直角三角形AOC 的面积为 .(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发以每秒2个单位长度的速度向点O 匀速移动,Q 点从O 点出发以每秒1个单位长度的速度向点A 匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC =∠D CO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOD ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180).27.问题背景:(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.28.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()6,10C ,点()0,2D ,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存P 在使BDP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.29.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠.(初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.30.一次函数y =kx +b 的图象经过点A (0,9),并与直线y =53x 相交于点B ,与x 轴相交于点C ,其中点B 的横坐标为3.(1)求B 点的坐标和k ,b 的值;(2)点Q 为直线y =kx +b 上一动点,当点Q 运动到何位置时△OBQ 的面积等于272?请求出点Q 的坐标;(3)在y 轴上是否存在点P 使△PAB 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:直线y=﹣5x+3与y 轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限. 故选C .考点:一次函数的图象和性质.2.A解析:A 【解析】把分式22xyx y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xyx y x y x y ⋅==---,由此可得分式的值不变,故选A.3.B解析:B【解析】 【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误; B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确; C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误; D .y kx =过原点,而图中两条直线都不过原点,故错误. 故选 B 【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.4.C解析:C 【解析】 【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】-xz +yz =-z(x-y),故此选项错误;3a 2b -2ab 2+ab =ab(3a -2b+1),故此选项错误; 6xy 2-8y 3=2y 2(3x -4y)故此选项正确;x 2+3x -4=(x +2)(x -2)+3x ,此选项没把一个多项式转化成几个整式积的形式,此选项错误. 故选:C . 【点睛】 因式分解的意义.5.D解析:D 【解析】试题分析:根据a >0,b <0和第四象限内的坐标符号特点可确定p 在第四象限. ∵a >0,b <0,∴点P (a ,b )在第四象限, 故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.7.C解析:C【解析】【分析】根据四舍五入法可以将1.96精确到0.1,本题得以解决.【详解】1.96≈2.0(精确到0.1),故选:C.【点睛】此题主要考查有理数的近似值,熟练掌握,即可解题.8.B解析:B【解析】【分析】【详解】A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.9.C解析:C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.10.C解析:C【解析】【分析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题11.【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+解析:【解析】【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m +n =﹣2k +b +b =﹣2k +2b =2(﹣k +b )=2×2=4.故答案为:4.【点睛】本题主要考查一次函数的待定系数法,把m +n 看作一个整体,进行计算,是解题的关键.12.【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点在x 轴上,∴3m −5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m =53. 故答案为:53. 【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.13.3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.【详解】解:∵点是的平分线上一点,且,∴P 点到AB 上的距离也是3.故答案为3.【点睛】本题考解析:3【解析】【分析】根据角平分线的性质:角平分线上的点到角两边倒角两边的距离相等判断即可.【详解】解:∵点P 是BAC ∠的平分线AD 上一点,且PE AC ⊥,∴P 点到AB 上的距离也是3.故答案为3.【点睛】本题考查了角平分线的性质,解决本题的关键是正确的理解题意,能够熟练掌握角平分线的性质.14.142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5 大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分解析:142【解析】【分析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5 大于4,故进1,得3.142.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.142.故答案为3.142.