最新北师大版数学八年级上学期《期末考试试卷》附答案
北师大版数学八年级上学期《期末测试卷》及答案

(1)求B,C两点坐标;
(2)①求△OPD的面积S关于t的函数关系式;
A 2.5mB.2mC.1.5mD.1m
[答案]C
[解析]
[分析]
根据图形分别求得二人的速度,相减后即可确定正确的选项.
[详解]观察图象知:甲跑64米用时8秒,速度为8m/s,
①把 向上平移5个单位后得到对应的 ,画出 ,并写出 的坐标;
②以原点 为对称中心,再画出与 关于原点 对称的 ,并写出点 的坐标.
五、本大题共2小题,每小题10分,满分20分.
19.某水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后卖了30400元.已知“妃子笑”荔枝每千克售价8元,“无核Ⅰ号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
=4,故B符合题意,
故选B.
[点睛]本题考查了算术平方根,利用乘方求一个正数的算术平方根,注意一个正数只有一个算术平方根.
2.下列实数中是无理数的是()
A. B.πC.0.141414D.﹣
[答案]B
[解析]
[分析]
根据无理数是无限不循环小数,可得答案.
[详解]A、 =2是有理数,故A错误;
B、π是无理数,故B正确;
七、本题满分12分.
22.直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B 坐标.
最新北师大版八年级数学上册期末考试卷及答案【可打印】

最新北师大版八年级数学上册期末考试卷及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b+的结果是________.2.如果a的平方根是3±,则a=_________.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是______.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=________度.5.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=________度.6.如图,四边形ABCD中,∠A=90°,AB=33,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简()222a 2a 1a 1a 1a 2a 1+-÷++--+,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.3.解不等式组3(2)2513212x x x x +≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.4.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.5.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、C5、B6、B7、D8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、813、720°.4、455、30°6、3三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、53、–1≤x<34、(1)略;(2)S平行四边形ABCD=245、(1)略(2)等腰三角形,理由略6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
北师大版八年级上册期末考试数学试卷(共5套,含参考答案)

初二上学期期末考试数学试卷选择题(每小题3分,共30分)1.下列各数:1.414,2,31-,0,其中是无理数的为( ) A. 1.414 B. 2 C. 31- D. 0 2.下列二次根式中,不是最简二次根式的是( ) A.10 B.8 C.6 D.23.今年5月1日~7日,威海地区每天最高温度(单位:℃)情况如图1所示,则表示最高温度的这组数据的中位数是( )A. 24B. 25C. 26D. 27① ②图1 图2 图34. 下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例是( )A. ∠A =30°,∠B =40°B. ∠A =30°,∠B =110°C. ∠A =30°,∠B =70°D. ∠A =30°,∠B =90°5.如图2,给出下列条件:①∠3=∠4;②∠1=∠2;③EF ∥CD ,且∠D =∠4;④∠3+∠5=180°. 其中,能推出AD ∥BC 的条件为( )A. ①②③B. ①②④C. ①③④D. ②③④6.小亮解方程组651x y x y -=∙⎧⎨+=-⎩,的解为1x y =-⎧⎨=*⎩,,由于不小心,滴上了两滴墨水,刚好遮住了•和*处的两个数,则点(•,*)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.设0<k <2,关于x 的一次函数y =kx +2(1-x ),当1≤x≤2时的最大值是( )A. 2k -2B. k -1C. kD. k +18. 对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分和4分四个等级,将调查结果绘制成条形统计图(如图3-①)和扇形统计图(如图3-②).根据图中信息,这些学生的平均分数是( )A. 2.25B. 2.5C. 2.95D. 39.若一次函数y 1=k 1x +b 1与y 2=k 2x +b 2,满足b 1<b 2,且已知21k k 没有意义,则能大致表示这两个函数图象的是( )最高温度日期A B C D 图410.如图4,在长方形纸片ABCD中,AB=5 cm,BC=10 cm,CD上有一点E ,ED=2 cm,AD上有一点P,PD=3 cm,过点P作PF⊥AD,交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是()A.134cm B. 3 cm C. 2 cm D.72cm二、填空题(每小题4分,共32分)11. 如图5,点A表示的实数是____________.图5 图6 图7 图812.已知函数23(1)my m x-=+是正比例函数,且图象在第二、四象限内,则m的值是.13.如图6,在方格纸中有三个点A,B,C,若点A的位置记为(0,1),点B的位置记为(2,-1),则点C 的位置应记为________________.14.方程组4123x yy x-=⎧⎨=+⎩,的解是____________,则一次函数y=4x-1与y=2x+3的图象的交点坐标为________________.15.一副三角尺如图7所示叠放在一起,则图中∠α的度数是___________.16.(2016年大庆)甲、乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_______________.(填“甲”或“乙”)17.如图8,已知A点坐标为(2,0),点B在直线y=x上运动,当线段AB长度最短时,直线AB的表达式为_____________.18.如图9,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的平分线,CA2是∠A1CD的平分线,BA3是∠A2BD的平分线,CA3是∠A2CD的平分线,…若∠A1=α,则∠A2016的度数为.图9三、解答题(共58分)19.(每小题5分,共10分)计算:(1()20161-;(2)()()()2227373-++-.y=x20.(8分)一次函数y=kx+b的图象经过点A(-1,3),B(2,-3).(1)求这个一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积.21.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输. 为提高质量,做进一步研究,某饮料加工厂需生产A,B 两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶添加2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?22.(10分)某中学举行“中国梦·校园好声音”歌手大赛,初中部与高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛. 两个队各选出的5名选手的决赛成绩(满分100分)如图10所示:(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.图1023.(10分)在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OB=OA=3.(1)求点A,B的坐标;(2)已知点C(-2,2),求△BOC的面积;(3)若P是第一象限角平分线上一点,且S△ABP=332,求点P的坐标.100 95 90 85 80 75 70O24.(12分)平面内不重合的两条直线有相交和平行两种位置关系.(1)如图12-①,若AB∥CD,点P在AB,CD的同侧,则有∠B=∠BOD,∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB,CD的异侧,如图12-②,结论∠BPD=∠B-∠D是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在图12-②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图12-③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?并证明你的猜想;(3)设BF交AC于点M,AE交DF于点N,已知∠AMB=140°,∠ANF=105°.利用(2)中的结论直接写出∠B+∠E+∠F的度数为_____________度,∠A比∠F大_______________度.①②③图12期末模拟测试题 参考答案一、1. B 2. B 3. B 4. C 5. C 6. B 7. C 8. C 9. D 10. A二、11.5 12. -2 13. (-3,-2) 14. 2,7x y =⎧⎨=⎩ (2,7) 15. 75° 16. 甲 17. y =-x +2 18. 20152α 三、19. 解:(1)原式=-3+21-1=-72. (2)原式=9-7+22-2=2+22-2=22.20. 解:(1)依题意,得323k b k b -+=⎧⎨+=-⎩,,解得21.k b =-⎧⎨=⎩,所以所求一次函数的表达式是y=-2x+1. (2)令x=0,由y=-2x+1,得y=1;令y=0,由y=-2x+1,得x=21. 所以直线AB 与坐标轴的交点坐标分别是(0,1)和(21,0).所以围成的三角形的面积为21×21×1=14. 21. 解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶.根据题意,得方程组10023270.x y x y +=⎧⎨+=⎩,解得3070.x y =⎧⎨=⎩,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.22. 解:(1)初中部决赛成绩的平均数为15(75+80+85+85+100)=85(分),众数85分,高中部决赛成绩的中位数80分.(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)因为2s 初=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,2s 高=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,所以2s初<2s 高. 所以初中代表队选手的成绩较为稳定.23.解:(1)由OB=OA=3,A ,B 两点分别在x 轴、y 轴的正半轴上,得A (3,0),B (0,3).(2)画图形如图1所示,知点C 到OB 的距离为点C 的横坐标的绝对值,则S △BOC =2321⨯⨯=3.(3)由点P 在第一象限的角平分线上,可设P 的坐标为(a ,a ).由S △AOB =12OA·OB=92<S △ABP ,知点P 在AB 的右侧,则S △ABP =S △PAO +S △PBO -S △AOB=12×3a+12×3a-12×3×3,即12×3a+12×3a-12×3×3=233. 整理,得293-a =233,解得7=a .所以P 的坐标为(7,7). 24. 解:(1)不成立.应为∠BPD=∠B+∠D.证明:如图2,延长BP 交CD 于点E.∵AB ∥CD ,∴∠B=∠BED. 又∵∠BPD=∠BED+∠D ,∴∠BPD=∠B+∠D.(2)∠BPD=∠BQD+∠B+∠D.证明:如图3所示,连接QP 并延长.利用“三角形的一个外角等于和它不相邻的两个内角的和”,得∠BPD=(∠BQP+∠B )+(∠DQP+∠D )=∠BQD+∠B+∠D .(3)75 65提示:由(2)的结论,得∠ENF=∠B+∠E+∠F ,∠AMB=∠B+∠E+∠A.因为∠ANF=105°,所以∠B+∠E+∠F=180°-∠ANF=180°-105°=75°.因为∠A=∠AMB-∠B-∠E ,∠F=∠ENF-∠B-∠E ,所以∠A-∠F=∠AMB-∠ENF=140°-75°=65°.图2 图3北师大版八年级上学期期末测试题数学一、选择题(每小题3分,共30分)1.下列四组线段中,能构成直角三角形的是( )A .1,2,3B .13 C .2,3,4 D .1,12.下列计算正确的是( )A5 B12= C=1D3.一组数据2,7,6,3,4,7的众数和中位数分别是( )A .7,4.5B .4,6C .7,4D .7,54.如图1,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组y ax b y kx=+⎧⎨=⎩,的解是( ) A .31x y =⎧⎨=-⎩, B .31x y =-⎧⎨=-⎩, C .31x y =-⎧⎨=⎩, D .31x y =⎧⎨=⎩,图1 图2 图3 图4 5.一次函数y=6x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6. 点M 关于y 轴对称的点为M 1(3,–5),则点M 关于x 轴对称的点M 2的坐标为( )A .(–3,5)B .(–3,–5)C .(3,5)D .(3,–5)7.如图2,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE8=0,则x 2015+y 2016的值为( )A .0B .1C .﹣1D .29.图3所示是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于( )A .90°B .120°C .150°D .180°10. 