高中同步测试卷·人教b数学必修2:高中同步测试卷(十) 含答案

合集下载

高中数学必修第二册第十章综合测试01含答案解析

高中数学必修第二册第十章综合测试01含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第十章综合测试一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向,事件“甲向南”与事件“乙向南”的关系为()A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对2.甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出了第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”从上述回答分析,丙是第一名的概率是()A.15B.13C.14D.163.甲骑自行车从A地到B地,途中要经过4个十字路口,已知甲在每个十字路口遇到红灯的概率都是,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是()A.13B.427C.49D.1274.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于()A.110B.18C.16D.155.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.346.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是()A.15B.16C.56D.35367.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.15B.25C.825D.9258.四个人围坐在一张圆桌旁,每个人面前都放着一枚完全相同的硬币,所有人同时抛出自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为()A.14B.716C.12D.9169.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A .34B .58C .12D .1410.设一元二次方程20x Bx C ++=,若B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,则方程有实数根的概率为( )A .112B .736C .1336D .1936二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)11.某中学青年教师、中年教师和老年教师的人数比例为451::,其中青年教师有120人.现采用分层抽样的方法从这所学校抽取容量为30的教师样本以了解教师的工作压力情况,则每位老年教师被抽到的概率为________.12.甲、乙、丙三人独立破译同一份密码.已知甲、乙、丙各自独立破译出密码的概率分别为12,13,14且他们是否破译出密码互不影响,则至少有1人破译出密码的概率是________.13.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________.14.如图10-4-6所示的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________. 三、解答题(本大题共4小题,共50分,解答时写出必要的文字说明、证明过程或演算步骤)15.[12分]围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,求从中任意取出2粒恰好是同一色的概率.16.[12分]某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5,现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到如下频率分布表:X 1 2 3 4 5 fa0.20.45bc(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值; (2)在(1)的条件下,将等级系数为4的3件日用品记为1x ,2x ,3x ,等级系数为5的2件日用品记为1y ,2y ,现从1x ,2x ,3x ,1y ,2y 这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.17.[13分]某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学1A ,2A ,3A ,4A ,5A ,3名女同学1B ,2B ,3B .现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.18.[13分]一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同,随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a b c +=”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. (注:若三个数a ,b ,c 满足a b c ≤≤,则称b 为这三个数的中位数)第十章综合测试答案解析一、 1.【答案】A 2.【答案】B 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】C 7.【答案】B【解析】从甲、乙等5名学生中随机选2人共有10种情况,甲被选中有4种情况,则甲被选中的概率为42105=. 8.【答案】B【解析】四个人按顺序围成一桌,同时抛出自己的硬币,抛出的硬币正面记为0,反面记为1,则总的样本点为(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1),(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,0,1,1),(1,1,0,0),(1,1,0,1),(1,1,1,0),(1,1,1,1),共有16种情况.若四个人同时坐着,有1种情况;若三个人坐着,一个人站着,有4种情况;若两个人坐着,两个人站着,此时没有相邻的两个人站起来有2种情况,所以没有相邻的两个人站起来的情况共有1427++=(种),故所求概率716P =. 9.【答案】C【解析】分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5),4种取法,符合题意的取法有2种,故所求概率12P =. 10.【答案】D【解析】因为B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,所以一共有36种情况。

高中同步测试卷·人教b数学必修2:高中同步测试卷(六) 含答案

高中同步测试卷·人教b数学必修2:高中同步测试卷(六) 含答案

高中同步测试卷(六)单元检测点、直线、平面之间的位置关系(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法不正确的是( )A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直2.三个平面把空间分成7部分时,它们的交线有( )A.1条B.2条C.3条D.1条或2条3.若直线l不平行于平面α,且l⊄α,则( )A.平面α内的所有直线与直线l异面B.平面α内不存在与直线l平行的直线C.平面α内存在唯一的直线与直线l平行D.平面α内的所有直线与直线l都相交4.如图,α∩β=l ,A ∈α,B ∈α,AB ∩l =D ,C ∈β,C ∉l ,则平面ABC 与平面β的交线是( )A .直线ACB .直线ABC .直线CD D .直线BC5.已知直线PG ⊥平面α于G ,直线EF ⊂α,且PF ⊥EF 于F ,那么线段PE ,PF ,PG 的关系是( )A .PE>PG>PFB .PG>PF>PEC .PE>PF>PGD .PF>PE>PG6.若异面直线a ,b 分别在平面α,β内,且α∩β=l ,则直线l( )A .与直线a ,b 都相交B .至少与a ,b 中的一条相交C .至多与a ,b 中的一条相交D .与a ,b 中的一条相交,另一条平行7.如图所示,已知E ,F 分别是正方体ABCD -A 1B 1C 1D 1的棱BB 1,AD 的中点,则直线EF 和平面BDD 1B 1所成的角的正弦值是( )A.26B.36C.13D.668.设平面α∩平面β=l ,点A ,B ∈α,点C ∈β,且A ,B ,C 均不在直线l 上,给出四个命题:①⎭⎪⎬⎪⎫l ⊥AB l ⊥AC ⇒α⊥β; ② ⎭⎪⎬⎪⎫l ⊥AC l ⊥BC ⇒α⊥平面ABC ; ③ ⎭⎪⎬⎪⎫α⊥βAB ⊥BC ⇒l ⊥平面ABC; ④AB ∥l ⇒l ∥平面ABC.其中正确的命题是( )A .①与②B .②与③C .①与③D .②与④ 9.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则A 1C 1到底面ABCD 的距离为( ) A.33 B .1 C. 2D. 3 10.如图所示,四棱锥S -ABCD 中,底面是边长为2的正方形,AC 与BD 的交点为O ,SO ⊥平面ABCD ,且SO =2,E 是边BC 的中点,动点P 在四棱锥表面上运动,并且总保持PE ⊥AC ,则动点P的轨迹的周长为( )A.2+6 B .3 2 C .3 6 D.2+2 6。