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.15.【解析】【分析】计算出当P 在直线上时a 的值,再计算出当P 在直线上时a 的值,即可得答案.【详解】解:当P 在直线上时,,当P 在直线上时,,则.故答案为【点睛】此题主要考查了一次函数与解析:0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.16.26【解析】【分析】根据题意,令,进而整理得到a ,b 的值即可得解.【详解】根据题意,令整理得:∴,解得:,∴,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的解析:26【解析】【分析】根据题意,令3222()(31)ax bx ax k x x +-=++-,进而整理得到a ,b 的值即可得解.【详解】根据题意,令3222()(31)ax bx ax k x x +-=++-整理得:3232(3)(3)2ax k a x k a x k ax bx +++--=+-∴3302k a bk ak+=⎧⎪-=⎨⎪=⎩,解得:6202abk=⎧⎪=⎨⎪=⎩,∴26a b+=,故答案为:26.【点睛】本题主要考查了多项式乘多项式,熟练掌握整式的乘法运算方法及技巧是解决本题的关键. 17.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用.18.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD 的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.19.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m的取值范围.【详解】当时,,∴,当时,,,当时,,,m的取值范围为:1≤m≤故答案为:1≤m≤【点睛】解析:1≤m≤32【解析】【分析】 根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.【详解】当0y =时,3x m =, ∴03x m=, 当03x =时,33m=,1m =, 当02x =时,32m =,32m =, m 的取值范围为:1≤m ≤32 故答案为:1≤m ≤32【点睛】 本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围求得m 的取值范围是解题的关键.20.【解析】【分析】作AD⊥OB 于D ,则∠ADB=90°,OD =1,AD =3,OB =3,得出BD =2,由勾股定理求出AB 即可;由题意得出AC+BC 最小,作A 关于y 轴的对称点,连接交y 轴于点C ,点C解析:513+【解析】【分析】作AD ⊥OB 于D ,则∠ADB =90°,OD =1,AD =3,OB =3,得出BD =2,由勾股定理求出AB 即可;由题意得出AC +BC 最小,作A 关于y 轴的对称点A ',连接A B '交y 轴于点C ,点C 即为使AC +BC 最小的点,作A E x '⊥轴于E ,由勾股定理求出A B ',即可得出结果.【详解】解:作AD ⊥OB 于D ,如图所示:则∠ADB =90°,OD =1,AD =3,OB =3,∴BD =3﹣1=2,∴AB要使△ABC 的周长最小,AB 一定,则AC +BC 最小,作A 关于y 轴的对称点A ',连接A B '交y 轴于点C ,点C 即为使AC +BC 最小的点,作A E x '⊥轴于E ,由对称的性质得:AC =A C ',则AC +BC =A B ',A E '=3,OE =1,∴BE =4,由勾股定理得:A B '5=,∴△ABC ..【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.三、解答题21.(1) 32m =,AB =(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上, ∴33232m m -++=, ∴32m =,∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6), ∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯, ∴OQ =2,∴点Q 坐标为(0,2).【点睛】 考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.22.(1)3245y =-+;(2)应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元【解析】【分析】(1)根据A 水果总价+B 水果总价=1200列出关于x 、y 的二元一次方程,对方程进行整理变形即可得出结论;(2)设利润为W 元,找出利润W 关于x 的函数关系式,由购进A 水果的数量不得少于B 水果的数量找出关于x 的一元一次不等式,解不等式得出x 的取值范围,再利用一次函数的性质即可解决最值问题.【详解】(1)∵30501200x y∴y 关于x 的函数表达式为:3245y =-+. (2)设获得的利润为w 元,根据题意得510w x y , ∴240w x =-+∵A 水果的数量不得少于B 水果的数量,∴x y ≥,解得15x ≥.∵10-<,∴w 随x 的增大而减小,∴当15x =时,w 最大225=,此时120315155y -⨯==. 即应购进A 水果15箱、B 水果15箱能够获得最大利润,最大利润为225元.【点睛】本题考查了二元一次方程的应用、一次函数的应用;根据题意得出等量关系列出方程组或得出函数关系式或由不等关系得出不等式是解决问题的关键.23.(1)6;(2)3. 【解析】【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式的乘除法则计算,合并即可得到结果.【详解】解:(1)原式=5﹣2+3=6;(2)原式==3. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.24.45【解析】【分析】设小明每小时加工零件x 个,则小华每小时加工(x-15)个, 根据时间关系,得30020015x x =- 【详解】 解:设小明每小时加工零件x 个,则小华每小时加工(x-15)个由题意,得30020015x x =- 解得:x =45 经检验:x =45是原方程的解,且符合题意.答:小明每小时加工零件45个.【点睛】考核知识点:分式方程应用.理解题,根据时间关系列方程是关键.25.(1)y =-4x-2;(2)a =-1.【解析】【分析】(1)设y+2=kx ,将x=1、y=-6代入y+2=kx 可得k 的值;(2)将点(a ,2)的坐标代入函数的解析式求a 的值.