中考数学重点总复习专题实数完美
中考数学知识点总结完整版

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.1001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
初三数学总复习(实数)

初三数学总复习数与式 实数(一)知识梳理 一.实数的有关概念 1、实数分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数零负整数有理数实数正分数分数负分数无理数-无限不循环小数------(有限小数和无限循环小数) 注意:无理数有三种类型:(1)、π或者含π的式子;(2)、含有根号且开不尽方的数。
如:等;(3)、无限不循环的小数。
如:2.121121112.。
、3.141141114。
等。
实数还可以分为:正实数、零、负实数;有理数还可以分为:正有理数、零、负有理数。
解题中需考虑数的取值范围时,常常用到这种分类方法。
特别要注意0是自然数。
2、数轴数轴的三要素:原点、正方向和单位长度。
实数与数轴上的点是一一对应的,这种一一对应关系是数学中把数和形结合起来的重要基础。
在数轴上表示的两个数,右边的数总比左边的数大。
3、绝对值 绝对值的代数意义:绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。
数a 的绝对值记着┃a ┃。
4、相反数、倒数只有符号不同的两个数叫做互为相反数【若a+b=0,则a 与b 互为相反数】;数a 的相反数记为-a 【这是求一个数的相反数的方法。
求一个数或式的相反数就是在这个数或式的前面填上一个负号】。
数a (a ≠0)的倒数记为1a。
【这是求倒数的方法,若一个数是小数,求它的倒数时先将这个小数化为分数再求倒数】,若ab =1,则a 与b 互为倒数。
相反数以及倒数都是成对出现的,零的相反数是零,零没有倒数。
5、非负数2a a 、、(a ≥0)形式的数都表示非负数。
||()()()a a a a a a =>=-<⎧⎨⎪⎩⎪0000②非负数的性质:几个非负数的和(积)仍是非负数;几个非负数的和等于零,则必定每个非负数都同时为零。
6、负整数指数幂、零指数幂:1(0)p p a a a-=≠;01(0)a a =≠。
7、实数大小的比较:两个实数比较大小:正数大于零和一切负数;零大于一切负数;两个负数,绝对值大的数较小。
初中数学实数中考考点分析

初中数学实数中考考点分析一、实数的定义与性质:1.实数的定义:实数包括有理数和无理数,其中有理数包括整数、分数和整数部分为零的小数,无理数包括无限不循环小数和无意义的开方数。
2.实数集的性质:实数集是一个无限的集合,实数集按大小可以分为正数、负数和零三部分,并满足有序性、稠密性和连续性等性质。
二、实数的四则运算:1.实数的加法和减法:实数加法满足交换律和结合律,并可以通过加法逆元进行减法运算。
2.实数的乘法和除法:实数乘法满足交换律和结合律,并可以通过乘法逆元进行除法运算。
3.实数的混合运算:实数的四则运算可以通过运算法则进行混合运算。
三、绝对值与数轴问题:1.绝对值的定义:绝对值是一个非负实数,表示实数与零之间的距离。
2.绝对值的性质:绝对值的值域为非负实数,绝对值为0的实数只有零本身。
3.数轴与实数的表示:实数可以通过数轴上的点来表示,数轴可以用于表示实数的大小关系和计算实数的距离等问题。
四、实数的比大小:1.实数的比较:实数大小比较可以通过比较实数的绝对值来进行。
2.实数的大小关系:实数的大小关系可以通过实数在数轴上的位置来判断。
五、实数的分数表示:1.实数的分数表示:实数可以通过有理数的分数表示,可以将无限循环小数表示为有限小数或分数。
2.实数的分数运算:实数的分数可以通过分数的四则运算进行运算。
六、根式与开方:1.根式的概念:根式是指形如√a的式子,其中a为非负实数。
2.平方根与立方根:平方根是指形如√a的根式,立方根是指形如∛a的根式。
3.根式的四则运算:根式的四则运算可以通过运算法则进行化简。
七、应用题:实数的应用题是指将实数的概念和运算与实际问题相结合的题目,如利用实数表示长度、面积和体积等物理量的问题,以及应用实数进行问题求解等。
这些内容是初中数学实数的一些重点内容,也是中考数学中的重要考点。
在备考中,学生需要熟练掌握实数的定义和性质,加强实数的四则运算能力,掌握绝对值和数轴的使用方法,能够比较和判断实数的大小关系,熟练运用分数和根式进行计算和化简,并能够将实数运用于实际问题的解答中。
中考必考实数知识点总结