甲、乙两车从A 地匀速驶向B 地,甲车比乙车早出发2 h ,并且甲车图中休息了0.5 h 后仍以原速度驶向B 地,图4所示是甲、乙两车行驶的路程y (km )与行驶的时间x (h )之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40 km/h ,乙车的速度是80 km/h ;③当甲车距离A 地260 km 时,甲车所用的时间为7 h ;④当两车相距20 km 时,则乙车行驶了3 h 或4 h.其中正确的个数是( )32 1A .1个B .2个C .3个D .4个二、填空题(每小题4分,共32分)11.已知正比例函数y=kx (k≠0)的图象经过点(1,﹣2),则正比例函数的表达式为 .12.若7在两个连续整数a ,b 之间,即a <7<b ,则=+b a .13.若一组数据2,4,x ,6,8的平均数是6,则这组数据的极差为 ,方差为 .14.若点P 的坐标为(a 2+1,–6+2),则点P 在第_________象限.15. 如图5,点D ,B ,C 在同一直线上,∠A=75°,∠C=55°,∠D=20°,则∠1的度数是_______________.图5 图6 图7 图816.若m ,n 为实数,且,则(m+n )2017的值为____________.17.在Rt △ABC 中,∠C=90°,AB=AC+BC=6,则△ABC 的面积为 .18.如图6,直线y=x+1分别与x 轴、y 轴相交于点A ,B ,以点A 为圆心,AB 长为半径画弧交x 轴于点A 1,再过点A 1作x 轴的垂线交直线y=x+1于点B 1,以点A 为圆心,AB 1长为半径画弧交x 轴于点A 2,…,按此作法进行下去,则点A 8的坐标是 .三、解答题(共58分)19. (每小题6分,共12分)(1) 计算:2+(2)解方程组:230311.x y x y +=⎧⎨-=⎩, 20. (6分) 如图7,AB ∥CD ,∠A=75°,∠C=30°,求∠E 的度数.21. (8分)目前节能灯在城市已基本普及,今年广东省面向农村地区推广,为响应号召,某商场计划用3800元购进节能灯120个,这两种节能灯的进价、售价如下表:进价(元/个) 售价(元/个)甲 型25 30 乙 型45 60 (1)求甲、乙两种节能灯各购进多少个?(2)全部售完120个节能灯后,该商场获利润多少元?22. (10分)如图8,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (4,0),B (﹣1,4),C (﹣3,1).(1)在图中作△A′B′C′与△ABC 关于x 轴对称;(2)写出点A′,B′,C′的坐标.23.(10分)甲、乙两人参加理化实验操作测试,学校进行了6次模拟测试,成绩如表所示:第1次第2次第3次第4次第5次第6次平均数众数甲7 9 9 9 10 10 9 9乙7 8 9 10 10 10 _______ _______(1)根据图表信息,补全表格;(2)已知甲的成绩的方差等于1,请计算乙的成绩的方差;(3)从平均数和方差相结合看,分析谁的成绩好些?24.(12分)甲、乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象(如图9所示).请根据图象所提供的信息,解答下列问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?图9期末测试题参考答案一、1. D 2. C 3. D 4. C 5. D 6. A 7. D 8. D 9. D 10. C二、11. y=﹣2x 12. 5 13. 8 8 14. 四15. 30°16. -1 17. 4 18.(15,0)三、19. (1) 原式=2+3﹣.(2)方程组230 311x yx y+=⎧⎨-=⎩,②,①②×3+①,得11x=33,解得x=3.把x=3代入②,得y=﹣2.则原方程组的解是32. xy=⎧⎨=-⎩,20. 解:如图1所示.∵AB∥CD,∠A=75°,∴∠1=∠A=75°. ∵∠C=30°,∴∠E=∠1-∠C=75°-30°=45°.图1 图2 图321. 解:(1)设商场购进甲型节能灯x个,则购进乙型节能灯y个.由题意,得25453800120.x yx y+=⎧⎨+=⎩,解得8040.xy=⎧⎨=⎩,答:甲型节能灯购进80个,乙型节能灯购进40个.(2)由题意,得80×5+40×15=1000(元).答:全部售完120个节能灯后,该商场获利润1000元.22. 解:(1)如图所示.(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).23. 解:(1)乙的平均数是(7+8+9+10+10+10)÷6=9;因为10出现了3次,出现的次数最多,所以乙的众数是10.(2)乙的方差是16[(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=43.(3)甲的成绩好些,因为两个人的平均成绩都是9分,但甲的方差小,所以成绩更稳定.24. 解:(1)设甲登山的路程y与登山时间x之间的函数表达式为y=kx.∵点C(30,600)在函数y=kx的图象上,∴30k=600,解得k=20.∴y=20x(0≤x≤30).(2)设乙在AB段登山的路程y与登山时间x之间的函数表达式为y=ax+b(8≤x≤20).将点A(8,120),B(20,600)代入,得812020600a ba b+=⎧⎨+=⎩,.解得40200.ab=⎧⎨=-⎩,所以y=40x﹣200.联立方程,得2040200.y xy x=⎧⎨=-⎩,解得10200.xy=⎧⎨=⎩,故乙出发后10分钟追上甲,此时乙所走的路程是200米.北师大版八年级上册数学期末考试试卷一、选择题(每小题3分,共30分。
北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列一组数:﹣8、27、2π、3.14、0.1010010001…(相邻两个1之间依次增加1个0),其中无理数的个数为()A .0B .1C .2D .32.下列选项中不是勾股数的是()A .7,24,25B .4,5,6C .3,4,5D .9,12,153.在平面直角坐标系中,下列各点在第四象限的是()A .(﹣2,3)B .(2,0)C .(0,﹣3)D .(3,﹣5)42的值在()A .﹣1到0之间B .0到1之间C .1到2之间D .2到3之间5.若点(,3),(7,)M a N b --关于x 轴对称,则a b 、的值分别为()A .7-,3B .7,3--C .7,3D .7,3-6.下列命题是假命题的是()A是最简二次根式B .若点A (-2,a ),B (3,b )在直线y=-2x+1,则a>b C .数轴上的点与有理数一一对应D .点A (2,5)关于y 轴的对称点的坐标是(-2,5)7.以下是二元一次方程2x+3y =8的正整数解有()A .40x y =⎧⎨=⎩B .243x y =⎧⎪⎨=⎪⎩C .12x y =⎧⎨=⎩D .13x y =⎧⎨=⎩8.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是()A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩9.已知点A 的坐标是(1,2),则点A 关于x 轴的对称点的坐标是()A .(1,﹣2)B .(﹣1,2)C .(﹣1,﹣2)D .(2,1)11.下列条件中,不能判断△ABC 为直角三角形的是()A .a =5,b =12,c =13B .a :b :c =3:4:5C .∠A+∠B =80°D .∠A :∠B :∠C =1:1:212.如图,直线y =kx+b (k≠0)与x 轴交于点(﹣5,0),下列说法正确的是()A .k >0,b <0B .直线y =bx+k 经过第四象限C .关于x 的方程kx+b =0的解为x =﹣5D .若(x 1,y 1),(x 2,y 2)是直线y =kx+b 上的两点,若x 1<x 2,则y 1>y 210.某商场销售A ,B ,C ,D 四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A .19.5元B .21.5元C .22.5元D .27.5元二、填空题13.0.81的算术平方根是_____.14.直线y=3x-2不经过第________________象限.15.某班7个兴趣小组的人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数为7,则这组数据的中位数是______________.16.如图,一副三角板AOC 和BCD 如图摆放,则∠BOC 的度数为________°.17.如图:在平面直角坐标系中,已知正比例函数34y x =与一次函数211y x =-+的图象交于点A ,设x 轴上有一点P 作x 轴的垂线(垂足位于点A 的右侧),分别交34y x =和211y x =-+的图象于点B 、C ,连接OC ,若115BC OA =,则△OBC 的面积为__________.18.如图,一架秋千静止时,踏板离地的垂直高度DE =0.5m ,将它往前推送1.5m (水平距离BC =1.5m )时,秋千的踏板离地的垂直高度BF =1m ,秋千的绳索始终拉直,则绳索AD 的长是_____m .三、解答题19.计算:20201|2|-.20.解二元一次方程组:4250930x y x y -+=⎧⎨+=⎩.21.如图,在直角坐标系中,△ABC 的三个顶点坐标分别为A (1,4),B (4,2),C (3,5),请回答下列问题:(1)作出△ABC 关于x 轴的对称图形△A 1B 1C 1,并直接写出△A 1B 1C 1的顶点坐标.(2)求△A 1B 1C 1的面积.22.如图,已知等腰△ABC 的底边BC =13,D 是腰AB 上一点,且CD =12,BD =5.(1)求证:△BDC 是直角三角形;(2)求AC的长.23.已知一次函数y =﹣12x+b 的图象与y 轴交于点A ,与x 轴交于点B ,与正比例函数y =2x 的图象交于点C (1,a ).(1)求a ,b 的值;(2)方程组2012x y x y b -=⎧⎪⎨+=⎪⎩的解为.(3)在y =2x 的图象上是否存在点P ,使得△BOP 的面积比△AOP 的面积大5?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.24.某市举行知识大赛,A 校,B 校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写如表:平均数/分中位数/分众数/分A 校B 校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好.25.如图,E,G分别是AB,AC上的点,F,D是BC上的点,连接EF,AD,DG,已知AB DG∥,12180∠+∠=︒.(1)求证:AD EF∥;(2)若DG是∠ADC的平分线,2145∠=︒,求∠B的度数.26.为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如下表:产品展板宣传册横幅制作一件产品所需时间(小时)11512制作一件产品所获利润(元)20310(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作.求制作三种产品总量的最小值.27.如图,在直角坐标系中,A (1,4),B (1,1),C (5,1),点D 是x 轴上的动点.(1)四边形ABDC 的面积是;(2)当直线AD 平分△ABC 的面积时,求此时直线的表达式;(3)当△ACD 的面积是10时,直接写出点D 的坐标.参考答案1.C【分析】根据无理数的定义(无限不循环小数,不能写作成两整数之比)即可得.【详解】解:,0.10100100012π是无理数,即共有2个,故选:C .【点睛】本题考查了无理数,熟记定义是解题关键.2.B【分析】根据勾股数的定义以及性质对各项进行判断即可.【详解】解:A 、22272425+=,是勾股数,故选项错误,不符合题意;B 、222456+≠,不是勾股数,故选项正确,符合题意;C 、222345+=,是勾股数,故选项错误,不符合题意;D 、22291215+=,是勾股数,故选项错误,不符合题意.故选:B .【点睛】此题考查了判断勾股数的问题,解题的关键是掌握勾股数的定义以及性质.3.D【分析】根据第四象限点的坐标特点为横坐标为正,纵坐标为负,即可得出结论.【详解】解:A .(﹣2,3)在第二象限,故不符合题意;B .(2,0)在x 轴上,故不符合题意;C .(0,﹣3)在y 轴上,故不符合题意;D .(3,﹣5)在第四象限,故符合题意.故选D .【点睛】本题考查的知识点是各象限内点的坐标的符号特征,解题关键是记住各象限内点的坐标的符号.4.A【详解】解:∵12,∴1-2﹣2<2-2,∴-1﹣2<0,-2的值在-1和0之间.故选:A .5.A【分析】平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,−y ),据此即可求解.【详解】解:∵点(,3),(7,)M a N b --关于x 轴对称,∴a=-7,b=3故选:A .【点睛】本题考查了关于x 轴对称的点的坐标,利用关于x 轴对称的点的横坐标相等,纵坐标互为相反数是解题关键.6.C【分析】根据最简二次根式、一次函数及不等式、数轴及实数、轴对称和坐标的性质,对各个选项逐个分析,即可得到答案.是最简二次根式,故A 正确;∵若点A (-2,a ),B (3,b )在直线y=-2x+1,∴()221231a b ⎧-⨯-+=⎨-⨯+=⎩∴55a b =⎧⎨=-⎩∴a b >,即B 正确;∵数轴上的点与实数一一对应∴C 不正确;∵点A (2,5)关于y 轴的对称点的坐标是(-2,5)∴D 正确;故选:C .【点睛】本题考查了最简二次根式、一次函数、不等式、数轴、实数、轴对称、坐标的知识;解题的关键是熟练掌握最简二次根式、一次函数、数轴、实数、轴对称的性质,从而完成求解.7.C【分析】由题意得:342x y =-,而,x y 为正整数,可得y 为正偶数,从而排除A ,B ,D ,再检验C ,从而可得答案.【详解】解: 2x+3y =8,,x y 为正整数,y ∴为正偶数,所以A ,B ,D 不符合题意,当2y =时,则1,x =故C 符合题意;故选C 8.D【分析】要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.【详解】解:依题意列出方程组:20 3252 x yx y+=⎧⎨+=⎩.故选D.9.A【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案.【详解】解:点A的坐标是(1,2),则点A关于x轴的对称点的坐标是(1,-2),故选:A.