【详解】解:(1)∵y+2与x 成正比,∴设y+2=kx ,将x=1、y=-6代入y+2=kx 得-6+2=k×1,∴k=-4,∴y=-4x-2(2)∵点(a ,2)在函数y=-4x-2图象上,∴2=-4a-2,∴a=-1.【点睛】本题主要考查函数解析式的求法.如果事先知道函数的形式,可先设函数的解析式,再采用待定系数法求解.四、压轴题26.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析【解析】【分析】(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论.【详解】解:(1) 解:(1)∵b 80-=, ∴a-6=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);∴S △ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD,∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.∴∠GOD+∠ACE=∠OHC.【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.27.(1)证明见解析;(2)DE=BD+CE;(3)B(1,4)【解析】【分析】(1)证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(3)根据△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠ADB=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD∵在△ADB和△CEA中ABD CAEADB CEAAB CA∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE即:DE=BD+CE(2)解:数量关系:DE=BD+CE理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,∴∠ABD=∠CAE,在△ABD和△CAE中,ABD CAEBDA AECAB CA∠∠⎧⎪∠∠⎨⎪⎩===∴△ABD≌△CAE(AAS)∴AE=BD,AD=CE,∴DE=AD+AE=BD+CE;(3)解:如图,作AE⊥x轴于E,BF⊥x轴于F,由(1)可知,△AEC≌△CFB,∴CF=AE=3,BF=CE=OE-OC=4,∴OF=CF-OC=1,∴点B的坐标为B(1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.28.(1)y=43x+2;(2)(103,10);(3)存在, P坐标为(6,6)或(6,7+2)或(6,7).【解析】【分析】(1)设直线DP 解析式为y=kx+b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)当点B 的对应点B′恰好落在AC 边上时,根据勾股定理列方程即可求出此时P 坐标; (3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【详解】 解:(1)∵C (6,10),D (0,2),设此时直线DP 解析式为y=kx+b ,把D (0,2),C (6,10)分别代入,得2610b k b =⎧⎨+=⎩ , 解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)设P (m ,10),则PB=PB′=m ,如图2,∵OB′=OB=10,OA=6,∴AB′=22OB OA '-=8,∴B′C=10-8=2,∵PC=6-m ,∴m 2=22+(6-m )2,解得m=103 则此时点P 的坐标是(103,10); (3)存在,理由为:若△BDP 为等腰三角形,分三种情况考虑:如图3,①当BD=BP 1=OB-OD=10-2=8,在Rt △BCP 1中,BP 1=8,BC=6,根据勾股定理得:CP 1228627-=∴AP 17P 1(6,7);②当BP 2=DP 2时,此时P 2(6,6);③当DB=DP 3=8时,在Rt △DEP 3中,DE=6,根据勾股定理得:P 3∴AP 3=AE+EP 3,即P 3(6,+2),综上,满足题意的P 坐标为(6,6)或(6,+2)或(6,).【点睛】此题属于一次函数综合题,待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,熟练掌握待定系数法是解题的关键.29.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ; (3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE ∥BC , ∴DB EC AB AC=, ∵AB=AC ,∴DB=EC ,故答案为:=,(2)成立. 理由:由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形,∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴DB=CE ,∠ABD=∠ACE ,∵∠BOD=∠AOC ,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.30.(1)点B (3,5),k =﹣43,b =9;(2)点Q (0,9)或(6,1);(3)存在,点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478) 【解析】【分析】(1)53y x =相交于点B ,则点(3,5)B ,将点A 、B 的坐标代入一次函数表达式,即可求解; (2)OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=,即可求解; (3)分AB AP =、AB BP =、AP BP =三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+,则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版八年级数学上学期 第二次质检试题 一、填空题(每空1分,共16分) 1.一个正方形要绕它的中心至少旋转 度,才能与原来的图形重合.
2.若菱形的两条对角线的长是10cm和24cm,那么这个菱形的边长是 cm. 3.一个三角形的三条中位线的长分别为3,4,5,则三角形的面积为 . 4.已知点P的坐标为(3,﹣5),则点P关于x轴的对称点的坐标为 ; 关于y轴的对称点的坐标为 ; 关于坐标原点的对称点的坐标为 .