中考必考实数知识点总结一、实数的概念实数是指包括有理数和无理数在内的所有数的集合。
有理数是指可以用分数表示的数,而无理数则是指不能用分数表示的数。
这两种数的集合统称为实数集。
在实数集中,有理数和无理数的性质有所不同。
有理数具有如下性质:有理数的加法、减法、乘法、除法运算封闭;有理数的加法和乘法满足交换律、结合律、分配律;有理数有加法和乘法单位元;有理数的加法有逆元。
而无理数则没有这些性质,它们通常以无限循环小数或者无限不循环小数的形式表示,例如π、√2等。
实数集是一个非常大的集合,其中包含了所有的数,因此实数的概念是数学中的一个基本概念。
二、实数的性质1. 实数的大小比较实数有着天然的大小比较关系,可以通过大小比较运算符来进行比较。
实数的大小比较主要是通过大小关系符号(大于、小于、大于等于、小于等于)来进行。
对于任意的实数a和b,有以下性质:(1)反身性:a ≥ a,a ≤ a(2)反对称性:如果a ≤ b且b ≤ a,则a = b(3)传递性:如果a ≤ b且b ≤ c,则a ≤ c这些性质在实数的大小比较中起着重要的作用,为我们提供了判断实数大小关系的依据。
2. 实数的运算性质实数的运算性质主要包括加法、减法、乘法、除法的性质。
实数的加法和乘法满足交换律、结合律、分配律,实数的除法有着特殊的性质。
(1)加法交换律:对于任意的实数a和b,有a + b = b + a(2)加法结合律:对于任意的实数a、b和c,有(a + b) + c = a + (b + c)(3)乘法交换律:对于任意的实数a和b,有a * b = b * a(4)乘法结合律:对于任意的实数a、b和c,有(a * b) * c = a * (b * c)(5)分配律:对于任意的实数a、b和c,有a*(b+c) = a*b + a*c(6)实数的除法:对于任意的实数a和b,如果b≠0,则存在唯一的实数c,使得a = b * c实数的运算性质是我们进行实数运算的基础,了解这些性质有利于我们掌握实数的运算规则,从而正确进行实数的运算。
中考数学总复习资料大全(精华版)

中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:实数 无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数正无理数负无理数0 实数 负数 整数 分数无理数 有理数正数整数分数无理数 有理数│a │ 2a a (a ≥0) (a 为一切实数) a(a≥0)-a(a<0)│a │=几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
新人教版初中数学[中考总复习:实数--知识点整理及重点题型梳理](基础)
](https://img.taocdn.com/s3/m/473635f4db38376baf1ffc4ffe4733687e21fcde.png)
新人教版初中数学[中考总复习:实数--知识点整理及重点题型梳理](基础)新人教版初中数学中考总复重难点突破实数—知识讲解(基础)考纲要求】1.了解有理数、无理数、实数的概念;借助数轴理解相反数、绝对值的概念及意义,会比较实数的大小;2.知道实数与数轴上的点一一对应,会用科学记数法表示有理数,会求近似数和有效数字;了解乘方与开方、平方根、算术平方根、立方根的概念,并理解这两种运算之间的关系,了解整数指数幂的意义和基本性质;3.掌握实数的运算法则,并能灵活运用.知识网络】考点梳理】考点一、实数的分类1.按定义分类:自然数、整数、有理数、无理数、实数。
2.按性质符号分类:正整数、正有理数、正实数、正分数、正无理数、零、负整数、负有理数、负实数、负分数、负无理数。
要点诠释:有理数是指整数和分数的总称,而无理数是指无限不循环小数。
实数则是有理数和无理数的总称。
常见的无理数有以下几种形式:1)字母型:如π是无理数,而不是分数;2)构造型:如2.xxxxxxxx…(每两个1之间依次多一个)就是一个无限不循环的小数;3)根式型:2、5、…都是一些开方开不尽的数;4)三角函数型:sin35°、tan27°、cos29°等。
考点二、实数的相关概念1.相反数1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数,如3和-3互为相反数;2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;3)互为相反数的两个数之和等于0,即a+b=0.2.绝对值1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;2)可用式子表示为:|a|=a (a≥0),|a|=-a (a<0)。