【点睛】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.10.C【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【详解】这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.【点睛】本题考查了加权平均数的求法,是统计和概率部分的简单题型,根据各单价分别乘以所占百分比即可获得平均单价.11.C【分析】根据勾股定理的逆定理即可判断选项A和选项B,根据三角形的内角和定理求出最大角的度数,即可判断选项C和选项D.【详解】解:A.∵a=5,b=12,c=13,∴a2+b2=52+122=25+144=169,c2=132=169,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;B.∵a:b:c=3:4:5,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C.∵∠A+∠B=80°,∴∠C=180°-(∠A+∠B)=100°>90°,∴△ABC不是直角三角形,故本选项符合题意;D.∵∠A:∠B:∠C=1:1:2,∠A+∠B+∠C=180°,∴最大角∠C=12×180°=90°,∴△ABC 是直角三角形,故本选项不符合题意;故选:C .【点睛】本题考查了三角形的内角和定理和勾股定理的逆定理,能熟记勾股定理的逆定理和三角形的内角和定理是解此题的关键.12.C【分析】由一次函数的图象经过一,二,三象限,所以0,0,k b >>从而可判断A ,B ,由直线y =kx+b (k≠0)与x 轴交于点(﹣5,0),可判断C ,由0k >结合一次函数的性质可判断D ,从而可得答案.【详解】解:由一次函数的图象经过一,二,三象限,所以0,0,k b >>故A 不符合题意;直线y =bx+k 经过一,二,三象限,故B 不符合题意;直线y =kx+b (k≠0)与x 轴交于点(﹣5,0),∴关于x 的方程kx+b =0的解为x =﹣5,故C 符合题意;若(x 1,y 1),(x 2,y 2)是直线y =kx+b 上的两点,而0,k >y 随x 的增大而增大,若x 1<x 2,则y 1<y 2,故D 不符合题意;故选C【点睛】本题考查的是一次函数的图象与性质,一次函数与一元一次方程的关系,掌握“一次函数的图象与性质”是解本题的关键.13.0.9【分析】根据算术平方根的概念求解即可.【详解】解:0.81的算术平方根是:0.9.故答案为:0.9.【点睛】本题考查了算术平方根,注意一个正数的平方根有两个,正的平方根就是算术平方根.14.二【分析】根据已知求得k ,b 的符号,再判断直线y=3x-2经过的象限.【详解】解:∵k=3>0,图象过一三象限,b=-2<0过第四象限∴这条直线一定不经过第二象限.故答案为二【点睛】此题考查一次函数的性质,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.15.7【分析】根据平均数求出x 的值,再根据中位数定义求出答案.【详解】由题意得:56678977x ++++++=⨯,解得x=8,将数据重新排列为:5、6、6、7、8、8、9,∴这组数据的中位数是7,故答案为:7.【点睛】此题考查平均数的计算公式,中位数的定义,求一组数据的中位数.16.105【分析】利用三角形的外角∠BOC=∠BDC+∠OCD ,可得答案.【详解】∵∠BDC =60°,∠OCD=45°,∴∠BOC=∠BDC+∠OCD=60°+45°=105°.故答案为:105.【点睛】本题考查的是三角形的外角的相关知识,掌握三角形外角的性质是解题的关键.17.44【分析】构建方程组21134y x y x =-+⎧⎪⎨=⎪⎩求解可得点A 的坐标,设B (a ,34a ),C (a ,-2a+11),可得BC=|34a-(-2a+11)|=115×5,求出a 即可解决问题.【详解】解:由21134y x y x =-+⎧⎪⎨=⎪⎩,解得43x y ==⎧⎨⎩,∴A (4,3).∴OA=5,∵P (a ,0),∴B (a ,34a ),C (a ,-a+7),∴BC=|34a-(-2a+11)|=115×5,解得a=8或0(舍弃),∴PO=8,BC=11∴S △OBC =12×8×11=44.故答案为:44【点睛】本题考查两直线相交或平行问题,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题.18.2.5【分析】设绳索AD 的长为x m ,则AB=AD=x m ,AC=AD-CD=(x-0.5)m ,再由勾股定理得出方程,解方程即可.【详解】解:∵BF ⊥EF ,AE ⊥EF ,BC ⊥AE ,90,CEF EFB FBC BCE ACB ∴∠=∠=∠=∠=∠=︒,,BC EF CE BF ∴ 由平行线间距离处处相等可得:CE=BF=1m ,∴CD=CE-DE=1-0.5=0.5(m ),而 1.5,BC =设绳索AD 的长为x m ,则AB=AD=x m ,AC=AD-CD=(x-0.5)m ,在Rt △ABC 中,由勾股定理得:AC 2+BC 2=AB 2,即(x-0.5)2+1.52=x 2,解得:x=2.5(m ),即绳索AD 的长是2.5m ,故答案为:2.5.19【分析】先计算乘方、开方与绝对值,再计算加减.【详解】解:20201|2-++-,1522=-+-,【点睛】此题考查了实数的综合混合运算能力,解题的关键是能确定正确的运算顺序,并能准确运用各种计算法则进行运算.20.1232x y ⎧=-⎪⎪⎨⎪=⎪⎩【分析】将方程整理,得52230x y x y ⎧-=-⎪⎨⎪+=⎩①②,然后利用加减消元法解二元一次方程组即可.【详解】解:整理,得52230x y x y ⎧-=-⎪⎨⎪+=⎩①②①+②,得552x =-解得:12x =-将12x =-代入①,得15222y ⎛⎫⨯--=- ⎪⎝⎭解得:32y =∴该二元一次方程组的解为1232x y ⎧=-⎪⎪⎨⎪=⎪⎩.【点睛】此题考查的是解二元一次方程组,掌握利用加减消元法解二元一次方程组是解题关键.21.(1)见解析,A 1(1,﹣4),B 1(4,﹣2),C 1(3,﹣5)(2)3.5【分析】(1)依据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即可得出△111A B C 的位置以及顶点坐标.(2)依据割补法进行计算,即可得出△111A B C 的面积.(1)解:如图所示,ABC ∆关于x 轴的对称图形△111A B C 的顶点坐标为:14(1,)A -,1(4,2)B -,1(3,5)C -.(2)解:ABC ∆的面积为:11133121323911.53 3.5222⨯-⨯⨯-⨯⨯-⨯⨯=---=.【点睛】本题主要考查了利用轴对称变换作图,解题的关键是依据轴对称的性质得出对称点的位置.22.(1)见解析;(2)AC =16.9【分析】(1)由BC =13,CD =12,BD =5,知道BC 2=BD 2+CD 2,所以△BDC 为直角三角形,(2)由(1)可求出AC 的长.【详解】证明:(1)∵BC =13,CD =12,BD =5,52+122=132,∴BC 2=BD 2+CD 2,∴△BDC 为直角三角形;(2)设AB =x ,∵△ABC 是等腰三角形,∴AB =AC =x ,∵AC 2=AD 2+CD 2,即x 2=(x ﹣5)2+122,解得:x =16.9,∴AC =16.9.【点睛】此题考查等腰三角形的性质、勾股定理以及逆定理的应用,关键是勾股定理的逆定理解答.23.(1)a =2,b =2.5(2)12 xy=⎧⎨=⎩(3)存在,48(,33或48,33⎛⎫--⎪⎝⎭【分析】(1)把点C(1,a)分别代入y=2x和y=12x b-+中,即可求得a,b的值.(2)根据两函数的交点坐标,即可求得方程组的解.(3)设点P的坐标为(x,2x),求出点A的坐标和点B的坐标,作PM⊥x轴于点M,PN⊥y 轴于点N,根据三角形面积公式列方程求得x的值,即可得出点P的坐标.(1)解:由题知,点C(1,a)在y=2x的图象上,∴a=1×2=2,∴点C的坐标为(1,2),∵点C(1,2)在y=12x b-+的图象上,所以,2=﹣12+b,所以,b=2.5;(2)解:∵一次函数y=﹣12x+b的图象与正比例函数y=2x的图象交于点C(1,2)∴方程组2012x yx y b-=⎧⎪⎨+=⎪⎩的解为12xy=⎧⎨=⎩故答案为12 xy=⎧⎨=⎩;(3)解:存在,理由:∵点P在在y=2x的图象上,∴设点P的坐标为(x,2x),∵一次函数为1 2.52y x=-+∴点A的坐标为(0,2.5),点B的坐标为(5,0),作PM⊥x轴于点M,PN⊥y轴于点N,∴△BOP的面积为115|2|5|| 22OB PM x x ⨯⨯=⨯⨯=,△AOP的面积为1152.5|||| 224OA PN x x ⨯⨯=⨯⨯=,当5|x|=5||54x+时,解得4||3x=,∴43 x=±,∴点P的坐标为48(,)33或48,33⎛⎫--⎪⎝⎭.24.(1)85、85、85、80;(2)A学校的决赛成绩较好,理由见解析【分析】(1)先根据条形统计图得出A、B学校5位选手的具体成绩,再根据平均数、中位数及众数的定义求解即可;(2)在平均数相等的前提下,根据中位数越大高分人数越多求解即可.(1)解:由图知,A校5位选手的成绩为75、80、85、85、100,B校5位选手的成绩为70、75、80、100、100,A校5名选手成绩的平均数为:75808585100855++++=,中位数是85,85学生数最多,则众数为85;B校5名选手成绩的中位数为80.故答案为:85、85、85、80;(2)解:A学校的决赛成绩较好,理由如下:由表知,A、B两校选手成绩的平均数相等,而A校选手成绩的中位数大于B校,所以A 学校的决赛成绩较好.【点睛】本题主要考查了平均数、中位数、众数的意义,正确理解相关概念是解答本题的关键.25.(1)见解析(2)35°【分析】(1)由两直线平行,内错角相等得出1BAD ∠=∠,再根据题意可得出2180BAD ∠+∠=︒,最后根据同旁内角互补,两直线平行,即可得出//AD EF ;(2)根据题意可求出1∠的大小,再根据角平分线的定义,得出1GDC ∠=∠,最后根据两直线平行,同位角相等,即可求出B Ð的大小.(1)证明:∵//AB DG ,∴1BAD ∠=∠.又∵12180∠+∠=︒,2180BAD ∠+∠=︒.∴//AD EF .(2)∵12180∠+∠=︒,2145∠=︒,∴118014535∠=-︒=︒.又∵DG 是∠ADC 的平分线,∴135GDC ∠=∠=︒.∵//AB DG ,∴35B GDC ∠=∠=︒.26.(1)制作展板、宣传册和横幅的数量分别是:10,50,10;(2)制作三种产品总量的最小值为75.【分析】(1)设展板数量为x ,则宣传册数量为5x ,横幅数量为y ,根据等量关系,列出二元一次方程组,即可求解;(2)设展板数量为x ,则宣传册数量为5x ,横幅数量为y ,可得10072x y -=,结合x ,y 取正整数,可得制作三种产品总量的最小值.【详解】(1)解:设展板数量为x ,则宣传册数量为5x ,横幅数量为y ,根据题意得:2035104501152552x x y x x y +⨯+=⎧⎪⎨+⨯+=⎪⎩,解得:1010x y =⎧⎨=⎩,5×10=50,答:制作展板、宣传册和横幅的数量分别是:10,50,10;(2)设展板数量为x ,则宣传册数量为5x ,横幅数量为y ,制作三种产品总量为w ,由题意得:203510700x x y +⨯+=,即:72100x y +=,∴14072x y -=,∴w=1407140555670222x x x x y x x -+++=+==+,∵x ,y 取正整数,∴x 可取的最小整数为2,∴w=5702x +的最小值=55,即:制作三种产品总量的最小值为75.27.(1)8.(2)直线AF 的解析式为31122y x =-+.(3)点D 的坐标为(13,0)或1,03⎛⎫- ⎪⎝⎭.【分析】(1)过点D 作DE ⊥BC 于点E ,则四边形ABDC 的面积=△ABC 的面积+△BDC 的面积,根据三角形面积公式求解即可;(2)当直线AD 过边BC 的中点F 时,直线AD 平分△ABC 的面积,求出点F 的坐标,将点A 和点F 的坐标代入求解即可;(3)延长AC 交x 轴于点G ,则△ACD 的面积=△ADG 的面积﹣△CDG 的面积,设出点D 的坐标,表示面积,建立方程,求解即可.(1)解:如图,过点D 作DE ⊥BC 于点E ,∵A (1,4),B (1,1),C (5,1),∴AB =3,BC =4,且AB ⊥BC ,DE =1,∴△ABC 的面积=12×3×4=6,△BDC 的面积=12×4×1=2,∴四边形ABDC 的面积=△ABC 的面积+△BDC 的面积=8.故答案为:8.(2)解:当直线AD 过边BC 的中点F 时,直线AD 平分△ABC 的面积,∵B (1,1),C (5,1),∴F (3,1),设直线AF 的解析式为y =kx+b ,∴直线AF 的解析式为31122y x =-+.(3)解:如图,延长AC 交x 轴于点G ,设直线AC 的解析式为:y =mx+n ,∵A (1,4),C (5,1),∴直线AC 的解析式为:31944y x =-+.令y =0,则x =193.设点D 的坐标为(t ,0),则DG=193t-,∴△ACD的面积=△ADG的面积﹣△CDG的面积=31910 23t-=,解得t=13或t=1 3-.∴点D的坐标为(13,0)或1,03⎛⎫- ⎪⎝⎭.。
北师大版八年级上册数学期末考试试卷带答案