5.已知点A的坐标为(﹣7,2),则它到x轴的距离为 ;到坐标原点的距离为 .
6.将点M(2,﹣3)向左平移2个单位长度,得到的点的坐标为 . 7.点P(a+1,a﹣1)在直角坐标系的y轴上,则点P的坐标为 . 8.已知:y﹣3与x+2成正比例,且x=2时,y=7;则y与x之间的函数关系式为 ;当x=4时,y= ;当y=4时,x= .
9.我国现行个人工资薪金税征收办法规定:月收入低于800元但低于1300元的部分征收5%的所得税…如某人某月收入1160元,他应缴个人工资薪金所得税为(1160﹣800)×5%=18(元) ①当月收入大于800元而又小于1300元时,写出应缴所得税y(元)与月收入x(元)之间的关系式 ; ②某人某月收入为960元,他应缴所得税 元; ③如果某人本月缴所得税19.2元,那么此人本月工资薪金是 元. 二、选择题(共8小题,每小题3分,满分24分) 10.点A(﹣8,6)在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
11.在▱ABCD中,∠A=∠B,则∠C、∠D的度数分别是( ) A. 40°,140° B. 280°,80° C. 70°,20° D. 105°,30°
12.已知菱形的周长为16,有一个内角为60°,则菱形的面积为( ) A. B. C. D.
13.下列说法中错误的是( ) A. 一组对边平行且一组对角相等的四边形是平行四边形 B. 每组邻边都相等的四边形是菱形 C. 四个角都相等的四边形是矩形 D. 对角线互相垂直平分的四边形是正方形
14.若xy>0,则点M(x,y),在平面直角坐标系中位于( ) A. x轴上 B. y轴上 C. 第一象限或第三象限 D. 第二象限或第四象限
15.顺次连结任意四边形各边中点所得到的四边形一定是( ) A. 平行四边形 B. 菱形 C. 矩形 D. 正方形
16.下列函数中,y是x的一次函数的是( ) ①y=x﹣6;②y=;③y=;④y=7﹣x. A. ①②③ B. ①③④ C. ①②③④ D. ②③④ 17.在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标乘以﹣1,得到点A′,则点A与点A′的关系是( ) A. 关于x轴对称 B. 关于y轴对称 C. 关于原点对称 D. 将点A向x轴负方向平移一个单位得点A
三、解答题(共7小题,满分60分) 18.工人师傅做铝合金窗框分下面三个步骤进行: (1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH; (2)摆放成如图②的四边形,则这时窗框的形状是 形,根据数学道理是: ; (3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: .
19.如图,△ABC中,A(﹣2,3),B(﹣3,1),C(﹣1,2). (1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1; (2)画出△ABC关于x轴对称的△A2B2C2; (3)将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3; (4)在△A1B1C1,△A2B2C2,△A3B3C3中,△ 与△ 成轴对称,对称轴是 ;△ 与△ 成中心对称,对称中心的坐标是 . 20.先画图,再回答问题 (1)在同一直角坐标系内作出一次函数y=2x+4,y=2x,y=2x﹣2的图象; (2)点(1,2)、(2,﹣4)是否在所画的图象上?在哪一个函数的图象上? (3)如果(a,8)在y=2x﹣2的图象上,求a的值.
21.如图,O是矩形ABCD对角线的交点,DE∥AC,CE∥BD,试说明OE与CD互相垂直平分. 22.在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.已知这根弹簧上挂10kg物体时弹簧长度为11cm,挂30kg物体时弹簧长度为15cm; (1)试确定弹簧长度y(cm)与所挂物体质量x(kg)之间的函数关系式. (2)并求当所挂物体的质量为35千克时弹簧的长度. 23.如图,在平面直角坐标系中,O为坐标原点,已知点B(2,2),请在坐标轴上找一点A,使△OAB为等腰三角形,并写出所有点A的坐标.