2.减法a-b=a+(-b);3.乘法同号两数相乘,积为正;异号两数相乘,积为负;4.除法a÷b=a(1÷b)(b0).要点诠释:实数的四则运算:1)加法的运算规律:交换律、结合律、存在零元素、存在相反元素;2)减法的运算规律:a-b=a+(-b);3)乘法的运算规律:交换律、结合律、存在单位元素1、存在相反元素;4)除法的运算规律:a÷b=a(1÷b)(b0).本文介绍了数学中加减乘除、乘方开方等基本运算及其运算律。
中考总复习专题:实数

中考总复习专题:实数中考总复习:实数专题一、知识回顾实数是一种数的类型,包括有理数和无理数。
有理数包括整数和分数,无理数则是不能表示为分数的数,如π(3.1415926……)等。
实数的概念和基本性质是进行数学运算和解决数学问题的基础。
二、重点难点1、重点:掌握实数的概念和基本性质,包括有理数和无理数的分类,理解实数与数轴上的点的对应关系。
2、难点:正确运用实数的运算法则进行计算,理解实数的大小比较规则,能够利用数轴解决相关问题。
三、运算法则1、加法:实数的加法遵循交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c)。
2、减法:实数的减法遵循反交换律,即a-b=-(b-a)。
3、乘法:实数的乘法遵循结合律和分配律,即(ab)c=acbc,(a+b)c=ac+bc。
4、除法:实数的除法遵循倒数的性质,即a/b=b/a。
四、应用举例1、求解实际问题的数值:例如求解一个矩形的面积或者周长,需要运用到实数的加减乘除等运算法则。
2、解决几何问题:例如在三角形、正方形等几何图形中,常常需要使用到勾股定理等知识点,从而涉及到实数的计算。
3、自然科学中的应用:例如在物理、化学等自然科学中,实数经常被用来表示物体的长度、质量等物理量。
五、复习建议1、强化基础知识:对于实数的基础知识,需要反复巩固和理解,例如实数的定义、性质、运算法则等。
2、练习实际应用:通过解决实际问题,加深对实数的理解和运用,提高解决实际问题的能力。
3、注重思路方法:在解决实数问题时,要注重思路和方法,善于总结规律,避免死记硬背。
4、查漏补缺:在复习过程中,要注意发现自己的薄弱环节,及时进行查漏补缺。
六、结语实数是数学中的一个重要概念,对于数学学习和实际应用都具有重要意义。
在中考总复习中,要全面系统地复习实数的相关知识,掌握实数的概念、性质、运算法则等,提高解决实际问题的能力。
要注意发现自己的不足之处,及时进行巩固和强化,为未来的数学学习和实际应用打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂精讲
考点1 实数的有关概念(倒数、绝对值、相反 数、无理数)
3.(2017•江西)﹣6的相反数是(C)
A.
B.﹣ C.6 D.﹣6
4.(2017•上海)下列实数中,无理数是(B)
A.0
B.
C.﹣2 D.
课堂精讲
考点2 科学记数法
5.(2017•云南)作为世界文化遗产的长城, 其总长大约为6700000m.将6700000用科学记 数法表示为( B ) A.6.7×105 B.6.7×106 C.0.67×107 D.67×108 6.(2017•益阳)目前,世界上能制造出的最 小晶体管的长度只有0.000 000 04m,将 0.000 000 04用科学记数法表示为( B ) A.4×108 B.4×10﹣8 C.0.4×108 D.﹣4×108
课堂精讲
考点2 科学记数法
7.(2017•凉山州)2017年端午节全国景区 接待游客总人数8260万人,这个数用科学记数 法可表示为 8.26×107 人.
课堂精讲
考点3 实数的大小比较、数轴、估计无理数的 大小
8.(2017•济南)在实数0,﹣2, ,3中,最 大的是( D ) A.0 B.﹣2 C. D.3
A.-1 B.0
C.
D.
广东中考
18.(2016广东)如图,a和b的大小关系是 ( A) A、a<b B、a>b C、a=b D、b=2a
19.(2017广东)已知实数a,b在数轴上的对 应点的位置如图所示,则a+b > 0. (填“>”,“<”或“=”)
广东中考
20.(2016广东)据广东省旅游局统计显示,2016 年4月全省旅游住宿设施接待过夜旅客约27700000 人,将27700000用科学计数法表示为( C )
21.(2017广东)“一带一路”倡议提出三年以来,
广东企业到“一带一路”国家投资越来越活跃,据商
务部门发布的数据显示,2016年广东省对沿线国家
的实际投资额超过4000000000美元,将4000000000
6.