北师大版八年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列各组数中,可以构成直角三角形的是()A .2,3,5B .3,4,5C .5,6,7D .6,7,82.下列计算或命题:a 的算术平方根是2;④实数和数轴上的点是一一对应的,其中正确的个数有()A .1个B .2个C .3个D .4个3.下列各式中,正确的是()A7=-B 3=±C .2(4=D =4.如图,将一副直角三角板摆放,点C 在EF 上,AC 经过点D ,已知∠A =∠EDF =90°,AB =AC ,∠E =30°,∠BCE =40°,则∠CDF =()A .20B .25C .30D .355.直角坐标系中,A 、B 两点的横坐标相同但均不为零,则直线AB ()A .平行于x 轴B .平行于y 轴C .经过原点D .以上都不对6.点P(a-1,-b+2)关于x 轴对称与关于y 轴对称的点的坐标相同,则a ,b 的值分别是()A .1-,2B .1-,2-C .2-,1D .1,27.正比例函数的图象如图所示,将这条直线向右平移一个单位长度,它所表示函数的解析是()A .12y x =-+B .1y x =-+C .2y x =-D .12y x =-+8.函数2y x =-的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限9.已知点A (-5,y 1)、B (-2,y 2)都在直线y =-12x 上,则y 1与y 2的关系是()A .12y y ≤B .12y y =C .12y y <D .12y y >10.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为()A .7385y x y x=+⎧⎨+=⎩B .7385y x y x=+⎧⎨-=⎩C .7385y x y x =-⎧⎨=+⎩D .7385y x y x =+⎧⎨=+⎩11.如图所示,沿DE 折叠长方形ABCD 的一边,使点C 落在AB 边上的点F 处,若AD=8,且△AFD 的面积为60,则△DEC 的面积为()A .2898B .503C .18D .2012.已知∠2是△ABC 的一个外角,那么∠2与∠B +∠1的大小关系是()A .∠2>∠B +∠1B .∠2=∠B +∠1C .∠2<∠B +∠1D .无法确定二、填空题13.数据-1,0,1,2,3的标准差为______.14.已知一次函数y =2x 与y =-x +b 的交点为(1,a ),则方程组200x y x y b -=⎧⎨+-=⎩的解为______.15.如图,正四棱柱的底面边长为8cm ,侧棱长为12cm ,一只蚂蚁欲从点A 出发,沿棱柱表面到点B 处吃食物,那么它所爬行的最短路径是______cm .16.如图,在平面直角坐标系中,函数y =2x 和y =-x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过A 1点作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 2019的坐标为______.三、解答题17.计算:(1)(481227÷(2201(13))23-18.解方程组:(1)22435x y x y -=⎧⎨-=⎩(2)()()0 322343143x y x y ⎧-=⎪⎨⎪---=⎩19.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A 、B 、C 三个出口处,对离开园区的游客进行调查,其中在A 出口调查所得的数据整理后绘成如下图所示统计图:(1)在A出口的被调查游客中,购买瓶装饮料的数量的中位数是______瓶、众数是______瓶、平均数是______瓶;(2)已知A、B、C三个出口的游客量比为2:2:1,用上面图表的人均购买饮料数量计算:这一天景区内若有50万游客,那么这一天购买的饮料的总数是多少?表一:出口B C人均购买饮料数量(瓶)32(3)若每瓶饮料要消耗0.5元处理包装的环保费用,该日需要花费多少钱处理这些饮料瓶?由此请你对游客做一点环保宣传建议.20.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品提价40%,乙商品降价10%,两种商品的单价和比原来提高了20%.问甲、乙两种商品原来的单价各是多少元?21.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.22.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,他手中持有的钱数(含备用零钱)y与售出的土豆千克数x的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是______元,降价前他每千克土豆出售的价格是______元;(2)降价后他按每千克0.8元将剩余土豆售完,这时他手中的钱(含备用零钱)是62元,求降价后的线段所表示的函数表达式并写出它的取值范围.23.如图,在直角坐标系中,点A、B分别在x轴和y轴上,△OBA是等腰直角三角形且ABPQ=1,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动.(1)求A、B两点的坐标;(2)若P运动的路程为m,△OPA的面积为S,求S与m之间的函数关系式;(3)当点P运动一周时,点Q运动的总路程为______.参考答案1.B【分析】两边的平方和等于第三边平方的三角形是直角三角形,根据此可找到答案.【详解】解:∵32+42=25=52,∴可构成直角三角形的是3、4、5.故选B.【点睛】本题考查勾股定理的逆定理,根据勾股定理的逆定理判断出直角三角形.2.D【分析】利用实数的定义、算术平方根的定义以及立方根的性质,分别判定各项即可解答.【详解】①有理数和无理数统称为实数,①正确;=a,②正确;,4的算术平方根是2,③正确;④实数和数轴上的点是一一对应的,④正确.故选D.【点睛】本题考查了命题与定理,熟练运用相关定义是解决问题的关键.3.D【解析】试题解析:A=7,故A错误;B,故B错误;C、(D=,故D正确;故选D.4.B【解析】【分析】由AB=AC,∠A=90°,根据等腰直角三角形的性质可得∠ACB=45°,即可求得∠ACE=85°,又因∠ACE=∠F+∠CDF,∠F=60°,由此可得∠CDF=25°.【详解】∵AB=AC,∠A=90°,∴∠ACB=45°,∵∠BCE=40°,∴∠ACE=85°,∵∠ACE=∠F+∠CDF,∠F=60°,∴∠CDF=25°,故选B.【点睛】本题考查了三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.B【解析】【分析】平行于y轴的直线上的点的横坐标相同.由此即可解答.【详解】直角坐标系下两个点的横坐标相同且不为零,则说明这两点到y轴的距离相等,且在y轴的同一侧,所以过这两点的直线平行于y轴.故选B.【点睛】本题考查坐标与图形的性质,关键是根据:两点的横坐标相同,到y轴的距离相等,过这两点的直线平行于y轴解答.6.D【解析】【分析】点P(a-1,-b+2)关于x轴对称的点的坐标为(a-1,b-2),关于y轴对称的点的坐标(1-a,-b+2),由此可得a-1=1-a,b-2=2-b,得a=1,b=2.【详解】根据题意,分别写出点P关于x轴、y轴的对称点;关于x轴的对称点的坐标为(a-1,b-2),关于y轴对称的点的坐标(1-a,-b+2),所以有a-1=1-a,b-2=2-b,得a=1,b=2.故选D.【点睛】本题考查了点关于坐标轴的对称问题:关于x轴对称,横坐标不变,纵坐标变号;关于y轴对称,纵坐标不变,横坐标变号;关于原点对称,横纵坐标都变号.7.B【解析】【分析】先用待定系数法求得直线OP的解析式为y=-x,则该图象向右平移一个单位长度后与x轴的交点坐标为(1,0),由此求得平移后的解析式为y=-x+1.【详解】设直线OP的解析式为y=kx,把P(1,-1)代入得k=-1,则直线OP的解析式为y=-x,所以该图象向右平移一个单位长度,直线与x轴的交点坐标为(1,0),则平移后得到的函数图象的解析式为y=-x+1.故选B.【点睛】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向右平移m个单位,则平移后直线的解析式为y=k(x-m)+b.8.B【分析】根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.【详解】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选B.9.D【解析】【分析】根据一次函数图象上点的坐标特征可求出y1,y2的值,比较后即可解答.【详解】解:∵点A(-5,y1)、B(-2,y2)都在直线y=-12x上,∴y1=52,y2=1.∵52>1,∴y1>y2.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出y1,y2的值是解题的关键.10.C【分析】根据题意中的两种分法,分别找到等量关系:①组数×每组7人=总人数﹣3人;②组数×每组8人=总人数+5人.【详解】解:根据组数×每组7人=总人数﹣3人,得方程7y=x﹣3;根据组数×每组8人=总人数+5人,得方程8y=x+5.列方程组为73 85 y xy x=-⎧⎨=+⎩.故选:C.【点睛】此题考查的是二元一次方程组的应用,掌握实际问题中的等量关系是解决此题的关键.11.A【解析】【分析】由矩形的性质得出∠A=∠B=90°,BC=AD=8,CD=AB,结合△AFD的面积为60,即可求得AF与DF的长,由折叠的性质,可得CD=DF,然后在Rt△BEF中,利用勾股定理即可求得CE的长,继而求得△DEC的面积.【详解】∵四边形ABCD是矩形,∴∠A=∠B=90°,BC=AD=8,CD=AB,∵△AFD的面积为60,即12AD•AF=60,解得:AF=15,∴,由折叠的性质,得:CD=DF=17,∴AB=17,∴BF=AB-AF=17-15=2,设CE=x,则EF=CE=x,BE=BC-CE=8-x,在Rt△BEF中,EF2=BF2+BE2,即x2=22+(8-x)2,解得:x=17 4,即CE=17 4,∴△DEC的面积=12CD•CE=12×17×174=2898;故选A.【点睛】本题考查了矩形的性质、折叠的性质、勾股定理以及三角形面积问题.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意折叠中的对应关系.12.A【解析】∵∠2是∆ABC的一个外角,∴∠2=∠B+∠BCA,∵∠1<∠BCA,∴∠B+∠BCA>∠B+∠1,即∠2>∠B+∠1;故选A.13【解析】【分析】先算出这组数据的平均数,再根据方差公式计算出方差,求出其算术平方根即为标准差.【详解】解:数据-1,0,1,2,3的平均数为x=15[-1+0+1+2+3]=1,方差为S2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,【点睛】本题主要考查标准差的计算,计算标准差需要先算出方差,熟知方差的计算方法是解决问题的关键.14.12 xy=⎧⎨=⎩【分析】把(1,a)代入y=2x可确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标的横纵坐标,由此即可求解.【详解】解:把(1,a)代入y=2x得a=2,所以方程组20x yx y b-=⎧⎨+-=⎩的解为12xy=⎧⎨=⎩.故答案为12 xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组)的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.20【分析】把长方体展开为平面图形,分两种情形求出AB的长,比较即可解答.【详解】把长方体展开为平面图形,分两种情形:如图1中,==,如图2中,20==,∵20<,∴爬行的最短路径是20cm.故答案为20.【点睛】本题考查平面展开-最短路径问题,解题的关键是学会用转化的思想思考问题,属于中考常考题型.16.(-21009,-21010)【解析】【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.【详解】当x=1时,y=2,∴点A1的坐标为(1,2);当y=-x=2时,x=-2,∴点A2的坐标为(-2,2);同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).∵2019=504×4+3,∴点A2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).故答案为(-21009,-21010).【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.17.(1)4;(2)0.【解析】【分析】(1)先化简二次根式,再计算括号内加法,继而计算除法即可求解;(2)根据二次根式的性质和运算法则依次计算即可.【详解】解:(1)原式=(=4;(2)原式.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(1)0.51x y =⎧⎨=-⎩;(2)12 8x y =⎧⎨=⎩.【解析】【分析】(1)利用加减消元法解方程组即可;(2)先把原方程组化为230 6348x y x y ①②-=⎧⎨-=⎩,然后应用加减消元法解方程组即可.【详解】解:(1)22435x y x y -=⎧⎨-=⎩①②①×2-②,可得:y =-1③,把③代入②,可得:4x +3=5,解得x =0.5,∴原方程组的解是0.51x y =⎧⎨=-⎩.(2)由()()0 322343143x y x y ⎧-=⎪⎨⎪---=⎩,可得230 6348x y x y ①②-=⎧⎨-=⎩,②-①,可得:x =12③,把③代入①,可得:24-3y =0,解得y =8,∴原方程组的解是12 8x y =⎧⎨=⎩.【点睛】本题主要考查了解二元一次方程组,要熟练掌握,注意加减消元法的应用.19.(1)2,1,2;(2)120万瓶;(3)60万元.【解析】【分析】(1)根据中位数,众数,平均数的定义即可解答;(2)根据题意求得A 、B 、C 三个出口的一天的游客量,再计算这一天购买的饮料的总数即可;(3)根据题意列式计算即可.【详解】解:(1)在A 出口的被调查游客中,购买瓶装饮料的数量的中位数是2瓶、众数是1瓶、平均数是13+2 2.5+32+1.5410⨯⨯⨯⨯=2瓶;故答案为:2,1,2;(2)∵A 、B 、C 三个出口的游客量比为2:2:1,这一天景区内有50万游客,则A 出口的游客量为2505⨯=20(万人),B 出口的游客量为2505⨯=20(万人),C 出口的游客量为1505⨯=10(万人),∴这一天购买的饮料的总数是:20×2+20×3+10×2=120(万瓶),答:这一天购买的饮料的总数是120万瓶;(3)120×0.5=60万元,答:该日需要花费60万元钱处理这些饮料瓶.建议:游客尽量自带水壶,少买瓶装饮料(答案不唯一,合理即可).【点睛】本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.甲商品的单价为60元/件,乙商品的单价为40元/件.【分析】设甲商品的单价为x 元/件,乙商品的单价为y 元/件,根据“甲、乙两种商品原来的单价和为100元.甲商品提价40%,乙商品降价10%,两种商品的单价和比原来提高了20%”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】设甲商品的单价为x 元/件,乙商品的单价为y 元/件,依题意,得:()()()100 140%110%100120%x y x y +=⎧⎪⎨++-=⨯+⎪⎩,解得:6040 xy=⎧⎨=⎩.答:甲商品的单价为60元/件,乙商品的单价为40元/件.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.数量关系为:BE=EC,位置关系是:BE⊥EC.证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=90°+45°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,∴∠EAB=∠EDC,∵D是AC的中点,∴AD=12 AB,∵AC=2AB,∴AB=DC,∴△EAB≌△EDC,∴EB=EC,且∠AEB=∠AED=90°,∴∠DEC+∠BED=∠AED=∠BED=90°,∴BE⊥ED.