24.茅麓中学位于金坛的点O处,该校学生要到尧塘点C处购买花木.他们先向东走了6km到达A处,又向北走了12km到达B处,又折向东走了10km到达C处,若以O为原点,过O的正东方向为x轴正方向,正北方向为y轴正方向,以1为单位长度建立直角坐标系. (1)在直角坐标系里,标出旅游路线; (2)可得点C的坐标是 ;CB与x轴是什么关系? . (3)求OC两地的距离; (4)若O、C两点的位置不变,在x轴上求点P,使得△OCP的面积是△OCA的面积的,试写出点P的坐标. 参考答案与试题解析 一、填空题(每空1分,共16分) 1.一个正方形要绕它的中心至少旋转 90 度,才能与原来的图形重合.
考点: 旋转对称图形;正方形的性质. 分析: 此题主要考查正方形的性质,正方形是中心对称图形,它的对称中心是两条对角线的交点. 解答: 解:正方形是中心对称图形,它的对称中心是两条对角线的交点, 根据正方形的性质两对角线相互垂直, ∴正方形要绕它的中心至少旋转90°,才能与原来的图形重合. 点评: 此题考查正方形的性质及旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
2.若菱形的两条对角线的长是10cm和24cm,那么这个菱形的边长是 13 cm. 考点: 菱形的性质;勾股定理. 专题: 计算题. 分析: 如图,菱形ABCD的对角线AC=24cm,BD=10cm,根据菱形的性质得到AC⊥BD,OA=AC=12,OB=BD=5,然后利用勾股定理计算OA即可. 解答: 解:如图,菱形ABCD的对角线AC=24cm,BD=10cm, ∵四边形ABCD为菱形, ∴AC⊥BD,OA=AC=12,OB=BD=5,
在Rt△AOB中,AB===13, 即这个菱形的边长为13cm. 故答案为13. 点评: 本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
3.一个三角形的三条中位线的长分别为3,4,5,则三角形的面积为 24 . 考点: 三角形中位线定理;勾股定理的逆定理. 分析: 根据三角形的中位线定理即可求得△ABC的各个边长,利用勾股定理的逆定理可以判断△ABC是直角三角形,则面积即可求解. 解答: 解:设中位线DE=3,DF=4,EF=5. ∵DE是△ABC的中位线, ∴BC=2DE=2×3=6. 同理:AC=2DF=8,AB=2EF=10. ∵62+82=100=102, ∴AC2+BC2=AB2, ∴△ABC是直角三角形,且∠ACB=90°, ∴S△ABC=AC•BC=×6×8=24. 故答案是:24. 点评: 本题主要考查了勾股定理,以及三角形的中位线定理,正确求得△ABC的边长,判断△ABC是直角三角形是解题关键.
4.已知点P的坐标为(3,﹣5),则点P关于x轴的对称点的坐标为 (3,5) ; 关于y轴的对称点的坐标为 (﹣3,﹣5) ; 关于坐标原点的对称点的坐标为 (﹣3,5) .
考点: 关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标. 分析: 根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;两个点关于原点对称时,它们的坐标符号相反可得答案. 解答: 解:点P的坐标为(3,﹣5),则点P关于x轴的对称点的坐标为(3,5); 关于y轴的对称点的坐标为(﹣3,﹣5); 关于坐标原点的对称点的坐标为(﹣3,5). 故答案为:(3,5);(﹣3,﹣5);(﹣3,5). 点评: 此题主要考查了两个点关于原点、x、y轴对称的点的坐标,关键是掌握点的坐标的变化规律.
5.已知点A的坐标为(﹣7,2),则它到x轴的距离为 2 ;到坐标原点的距离为 . 考点: 点的坐标. 分析: 根据点到x轴的距离是点的纵坐标的绝对值,可得第一个空的答案,根据点到原点的距离是横坐标、纵坐标的平方和的绝对值,可得答案. 解答: 解:已知点A坐标为(﹣7,2),则点A到x轴距离为2,到原点距离为, 故答案为:2,. 点评: 本题考查了点的坐标,点到x轴的距离是点的纵坐标的绝对值,点到原点的距离是横坐标、纵坐标的平方和的绝对值.