(1) (2) (3)同级运算,从左到右进行.
考点梳理
7. (1)正数大于零,负数小于零;两个正数,绝对 值大的较___大___;两个负数,绝对值大的较 ___小___. (2)设a,b是任意两个有理数,若a-b>0,则 a>b;若a-b=0,则a=b;若a-b<0,则a<b. 8. 把一个整数或有限小数记成__a_×__1_0_n_的形式, 其中1≤|a|<10,n为整数,这种记数法叫做科 学记数法.
考点梳理
9. 一个近似数,精确度最低到哪一位,就说这个 近似数精确到哪一位.
课堂精讲
考点1 实数的有关概念(倒数、绝对值、相反 数、无理数)
1.(2017•贺州) 的倒数是(A) A.﹣2 B.2 C. D.-
2.(2017•铜仁)-2017的绝对值是(A)
A.2017 B.﹣2017 C.
D.﹣
广东中考
14.(2011广东)-2的倒数是( D )
A.2
B.-2
C.
D.-
15.(2016广东)﹣2的绝对值是( A)
A.2 B.﹣2 C.
D.
广东中考
16.(2017广东)5的相反数是( D ) A. B.5 C.﹣ D.﹣5
17.(2013梅州)四个数-1,0, 中 为无理
数的是( D )
6.(2017广州)如图,数轴上两点A,B表示 的数互为相反数,则点B表示的数为(B)
A.﹣6 B.6 C.0 D.无法确定
7.(2017常州)计算:|﹣2|+(﹣2)0= 3 .
考点梳理
考点梳理
2. (1)数轴的三要素:原点、正方向、单位长度. (2)用数轴表示数,实数和数轴上的点是一一对 应的. 3. (1)a的相反数是__-_a___. (2)若a,b互为相反数,则a+b=__0______.
9.(2017•黄冈模拟)实数a,b在数轴上的位置 如图所示,则下列各式正确的是( C ) A.a>b B.a>﹣b C.a<b D.﹣a<﹣b
课堂精讲
考点3 实数的大小比较、数轴、估计无理数的 大小
10.(2017•天津)估计 的值在( C ) A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
第一章 数与式
第1节 实 数
课前预习
1.(2017湘潭)2 017的倒数是(A)
A. B连云港)2的绝对值是(B)
A.-2 B.2 C.-
D.
课前预习
3.(2017广元)- 的相反数是(D)
A.-5 B.5
C.-
D.
4.(2017深圳)随着“一带一路”建设的不
断发展,我国已与多个国家建立了经贸合作
关系,去年中哈铁路(中国至哈萨克斯坦) 运输量达8200000吨,将8200000用科学记数 法表示为(C) A.8.2×105 B.82×105 C.8.2×106 D.82×107
课前预习
5.(2017玉林)下列四个数中最大的数是 (A) A.0 B.﹣1 C.﹣2 D.﹣3
课堂精讲
考点4 实数的运算 11.(2017•重庆)计算:|﹣3|+(﹣1)2=_4__
12.(2017•朝阳)计算: +( )﹣1﹣(π﹣ )0﹣|﹣3|. 解:原式=2+2﹣1﹣3=0.
13.(2017•长沙)计算: |﹣3|+(π﹣2017)0﹣2sin30°+( )﹣1.
解:原式=3+1﹣1+3=6.
考点梳理
(1)原数的绝对值大于10时,利用科学记数法, a×10n的形式,注意1≤|a|<10,n等于
原数的整数位数减1,也是小数点向左移动的位 数,如:3 800=3.8×103. (2)原数的绝对值小于10时,利用科学记数法, 写成a×10-n的形式,注意1≤|a|<10,n等于原 数左边第一个非0的数字前的所有0的个数(包括 小数点前的0),也是小数点向右移动的位数, 如:0.000 38=3.8×10-4 .
考点梳理
4. (1)定义:在数轴上,一个数所对应的点到原点 的距离叫这个数的绝对值.
(2)用式子表示a的绝对值. a 0 -a
不论有理数a取何值,它的绝对值总是非负数. 即|a|≥0.
考点梳理
5. 用1除以一个数的商,叫做这个数的倒数,实 数a,b互为倒数,则ab=__1___.注意0没有倒数.