【详解】由AC=2AB,点D是AC的中点,得到AB=AD=CD,由∠EAD=∠EDA=45°,得∠EAB=∠EDC=135°,再有EA=ED,根据“SAS”证得△EAB≌△EDC即可得到结果.22.(1)10;1.2;(2)y=0.8x+22(30≤x≤50).【解析】【分析】(1)由图象可知,当x=0时,y=10,所以农民自带的零钱是10元;可设降价前每千克土豆价格为k元,则可列出农民手中钱y与所售土豆千克数x之间的函数关系式,由图象知,当x=30时,y 的值,从而求出这个函数式,即可求得k 值;(2)设他一共带了x 千克土豆,根据题意即可得方程:0.8(x-30)+46=62,解此方程即可求得他一共带了50千克土豆,再用待定系数法求得解析式即可.【详解】(1)由图象可知,当x=0时,y=10.答:农民自带的零钱是10元;设降价前每千克土豆价格为k 元,则农民手中钱y 与所售土豆千克数x 之间的函数关系式为:y=kx+10,∵当x=30时,y=46,∴46=30k+10,解得k=1.2.答:降价前每千克土豆价格为1.2元.故答案为:10;1.2;(2)设他一共带了x 千克土豆,根据题意得:0.8(x-30)+46=62,解得:x=50.即农民一共带了50千克土豆.设降价后的线段所表示的函数表达式为y=k 1x+b ,根据题意得1130465062k b k b +=⎧⎨+=⎩,解得10.822k b =⎧⎨=⎩,∴y=0.8x+22(30≤x≤50).【点睛】本题考查了一次函数的实际应用问题.解题的关键是仔细分析函数图象,从中找寻信息,利用待定系数法求出函数解析式,从而解决问题.23.(1)A 点的坐标为:(-1,0),B 点的坐标为:(0,1);(2)S 与m 之间的函数关系式为S=12m (0<m≤1),或S=12+4-4m (1<m+1);(3).【分析】(1)由△OBA 是等腰直角三角形且,得出OA=OB=1,即可得出A 、B 两点的坐标;(2)分三种情况讨论:①当点P 在OB 边上时,由三角形面积公式即可得出结果;②当点P在AB边上时,作PD⊥OA于D,△APD是等腰直角三角形,则PB=m-1,求出AP的长,由等腰直角三角形的性质得出PD的长,由三角形面积公式即可得出结果;③当点P在AO边上时,△OPA不存在;(3)根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时(QC⊥AB,C为垂足),点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q 由O向左运动,路程为QO;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【详解】(1)∵△OBA是等腰直角三角形且,∴OA=OB=1,∴A点的坐标为:(-1,0),B点的坐标为:(0,1);(2)分三种情况讨论:①当点P在OB边上,即0<m≤1时,如图1所示:△OPA的面积S=12OA×OP=12×1×m=12m;②当点P在AB边上,即1<m时,如图2所示:作PD⊥OA于D,△APD是等腰直角三角形,∵PB=m-1,∴(m-1),∴),∴△OPA 的面积=12OA×PD=12×1×(1+2-2m )=12,即S=12;③当点P 在AO +2时,△OPA 不存在;综上所述,S 与m 之间的函数关系式为S=12m (0<m≤1),或S=124-4m (1<m +1);(3)∵△OBA 是等腰直角三角形,∴∠ABO=∠BAO=45°,∵OA=OB=1,PQ=1,①当点P 从O→B 时,点Q 运动的路程为PQ 的长,即为1;②如图3所示,QC ⊥AB ,则∠ACQ=90°,即PQ 运动到与AB 垂直时,垂足为P ,当点P 从B→C 时,∵∠ABO=∠BAO=45°,∴∠OQC=90°-45°=45°,∴,∴,则点Q 运动的路程为;③当点P 从C→A 时,点Q 运动的路程为-1;④当点P 从A→O 时,点Q 运动的路程为AO=1,∴点Q 运动的总路程为:故答案为.【点睛】本题是三角形综合题目,考查了等腰直角三角形的性质、三角形面积公式以及分类讨论思想的应用;熟练掌握等腰直角三角形的性质,进行分类讨论是解决问题的关键.。
北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.四个实数2-,0,,1-中,最大的实数是()A .2-B .0C .D .1-2.在直角坐标系中,点()1,2M 关于x 轴对称的点的坐标为()A .()1,2-B .()2,1-C .()1,2--D .()1,2-3.下列二次根式中能与)A BC D 4.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形()A .可能是锐角三角形B .不可能是直角三角形C .仍然是直角三角形D .可能是钝角三角形5.如图,直线AB ∥CD ,60B ∠=︒,40C ∠=︒,则E ∠等于()A .70°B .80°C .90°D .100°6.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:尺码3940414243平均每天销售数量(件)1012201212该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A .平均数B .方差C .众数D .中位数7.方程2317x y +=的正整数解的对数是()A .1对B .2对C .3对D .4对8.对于一次函数y=﹣2x+4,下列结论错误的是()A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是()0,4C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数图像随自变量的增大而下降9.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A .0.4元B .0.45元C .约0.47元D .0.5元10.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组()A .24883284x y x y +=⎧⎨+=⎩B .24882384x y x y +=⎧⎨+=⎩C .42883284x y x y +=⎧⎨+=⎩D .42882384x y x y +=⎧⎨+=⎩二、填空题11.8的立方根为______.12.若点A (2,y 1),B (﹣1,y 2)都在直线y=﹣2x+1上,则y 1与y 2的大小关系是_____.13.已知33x y -=,则代数式726x y -+=______.14.若2m -互为相反数,则()nm -=______.15a ,小数部分为b )·b 的值是_________.16.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x+y=1,则m 的值为__________.17.如图,在数轴上,点B 与点C 关于点A 对称,A .B1,则线段BC 的长为______.18.如图,在平面直角坐标系中有一个ABC ,顶点()1,3A -,()2,0B ,()3,1C --,若P是y 轴上的动点,则PA PC +的最小值为______.三、解答题19(101412-⎛⎫+-+- ⎪⎝⎭20.解方程组:1{410x y x y +=+=.21.如图,就()2,1A -、()3,2B --、()1,2C -,把ABC 向上平移3个单位长度,再向右平移2个单位长度,得到111A B C △.(1)在图中画出111A B C △,并写出平移后1A 的坐标;(2)若点P 在直线1y =-上运动,当线段1A P 长度最小时,则点P 的坐标为______.22.如图,点D 、F 在线段AB 上,点E 、G 分别在线段BC 和AC 上,CD EF ∥,12∠=∠.(1)求证:DG BC ∥;(2)若DG 是角ADC ∠的平分线,385∠=︒,且:9:10DCE DCG ∠∠=,请说明AB 和CD 怎样的位置关系?23.已知关于x ,y 的方程组37x y ax b y -=⎧⎨+=⎩和28x by a x y +=⎧⎨+=⎩的解相同.(1)求a ,b 的值;(2)若直线11:l y ax =+与直线21:2l y x b =-+分别交y 轴于点A 、B ,两直线交于点P ,求ABP △的面积.24.我市夏季经常收台风天气影响,台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A ,B 的距离分别为300km 和400km ,且500AB =km ,以台风中心为圆心周围250km 以内为受影响区域.(1)求证:90ACB ∠=︒;(2)海港C 受台风影响吗?为什么?(3)若台风的速度为40km/h ,则台风影响该海港持续的时间有多长?25.如图,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A 、B 分别在x 轴与y 轴上,已知6OA =,10OB =.点D 为y 轴上一点,其坐标为()0,2,点P 从点A 出发以每秒2个单位的速度沿线段AC CB -的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数表达式;(2)如图1,设OPD △的面积为S ,求S 关于t 的函数表达式;(3)如图2,把长方形沿着OP 折叠,点B 的对应点B 恰好落在AC 边上,求点P 的坐标.26.如图,四边形ABCD 是长方形,AD ∥BC .点F 是DA 延长线上一点,点G 是CF 上一点,并且∠ACG =∠AGC ,∠GAF =∠F .则∠ECB 与∠ACB 有什么数量关系?为什么?27.进入夏季,为了解某品牌电风扇销售量的情况,厂家对某商场7月份该品牌甲、乙、丙三种型号的电风扇销售量进行统计,绘制如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该商场7月份售出这种品牌三种型号的电风扇共多少台?补全条形统计图.(2)若该商场计划订购这三种型号的电风扇共5000台,根据7月份销售量的情况,求该商场应订购丙种型号电风扇多少台比较合理?参考答案1.B【分析】根据负数小于0,可以直接判断.-、1-都是负数,【详解】解:∵2-、2∴0大于这三个数,故选:B.【点睛】本题考查了实数比较大小,解题关键是明确负数小于0.2.D【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:点M(1,2)关于x轴对称的点的坐标为:(1,-2),故选D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.3.B【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.【详解】A ,不能与BCD 3不能与故选B .【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.4.C【详解】试题解析:∵将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形的三条边与原三角形的三条边对应成比例,∴两三角形相似.又∵原来的三角形是直角三角形,而相似三角形的对应角相等,∴得到的三角形仍是直角三角形.故选C .5.B【分析】设CD 交BE 于点F ,根据AB ∥CD ,可得∠CFE=∠B=60°,再根据三角形内角和定理,即可求解.【详解】解:如图,设CD 交BE 于点F ,∵AB ∥CD ,60B ∠=︒,∴∠CFE=∠B=60°,∵∠CFE+∠C+∠E=180°,40C ∠=︒,∴∠E=180°-∠C-∠CFE=80°.故选:B【点睛】本题主要考查了平行线的性质,三角形内角和定理,熟练掌握两直线平行,同位角相等;三角形的内角和等于180°是解题的关键.6.C【分析】销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C .【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.C【分析】将x=1,2,…,分别代入2x+3y=17,求出方程的正整数解的对数是多少即可.【详解】解:当x =1时,方程变形为2+3y =17,解得y =5;当x =4时,方程变形为8+3y =17,解得y =3;当x =7时,方程变形为14+3y =17,解得y =1;∴二元一次方程2317x y +=的正整数解的对数是3对:15x y =⎧⎨=⎩、43x y =⎧⎨=⎩和71x y =⎧⎨=⎩.故选:C .【点睛】此题主要考查了二元一次方程组的解,要熟练掌握,注意解中x 与y 必须为正整数.8.B【分析】根据一次函数的性质对A 、D 进行判断;根据一次函数图象上点的坐标特征对B 进行判断;根据一次函数的几何变换对C 进行判断.【详解】A 、k=-2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,不符合题意;B 、函数的图象与y 轴的交点坐标是(0,4),符合题意;C 、函数的图象向下平移4个单位长度得y=-2x 的图象,不符合题意;D 、k=-2,函数图像随自变量的增大而下降,不符合题意;故选B .【点睛】本题考查了一次函数的性质:当k >0,y 随x 的增大而增大,函数从左到右上升;当k <0,y 随x 的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.9.A【详解】由图像可知超过100面的部分,每面收费=(70-50)÷(150-100)=0.4元10.A【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.【详解】解:设大盒装x 瓶,小盒装y 瓶,根据题意可列方程组为:24883284x y x y +=⎧⎨+=⎩,故选:A .【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.11.2【分析】根据立方根的意义即可完成.【详解】∵328=∴8的立方根为2故答案为:2【点睛】本题考查了立方根的意义,掌握立方根的意义是关键.12.y 1<y 2【分析】由所给直线解析式的比例系数为负数可得y 将随x 的增大而减小.【详解】∵直线y=−2x+1的比例系数为−2,∴y 随x 的增大而减小,∵2>−1,∴12y y <,故答案为12y y <.13.1【分析】根据33x y -=,可得266x y -+=-,再代入,即可求解.【详解】解:∵33x y -=,∴()2326236x y x y --=-+=-⨯=-,∴726761x y -+=-=.故答案为:114.-8【分析】根据相反数的定义得2m -,从而由2m -≥00,可得2=0m -,3=0n -,解出m 、n 的值,代入所求式子就可以求解.【详解】解:因为|2|0m -=,所以m=2,n=3,所以()3(2)8n m -=-=-.故答案为:-8.15.1【分析】先根据23,确定a=2,,代入所求代数式,运用平方差公式计算即可.【详解】∵23,∴a=2,,)·b=))=5-4=1,故答案为:1.16.﹣1【分析】由①+②,得:2224x y m +=+,从而得到2x y m +=+,再由x+y=1,可得到21+=m ,即可求解.【详解】解:2133x y m x y -=+⎧⎨+=⎩①②,由①+②,得:2224x y m +=+,∴2x y m +=+,∵x+y=1,∴21+=m ,解得:1m =-.故答案为:-117.2+【分析】根据数轴上两点之间距离的计算方法求出AB ,进而根据对称的性质,得出BC =2AB得出结果.【详解】解:∵A.B两点对应的实数是3和-1,∴AB=3﹣(﹣1)=3+1,∵点B与点C关于点A对称,∴BC=2AB=2(3+1)=23+2,故答案为:23+2.18.42【分析】作点A关于y轴的对称点D,连接CD交y轴于点P,则PA+PC取得最小值,且最小值为线段CD的长,利用勾股定理即可求得CD的长,从而求得最小值.【详解】作点A关于y轴的对称点D,连接CD交y轴于点P,则PA+PC取得最小值,且最小值为线段CD的长∵A、D两点关于y轴对称,A(−1,3),∴点D的坐标为(1,3)由勾股定理得:22CD=+=4442故答案为:42【点睛】本题考查了坐标与图形,两点间线段最短,勾股定理,点的对称等知识,作点A 关于y轴的对称点是解答本题的关键.19.6【分析】根据算术平方根的意义、绝对值的意义、零指数与负整数指数幂的意义即可完成计算.=++-=.【详解】原式34126【点睛】本题考查了算术平方根的意义、绝对值的意义、零指数与负整数指数幂的意义,掌握这些概念是完成解答的关键.20.32 xy=⎧⎨=-⎩【分析】方程组利用加减消元法求出解即可.【详解】1{410 x yx y++=①=②②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为32 xy=⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(1)图见解析,A1(0,4);(2)(0,-1)【分析】(1)根据平移的性质即可画出△A1B1C1;(2)根据垂线段最短即可得点P的坐标;(1)解:如图△A1B1C1即为所求;观察图形,A1(0,4);(2)解:∵点P在直线y=-1上运动,当线段PA1长度最小时,根据垂线段最短,此时线段PA1垂直于直线y=-1,∴点P 的坐标为(0,-1);故答案为:(0,-1).【点睛】本题考查了作图-平移变换,解决本题的关键是根据平移的性质画出△A 1B 1C 1.22.(1)见解析(2)CD AB ⊥,理由见解析【分析】(1)根据CD EF ∥可得2DCB =∠∠,由12∠=∠等量代换可得1DCB ∠=∠根据内错角相等,两直线平行可得DG BC ∥;(2)根据平行线的性质可得180395BCG ∠=︒-∠=︒,由:9:10DCE DCG ∠∠=可得45DCG ∠=︒,根据平行线的性质可得45CDG ∠=︒,根据角平分线的性质可得45ADG CDG ∠=∠=︒,进而可得ADC ∠90=︒,即CD AB ⊥.(1)证明∵CD EF ∥,∴2DCB =∠∠,又∵12∠=∠,∴1DCB ∠=∠,∴DG BC ∥;(2)CD AB ⊥,理由如下:由(1)知DG BC ∥,∵385∠=︒,∴180395BCG ∠=︒-∠=︒,∵:9:10DCE DCG ∠∠=,∴9954519DCE ∠=︒⨯=︒,∵DG BC ∥,∴45CDG ∠=︒,∵DG 是ADC ∠的平分线,∴290ADC CDG ∠=∠=︒,∴CD AB ⊥.【点睛】本题考查了平行线的性质与判定,角平分线的定义,垂直的定义,掌握平行线的性质是解题的关键.23.(1)11a b =⎧⎨=-⎩(2)43【分析】(1)由题意,方程组37,28,x y x y -=⎧⎨+=⎩的解是两个方程组的解,解此方程组,并把解代入方程组,,ax b y x by a +=⎧⎨+=⎩中,即可求得a 与b 的值;(2)由(1)可得两直线的函数解析式,从而可求得点A 、B 的坐标,从而可求得AB 的长度;联立两直线的函数解析式可求得点P 的坐标,从而可得点P 的横坐标,即可求得ABP △的面积.(1)根据题意得37,28,x y x y -=⎧⎨+=⎩解得3,2,x y =⎧⎨=⎩将3,2,x y =⎧⎨=⎩代入方程组,,ax b y x by a +=⎧⎨+=⎩,得32,32,a b b a +=⎧⎨+=⎩解得11;a b =⎧⎨=-⎩即1a =,1b =-(2)由(1)可知1a =,1b =-,∴直线1l 的解析式为1y x =+,直线2l 的解析式为112y x =--,令x=0,得01=1y =+,10112y =-⨯-=-∴点()0,1A ,()0,1B -,∴2AB =联立1,11,2y x y x =+⎧⎪⎨=--⎪⎩解得4,31,3x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴点P 的横坐标为43-∴114422233ABP p S AB x =⋅=⨯⨯-=△【点睛】本题考查了解二元一次方程组及二元一次方程组的解,一次函数的图象、一次函数与二元一次方程组的关系、直线围成的图形面积等知识,正确理解二元一次方程组的解及一次函数与二元一次方程组的关系是本题的关键.注意数形结合.24.(1)见解析(2)海港C 受台风影响,理由见解析(3)3.5h【分析】(1)根据勾股定理的逆定理,即可求解;(2)过点C 作CD AB ⊥于D .根据直角三角形的面积,可得1122AC BC AB CD ⋅=⋅,即可求解;(3)在线段AB 上取点E ,F ,使250EC =km ,250FC =km ,则台风中心在线段EF 上时正好影响C 港口.根据等腰三角形的性质可得ED=FD ,然后根据勾股定理可得()70km ED =,从而得到140EF =km ,即可求解.(1)解:∵300AC =km ,400BC =km ,500AB =km ,∴222AC BC AB +=.∴ABC 是直角三角形,∴90ACB ∠=︒;(2)解:海港C 受台风影响.理由如下:如图,过点C 作CD AB ⊥于D .∵1122ABCS AC BC AB CD =⋅=⋅ ,∴()300400240km 500AC BC CD AB ⋅⨯===.∵250240>,∴海港C 受到台风影响.(3)解:如图,在线段AB 上取点E ,F ,使250EC =km ,250FC =km ,则台风中心在线段EF 上时正好影响C 港口.∴EC=FC ,∵CD ⊥AB ,∴ED=FD ,在Rt CED 中,由勾股定理得:()70km ED ===,∴140EF =km ,∵台风的速度为40km/h ,∴()14040 3.5h ÷=.∴台风影响该海港持续的时间为3.5h .25.(1)423y x =+(2)()()6,0526,58t S t t ⎧<≤⎪=⎨-+<≤⎪⎩(3)10,103⎛⎫ ⎪⎝⎭【分析】(1)根据题意可得()6,10C .然后根据()0,2D ,()6,10C ,即可求解;(2)分两种情况:当点P 在线段AC 上时,当点P 在线段BC 上时,即可求解;(3)设(),10P m ,则PB PB m '==,由勾股定理可得8AB '=,从而得到2B C '=,然后在Rt B CP ' 中,由勾股定理,即可求解.(1)解:∵6OA =,10OB =,四边形OACB 为长方形,∴()6,10C .设此时直线DP 解析式为()0y kx b k =+≠,把(0,2),()6,10C 分别代入,得2610b k b =⎧⎨+=⎩,解得432k b ⎧=⎪⎨⎪=⎩,∴此时直线DP 解析式为423y x =+;(2)解:①当点P 在线段AC 上时,即05t <≤,2OD =,高为6,∴1662S OD =⨯=;②当点P 在线段BC 上时,即58t <≤,2OD =,高为6102162t t +-=-,12(162)2162S t t =⨯⨯-=-+;∴S 关于t 的函数表达式为()()6,0526,58t S t t ⎧<≤⎪=⎨-+<≤⎪⎩;(3)解:设(),10P m ,则PB PB m '==,如图2,∵10OB OB '==,6OA =,∴8AB '==,∴1082B C '=-=,∵6PC m =-,在Rt B CP ' 中,由勾股定理得:∴()22226m m =+-,解得103m =则此时点P 的坐标是10,103⎛⎫ ⎪⎝⎭.26.∠ACB=3∠ECB ,理由见解析.【分析】由矩形的性质可得AD ∥BC ,由平行线的性质和外角的性质可求∠ACF=2∠ECB ,即可求解.【详解】解:∠ACB=3∠ECB ,理由如下,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠F=∠BCE ,∵∠AGC=∠F+∠GAF ,∠GAF=∠F ,∴∠AGC=2∠F ,∵∠ACG=∠AGC ,∴∠ACG=2∠F ,∴∠ACF=2∠ECB ,∴∠ACB=∠ACF+∠BCE=3∠ECB .27.(1)该商场7月份售出这种品牌三种型号的电风扇共1000台,补全统计图见解析.(2)1750台.【分析】(1)该商场7月份售出这种品牌三种型号的电风扇=甲种型号的电风扇销售的台数÷甲种型号的电风扇所占的百分比;求出丙型号的冰箱数,再补全统计图即可;(2)先求丙种型号电风扇在7月份销售量中所占的百分比,再用5000×丙所占的百分比=该商场应订购丙种型号电风扇的台数.【详解】(1)40040%1000÷=台,故该商场7月份售出这种品牌三种型号的电风扇共1000台.1000400250350--=台,即该商场7月份售出丙型号的电风扇350台.补全条形统计图如下:.(2)350500017501000⨯=台.故该商场应订购丙种型号电风扇1750台.。
北师大版八年级(上)期末数学试卷(含答案)

图1AB C D3412图2B CBC北师大版八年级(上)期末数学试卷及答案一选择题。
(每小题3分,共24分)下列各小题均有四个选项,其中只有一项符合题目要求,将符合题目要求的选项前面字母填入题后括号内。
1、下列式子正确的是()A. 1)1(33-=- B. 525±= C. 9)9(2-=- D. 2)2(2-=-2、二元一次方程12=-yx有无数多个解,下列四组值中不是..该方程的解是()A.⎩⎨⎧==11yxB.⎩⎨⎧-=-=21yxC.⎩⎨⎧-=-=31yxD.⎩⎨⎧==32yx3、如图1,相对灯塔O而言,小岛A的位置是()A. 北偏东60 °B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处4、下列说法正确的是()A. 数据0,5,-7,-5,7的中位数和平均数都是0;B. 数据0,1,2,5,a的中位数是2;C. 一组数据的众数和中位数不可能相等;D. 数据-1,0,1,2,3的方差是4。
5、已知正比例函数kxy=的函数值xy随的增大而减小,则一次函数kkxy+=的图象大致是()6、如图2在△ABC中,∠1=∠2,∠3=∠4,若∠D=25°,则∠A等于()A. 25°B. 50°C. 65°D. 75°7、小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路D程s (m)与他行走的时间t (min)之间的函数关系用图象表示正确的是( )8、如图3,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则 ∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30° 二、填空题(每小题3分,共21分) 9、64的算术平方根是___________。
北师大版八年级数学(上)期末考试试题(含答案) (33)

期末数学试卷一、填空题(每空1分,共20分)1.82=64,则8叫做64的__________.2.一个负数的平方等于121,这个负数是__________.3.当k<0时,随着k的增大,它的立方根随着__________.4.(a≥0,b__________).5.一个两位数的十位数字和个位数字之和为7,如果把这个两位数加上45,那么恰好成为十位数字和个位数字对调后的两位数,则这个两位数为__________.6.在平面直角坐标系中,每个象限内的点,不包括__________上的点.7.命题“任意两个直角都相等”的条件是__________,结论是__________,它是__________(真或假)命题.8.函数y=4x﹣3,y随x的增大而__________,它的图象与y轴的交点坐标是__________.9.如果x2=64,那么=__________.10.若是方程2x+3y=0的一个解,则8a+12b+15的值是__________.11.如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=65°,则∠F=__________.12.林书豪是我国优秀篮球运动员,现在在NBA打球,在某次常规赛中,每场个人得分分别是17,8,33,14,25,32,9,27,25,10,这组数据的平均数是__________,众数是__________,中位数是__________.13.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,则点C到AB的距离CD=__________.14.如图,在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,则△ACD是__________三角形.15.坐标平面内的点与__________是一一对应的.二、选择题把每题唯一正确的答案的序号填在括号内16.下列运算不正确的是( )A.当a≥0时,=a B.=aC.当a<0时,=﹣a D.=﹣917.下列说法不正确的是( )A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数18.下列二次根式是最简二次根式的是( )A.B.C.D.19.若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是( )A.B.C.D.20.为了考察甲、乙两种小麦,分别从中抽取5株苗测得苗高(单位:cm)甲:2,4,6,8,10;乙:1,3,5,7,9.用S甲2和S乙2分别表示两个样本的方差,则( )A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定三、解答题(每小题4分,共20分)21..22.计算:﹣﹣(﹣1)0﹣.23.对于任意数a,一定等于a吗?请举例说明.24.a+3和2a﹣15是某数的两个平方根,求a.25.设△ABC三边长为a=5,b=6,c=7,p=(a+b+c).求S△ABC=.四、解答题(每小题7分,共14分)26.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨__________;②用水量大于3000吨__________.(2)某月该单位用水3200吨,水费是__________元;若用水2800吨,水费__________元.(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?27.某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?五、方程应用题28.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?六、证明题(16分)29.在下列推理过程中的括号里填上推理的依据.已知:如图,CDE是直线,∠1=105°,∠A=75°.求证:AB∥C D.证明:∵CDE为一条直线(__________)∴∠1+∠2=180°∵∠1=105°(已知)∴∠2=75°又∵∠A=75°(已知)∴∠2=∠A(__________)∴AB∥CD(__________)30.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC,说明AD∥B C.31.如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥C D.七、解答题32.如图,平面直角坐标系中,点A的坐标是(﹣4,4),点B的坐标是(2,5).(1)写出点A关于x轴对称的对称点A′的坐标;(2)求出过A′,B两点直线的一次函数的解析式;(3)在x轴上有一动点P,要使P A+PB最小,求点P的坐标.2015-2016学年辽宁省辽阳市灯塔市八年级(上)期末数学试卷一、填空题(每空1分,共20分)1.82=64,则8叫做64的算术平方根.【考点】有理数的乘方.【分析】根据有理数的乘方,算术平方根,即可解答.【解答】解:∵82=64,∴8叫做64的算术平方根.故答案为:算术平方根.【点评】本题考查了有理数的乘方、算术平方根,解决本题的关键是熟记有理数的乘方、算术平方根.2.一个负数的平方等于121,这个负数是﹣11.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:∵(﹣11)2=121,∴这个负数是﹣11,故答案为:﹣11.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.3.当k<0时,随着k的增大,它的立方根随着增大.【考点】立方根.【分析】根据立方根,即可解答.【解答】解:例如:当k=﹣8时,﹣8的立方根为﹣2,当k=﹣1时,﹣1的立方根为﹣1,﹣1>﹣2,所以当k<0时,随着k的增大,它的立方根随着增大.故答案为:增大.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.4.(a≥0,b>0).【考点】二次根式的乘除法.【分析】根据二次根式的除法法则得出=中a≥0,b>0,填上即可.【解答】解:=中a≥0,b>0.故答案为:>0.【点评】本题考查了二次根式性质和二次根式的除法法则的应用,注意:=中a≥0,b >0.5.一个两位数的十位数字和个位数字之和为7,如果把这个两位数加上45,那么恰好成为十位数字和个位数字对调后的两位数,则这个两位数为16.【考点】一元一次方程的应用.【分析】先设这个两位数的十位数字和个位数字分别为x,7﹣x,根据题意列出方程,求出这个两位数.【解答】解:设这个两位数的十位数字为x,则个位数字为7﹣x,由题意列方程得,10x+7﹣x+45=10(7﹣x)+x,解得x=1,∴7﹣x=7﹣1=6,∴这个两位数为16.故答案是:16.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.在平面直角坐标系中,每个象限内的点,不包括坐标轴上的点.【考点】点的坐标.【分析】根据坐标轴上的点不属于任何一个象限即可作答.【解答】解:在平面直角坐标系中,每个象限内的点,不包括坐标轴上的点.故答案为坐标轴.【点评】本题考查了点的坐标,建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.坐标平面内的点与有序实数对是一一对应的关系.7.命题“任意两个直角都相等”的条件是两个角都是直角,结论是相等,它是真(真或假)命题.【考点】命题与定理.【分析】任何一个命题都是由条件和结论组成.【解答】解:“任意两个直角都相等”的条件是:两个角是直角,结论是:相等.它是真命题.【点评】本题考查了命题的条件和结论的叙述.8.函数y=4x﹣3,y随x的增大而增大,它的图象与y轴的交点坐标是(0,﹣3).【考点】一次函数的性质;一次函数图象上点的坐标特征.【分析】根据一次函数的性质和y轴上点的坐标特征填空即可.【解答】解:A∵一次函数y=4x﹣3中,k=4>0,∴函数值随自变量的增大而增大,令x=0,则y=﹣3,∴此函数的图象与y轴的交点坐标是(0,﹣3).故答案为:增大,(0,﹣3).【点评】本题考查的是一次函数的性质和图象上点的坐标特征,熟知正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大以及y轴上的点的横坐标为0是解答此题的关键.9.如果x2=64,那么=±2.【考点】立方根;平方根.【专题】计算题.【分析】根据平方根和立方根的概念求解即可.【解答】解:∵x2=64,∴x=±8,∴=±2.故答案为:±2.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.10.若是方程2x+3y=0的一个解,则8a+12b+15的值是15.【考点】二元一次方程的解.【分析】把代入方程2x+3y=0,得出2a+3b=0,再将8a+12b+15变形为4(2a+3b)+15,然后整体代入计算即可.【解答】解:把代入方程2x+3y=0,得2a+3b=0,则8a+12b+15=4(2a+3b)+15=4×0+15=15.故答案为15.【点评】本题考查了二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,注意运用整体代入的思想.11.如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=65°,则∠F=122.5°.【考点】三角形内角和定理.【分析】根据三角形的内角和得到∠ABC+∠ACB=115°,由∠1=∠2,∠3=∠4,求得∠2+∠4=×115°=57.5°,根据三角形的内角和即可得到结论.【解答】解:∵∠A=65°,∴∠ABC+∠ACB=115°,∵∠1=∠2,∠3=∠4,∴∠2+∠4=×115°=57.5°,∴∠F=180°﹣(∠2+∠4)=122.5°.故答案为:122.5°.【点评】本题考查了三角形的内角和,角平分线的定义,熟记三角形的内角和是解题的关键.12.林书豪是我国优秀篮球运动员,现在在NBA打球,在某次常规赛中,每场个人得分分别是17,8,33,14,25,32,9,27,25,10,这组数据的平均数是20,众数是25,中位数是21.【考点】众数;算术平均数;中位数.【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这组数据的平均数是(17+8+33+14+25+32+9+27+25+10)=20.将这组数据从小到大重新排列为:8,9,10,14,17,25,25,27,32,33,观察数据可知,最中间的两个数为17,25,所以中位数是(17+25)÷2=21.众数是数据中出现最多的一个数即25.故答案为20,25,21.【点评】本题考查了平均数、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.13.如图,在Rt△ABC中,∠ACB=90°,AC=9,BC=12,则点C到AB的距离CD=.【考点】勾股定理;点到直线的距离.【分析】首先根据勾股定理求出斜边AB的长,再根据三角形的面积为定值即可求出点C到AB的距离.【解答】解:在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵BC=12,AC=9,∴AB===15,∵△ABC的面积=AC•BC=AB•CD,∴CD===,故答案为:.【点评】本题考查了勾股定理、三角形面积的计算方法;熟练掌握勾股定理,通过三角形面积求出CD是解决问题的关键.14.如图,在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,则△ACD是直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,直接根据勾股定理求出AC的长即可;在△ACD中,由勾股定理的逆定理即可判断三角形的形状.【解答】解:连接AC,∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5;∵△ACD中,AC=5,CD=12,AD=13,∴AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.故答案为:直角.【点评】本题考查的是勾股定理的逆定理,以及勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.坐标平面内的点与有序实数对是一一对应的.【考点】坐标确定位置.【分析】坐标平面内的点与有序实数对是一一对应的.【解答】解:填有序实数对.【点评】主要考查了坐标平面内的点与有序数对的关系.坐标平面内的点与有序实数对是一一对应的.二、选择题把每题唯一正确的答案的序号填在括号内16.下列运算不正确的是( )A.当a≥0时,=a B.=aC.当a<0时,=﹣a D.=﹣9【考点】算术平方根;立方根.【分析】根据算术平方根的定义,即可解答.【解答】解:当a≥0时,=a,正确;B、=a,正确;C、当a<0时,=﹣a,正确;D、=9,故错误;故选:D.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.17.下列说法不正确的是( )A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数【考点】实数.【专题】计算题.【分析】大于零的数为正数,小于零的数为负数,整数和分数统称有理数,有理数和无理数统称实数,C答案﹣2是负数正确,是有理数正确,也是实数.【解答】解:A、﹣2小于零,是负数,故A正确;B、﹣2小于零是负数,是整数,也是有理数,故B正确;C、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故C错误;D、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故D正确.故选:C.【点评】题目考查了正数、负数、有理数、实数的定义,学生要充分理解各层包含关系,解决此类问题就会迎刃而解.18.下列二次根式是最简二次根式的是( )A. B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的定义分别对每一项进行分析,即可得出答案.【解答】解:A、=5,不是最简二次根式,故本选项错误;B、是最简二次根式,故本选项错误;C、=,不是最简二次根式,故本选项错误;D、=,不是最简二次根式,故本选项错误;故选B.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.19.若|3x+2y+7|+|5x﹣2y+1|=0,则x,y的值是( )A.B.C.D.【考点】解二元一次方程组;非负数的性质:绝对值.【分析】先根据非负数的性质列出关于x、y的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y的值即可.【解答】解:∵|3x+2y+7|+|5x﹣2y+1|=0,∴,①+②得,8x+8=0,解得x=﹣1,把x=﹣1代入①得,﹣3+2y+7=0,解得y=﹣2,∴方程组的解为.故选C.【点评】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20.为了考察甲、乙两种小麦,分别从中抽取5株苗测得苗高(单位:cm)甲:2,4,6,8,10;乙:1,3,5,7,9.用S甲2和S乙2分别表示两个样本的方差,则( )A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定【考点】方差.【分析】首先计算出甲和乙的平均数,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]计算出方差即可.【解答】解:==6,==5,=[(2﹣6)2+(4﹣6)2+(6﹣6)2+(8﹣6)2+(10﹣6)2]=8,=[(1﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(9﹣5)2]=8,因此S甲2=S乙2.故选:C.【点评】此题主要考查了方差和平均数,关键是掌握方差计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].三、解答题(每小题4分,共20分)21..【考点】二次根式的加减法.【专题】计算题.【分析】解答本题只需将二次根式化为最简,然后合并同类二次根式即可得出的答案.【解答】解:原式=6﹣﹣=.【点评】本题考查二次根式的加减运算,属于基础题,比较简单,解答本题时注意先化简再合并,要细心运算,避免出错.22.计算:﹣﹣(﹣1)0﹣.【考点】二次根式的混合运算;零指数幂.【专题】计算题.【分析】先把各二次根式化为最简二次根式,然后合并即可.【解答】解:原式=3﹣﹣1﹣=﹣1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.对于任意数a,一定等于a吗?请举例说明.【考点】算术平方根.【分析】根据二次根式的性质得出即可.【解答】解:不一定,理由是:只有当a≥0时,才等于a,当a=﹣2时,=2≠a.【点评】本题考查了算术平方根的定义的应用,注意:①当a≥0时,=a,②当a≤0时,=﹣a.24.a+3和2a﹣15是某数的两个平方根,求a.【考点】平方根.【分析】根据已知得出方程a+3+2a﹣15=0,求出方程的解即可.【解答】解:∵某数的平方根是a+3和2a﹣15,∴a+3+2a﹣15=0,解得:a=4.【点评】本题考查了平方根定义的应用,注意:一个正数有两个平方根,它们互为相反数.25.设△ABC三边长为a=5,b=6,c=7,p=(a+b+c).求S△ABC=.【考点】二次根式的应用.【分析】首先计算出p的数值,进一步代入化简求得答案即可.【解答】解:∵a=5,b=6,c=7,∴p=(a+b+c)=×(5+6+7)=9,∴S△ABC===6.【点评】此题考查二次根式的实际运用,代数式求值,掌握二次根式的化简方法是解决问题的关键.四、解答题(每小题7分,共14分)26.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨y=0.5x(x≤3000);②用水量大于3000吨y=0.8x﹣900 (x>3000).(2)某月该单位用水3200吨,水费是1660元;若用水2800吨,水费1400元.(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?【考点】一次函数综合题.【专题】代数综合题.【分析】(1)题目给出了每吨的不同收费,根据具体的情况,写出不同的函数关系式,注意要由自变量的取值范围;(2)计算水费时要根据不同的情况,代入相应的函数关系式计算即可;(3)要首先判断此月超过3000吨,可代入第二个函数关系式进行求解.【解答】解:(1)①y=0.5x(x≤3000);②y=3000×0.5+(x﹣3000)×0.8=1500+0.8x﹣2400=0.8x﹣900(x>3000);(2)当x=3200时,y=3000×0.5+200×0.8=1660,当x=2800时,y=0.5×2800=1400;(3)某月该单位缴纳水费1540>1500元,说明该月用水已超过3000吨,∴1540=0.8x﹣900,解得x=3050(吨).答:该单位用水3050吨.【点评】本题考查了一次函数的综合应用;当标准不一样时要分段写出函数关系式,计算时还要特别注意使用相应的关系式是正确解答此类问题的关键.27.某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元.(1)写出y与x之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?【考点】一次函数的应用.【专题】应用题.【分析】(1)首先设行李费y(元)关于行李质量x(千克)的一次函数关系式为y=kx+b.根据李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元,代入联立成方程组,解得k、b的值.(2)根据(1)中的函数表达式,要想让旅客免费携带行李,即满足y≤0,求得x的最大值.【解答】解:(1)设行李费y(元)关于行李质量x(千克)的一次函数关系式为y=kx+b由题意得,解得k=,b=﹣5∴该一次函数关系式为(2)∵,解得x≤30∴旅客最多可免费携带30千克的行李.答:(1)行李费y(元)关于行李质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行李.【点评】本题考查一次函数的应用.解决本题(1)采用的待定系数法,对(2)中免费要满足的条件要能够理解.五、方程应用题28.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲种商品原来的单价是x元,乙种商品原来的单价是y元,依题意得,解得:.答:甲种商品原来的单价是40元,乙种商品原来的单价是60元.【点评】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.六、证明题(16分)29.在下列推理过程中的括号里填上推理的依据.已知:如图,CDE是直线,∠1=105°,∠A=75°.求证:AB∥C D.证明:∵CDE为一条直线(已知)∴∠1+∠2=180°∵∠1=105°(已知)∴∠2=75°又∵∠A=75°(已知)∴∠2=∠A(等量代换)∴AB∥CD(内错角相等两直线平行)【考点】平行线的判定.【专题】推理填空题.【分析】首先根据平角定义可得∠1+∠2=180,然后可计算出∠2的度数,从而可得∠2=∠A,再根据内错角相等,两直线平行可得AB∥C D.【解答】证明:∵CDE为一条直线(已知),∴∠1+∠2=180°∵∠1=105°(已知)∴∠2=75°又∵∠A=75°(已知)∴∠2=∠A(等量代换)∴AB∥CD(内错角相等两直线平行)故答案为:已知;等量代换;内错角相等两直线平行.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定方法:内错角相等两直线平行.30.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC,说明AD∥B C.【考点】平行线的判定;角平分线的定义;三角形的外角性质.【专题】证明题.【分析】由角平分线定义可得∠EAD=∠EAC,再由三角形外角性质可得∠EAD=∠B,然后利用平行线的判定定理即可证明题目结论.【解答】证明:∵AD平分∠EAC,∴∠EAD=∠EA C.又∵∠B=∠C,∠EAC=∠B+∠C,∴∠B=∠EA C.∴∠EAD=∠B.所以AD∥B C.【点评】本题主要考查角平分线的性质和三角形外角性质,也利用了平行线的判定.31.如图,∠C=∠1,∠2与∠D互余,BE⊥DF,垂足为G.求证:AB∥C D.【考点】平行线的判定与性质.【专题】证明题.【分析】根据平行线的判定得到OF∥BE,由平行线的性质得到∠3=∠EGD,根据余角的性质得到∠C=∠2,即可得到结论.【解答】证明:∵∠C=∠1,∴OF∥BE,∴∠3=∠EGD,∵BE⊥DF,∴∠EGD=90°,∴∠3=90°,∴∠C+∠D=90°,∵∠2+∠D=90°,∴∠C=∠2,∴AB∥C D.【点评】此题考查了平行线的判定和性质,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.七、解答题32.如图,平面直角坐标系中,点A的坐标是(﹣4,4),点B的坐标是(2,5).(1)写出点A关于x轴对称的对称点A′的坐标;(2)求出过A′,B两点直线的一次函数的解析式;(3)在x轴上有一动点P,要使P A+PB最小,求点P的坐标.【考点】轴对称-最短路线问题;待定系数法求一次函数解析式;关于x轴、y轴对称的点的坐标.【分析】(1)根据点关于x轴对称的对称点的特征即可得到A′的坐标为(﹣4,﹣4);(2)设过A′,B两点直线的一次函数的解析式为y=kx+b,列方程组即可得到过A′,B两点直线的一次函数的解析式为:y=x+2;(3)作点A关于x轴的对称点A′,连接A′B交x轴于点P,则点P即为所求点;由直线A′B 的函数解析式,再把y=0代入即可得.【解答】解:(1)∵点A的坐标是(﹣4,4),∴点A关于x轴对称的对称点A′的坐标为(﹣4,﹣4);(2)设过A′,B两点直线的一次函数的解析式为:y=kx+b,∴,解得:,∴过A′,B两点直线的一次函数的解析式为:y=x+2;(3)作点A关于x轴的对称点A′(﹣4,﹣4),连接A′B交x轴于P,∵直线A′B的函数解析式为y=x+2,把P点的坐标(n,0)代入解析式可得n=﹣.∴点P的坐标是(﹣,0).【点评】本题考查的是轴对称﹣最短路线问题,待定系数法求一次函数的解析式,关于x 轴,y轴对称的点的坐标,熟知“两点之间线段最短”是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年北师大版数学八年级上学期期末测试 学校________ 班级________ 姓名________ 成绩________ 一、选择题(每题3分,共30分;每小题只有一个选项是符合题意) 1.实数4的算术平方根是( )
A. 2 B. ±2 C. 2 D. ±2 2.下列四个命题中,真命题有
①两条直线被第三条直线所截,内错角相等;
②如果1和2是对顶角,那么12;
③三角形的一个外角大于任何一个内角;
④若22ab,则ab.
A. 1个 B. 2个 C. 3个 D. 4
个
3.若1a,化简2(1)1a的结果是( )
A. 2a B. 2a C. a D. a 4.若点P(a,b)在第三象限,则M(-ab,-a)应在
( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
5. 在共有l5人参加的演讲加比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进入前八名,只需了解自己的成绩以及全部成绩的 A. 平均数 B. 众数 C. 中位数 D. 方差 6. 将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )
A. 45° B. 50° C. 60° D. 75° 7.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现 在又有36张白铁皮.设用x张制作盒身,y张制作盒底可以使盒身和盒底正好配套,则所列方程组正确的( ) A. 362540xyxy B. 3622540xyxy
C. 3625240xyxy D. 364025xyxy 8.如图所示,一次函数ymxm的图像可能是 ( )
A. B. C. D. 9.如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线
上,PA平分∠MAO,PB平分∠ABO,则∠P的度数是( )
A. 30° B. 45° C. 55° D. 60° 10. 如图,∠1=60º,∠2=60º,∠3=57º,则∠4=57º,下面是A,B,C,D四个同学的推理过程,你认
为推理正确的是( )
故∠4=57º A. 因为∠1=60º=∠2,所以a∥b,所以∠4=∠3=57º B. 因为∠4=57º=∠3,所以a∥b,故∠1=∠2=60º C. 因为∠2=∠5,又∠1=60º,∠2=60º,故∠1=∠5=60º,所以a∥b,所以∠4=∠3=57º D. 因为∠1=60º,∠2=60º,∠3=57º,所以∠1=∠3=∠2-∠4=60º-57º=3º, 二、填空题(本大题共小题,每小题分,共分) 11.在△ABC中,a=3,b=7,c2=58,则△ABC是______.
12.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m-n=______. 13.如图,在△ABC中,∠B=44°,三角形的外角∠DAC与∠ACF的平分线交于点E,则∠AEC=_____. 14.如图,在直角坐标系中,点A,B的坐标分别为1,4和3,0,点C是y轴上的一个动点,且A,B,
C三点不在同一条直线上,当ABC的周长最小时,点C的坐标是_________.
三、解答题(共8小题,计78分) 15.计算:
(1)733716 ;
(2)0122252 . 16.解方程组:
(1)244523xyxy;
(2)134342xyxy . 17.作图题:(要求保留作图痕迹,不写做法)
如图,已知∠AOB与点M、N. 求作:点P,使点P到OA、OB的距离相等,且到点M与点N的距离也相等.(不写作法与证明,保留作图痕迹)
18.如图中标明了小英家附近的一些地方,以小英家为坐标原点建立如图所示的坐标系. (1)写出汽车站和消防站的坐标; (2)某星期日早晨,小英同学从家里出发,沿(3,2)(3,1)(0,1)(1,2)(3,1)的路线转了一下,又回到家里,写出路上她经过的地方. 19.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩
分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表. 分数 7分 8分 9分 10分 人数 11 0 8
(1)请将甲校成绩统计表和图2的统计图补充完整;
(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数
的角度分析哪个学校成绩较好.
20. 如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E. (1)已知CD=4cm,求AC的长; (2)求证:AB=AC+CD. 21. 小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆
车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关
系. (1)小亮行走的总路程是___________m,他途中休息了_____________min; (2)①当50<x<80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?
22. 如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连结AB. 如果点P 在直线y=x-1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”. (1)判断点C(72,52) 是否是线段AB的“邻近点”,并说明理由;
(2)若点Q (m,n)是线段AB“邻近点”,求m的取值范围. 答案与解析 一、选择题(每题3分,共30分;每小题只有一个选项是符合题意) 1.实数4的算术平方根是( )
A. 2 B. ±2 C. 2 D. ±2 【答案】C 【解析】 【分析】 利用算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为a.进而得出答案. 【详解】解:实数4的算术平方根是2, 故选:C. 【点睛】此题主要考查了算术平方根的概念,正确把握定义是解题关键.
2.下列四个命题中,真命题有
①两条直线被第三条直线所截,内错角相等;
②如果1和2是对顶角,那么12;
③三角形的一个外角大于任何一个内角;
④若22ab,则ab.
A. 1个 B. 2个 C. 3个 D. 4个
【答案】A 【解析】 两条平行线被第三条直线所截,内错角相等,故①是假命题;如果∠1和∠2是对顶角,那么∠1=∠2,②是真命题;三角形的一个外角大于任何一个不相邻的内角,③是假命题;若a2=b2,则a=±b,④是假命题,故选A. 3.若1a,化简2(1)1a的结果是( )
A. 2a B. 2a C. a D. a 【答案】D 【解析】 【分析】 根据公式2a=|a|可知:2(1)1a=|a-1|-1,由于a<1,所以a-1<0,再去绝对值,化简. 【详解】2(1)1a=|a−1|−1,
∵a<1, ∴a−1<0, ∴原式=|a−1|−1=(1−a)−1=−a,故选D. 【点睛】本题考查二次根式的性质与化简、绝对值,解题的关键是掌握二次根式的性质与化简及求绝对值. 4.若点P(a,b)在第三象限,则M(-ab,-a)应在
( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
【答案】B 【解析】 【分析】 根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出-a,-ab的正负情况,然后确定出点M所在的象限,即可得解. 【详解】∵第三象限的点的横坐标小于0,纵坐标小于0, ∴a<0,b<0, ∴-ab<0,−a>0, ∴点M(-ab,−a)在第二象限. 故选B. 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 5. 在共有l5人参加的演讲加比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进入前八名,只需了解自己的成绩以及全部成绩的 A. 平均数 B. 众数 C. 中位数 D. 方差 【答案】C 【解析】 分析:此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名. 解答:解:15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数 所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.