人教版高一数学必修第二册同步单元测试卷第10章 概率(B卷提高篇)解析版

人教版高一数学必修第二册同步单元测试卷第10章 概率(B卷提高篇)解析版

参考正确答案与试题详细解析一.选择题(共8小题)1.(2019春•辽宁期末)下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定下雨【参考解答】解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选:B.2.(2019春•洛南县期中)下列叙述随机事件的频率与概率的关系中,说法正确的是()A.频率就是概率B.频率是随机的,与试验次数无关C.概率是稳定的,与试验次数无关D.概率是随机的,与试验次数有关【参考解答】解:频率是随机的,随实验而变化,但概率是唯一确定的一个值.故选:C.3.(2020春•芝罘区校级期末)抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,则一次试验中,事件A或事件B至少有一个发生的概率为()A.B.C.D.【参考解答】解:事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,∴P(A),P(B),又小于5的偶数点有2和4,不小于5的点数有5和6,所以事件A和事件B为互斥事件,则一次试验中,事件A或事件B至少有一个发生的概率为P(A∪B)=P(A)+P(B),故选:A.4.(2019春•湖北期中)某射手在一次射击中,射中10环,9环,8环的概率分别是0.20,0.30,0.10,则该射手在一次射击中不够8环的概率为()A.0.90 B.0.30 C.0.60 D.0.40【参考解答】解:由题意知射手在一次射击中不够8环的对立事件是射手在一次射击中不小于8环, ∵射手在一次射击中不小于8环包括击中8环,9环,10环,这三个事件是互斥的,∴射手在一次射击中不小于8环的概率是0.20+0.30+0.10=0.60,∴射手在一次射击中不够8环的概率是1﹣0.60=0.40,故选:D.5.(2019春•武汉期中)已知消费者购买家用小电器有两种方式:网上购买和实体店购买.经工商局抽样调查发现,网上家用小电器合格率约为,而实体店里家用小电器的合格率约为,工商局12315电话接到关于家用小电器不合格的投诉,统计得知,被投诉的是在网上购买的概率约为75%.那么估计在网上购买家用小电器的人约占()A.B.C.D.【参考解答】解:设在网上购买的人数占比为x,实体店购买的人数为1﹣x,由题意可得,网上购买的合格率为,则网上购买被投诉的概率为,实体店里购买的被投诉的人数占比为(1﹣x),∴P;故x;故选:A.6.(2020春•栖霞市月考)一道试题,A,B,C三人可解出的概率分别为,则三人独立参考解答,仅有1人解出的概率为()A.B.C.D.1【参考解答】解:根据题意,只有一人解出的试题的事件包含A解出而其余两人没有解出,B解出而其余两人没有解出,C解出而其余两人没有解出,三个互斥的事件,而三人解出正确答案是相互独立的,则P(只有一人解出试题)(1)×(1)+(1)(1)+(1)×(1), 故选:B.7.(2020•江门模拟)一袋中有红、黄、蓝三种颜色的小球各一个,每次从中取出一个,记下颜色后放回,当三种颜色的球全部取出时停止取球,则恰好取5次球时停止取球的概率为()A.B.C.D.【参考解答】解:分两种情况3,1,1及2,2,1这两种情况是互斥的,下面计算每一种情况的概率,当取球的个数是3,1,1时,试验发生包含的事件是35,满足条件的事件数是C31C43C21∴这种结果发生的概率是同理求得第二种结果的概率是根据互斥事件的概率公式得到P故选:B.8.(2019秋•岳麓区校级月考)甲、乙两人对同一个靶各射击一次,设事件A=“甲击中靶”,事件B=“乙击中靶”,事件E=“靶未被击中”,事件F=“靶被击中”,事件G=“恰一人击中靶”,对下列关系式(表示A的对立事件,表示B的对立事件):①,②F=AB,③F=A+B,④G=A+B,⑤,⑥P(F)=1﹣P(E),⑦P(F)=P(A)+P(B).其中正确的关系式的个数是()A.3 B.4 C.5 D.6【参考解答】解:甲、乙两人对同一个靶各射击一次,设事件A=“甲击中靶”,事件B=“乙击中靶”,事件E=“靶未被击中”,事件F=“靶被击中”,事件G=“恰一人击中靶”,在①中,事件E是指事件A与事件B同时不发生,∴,故①正确;在②中,事件F表示事件A和事件B至少有一个发生,故F=A+B,故②错误;在③中,F=A+B,故③正确;在④中,,故④错误;在⑤中,,故⑤正确;在⑥中,由对立事件概率计算公式得P(F)=1﹣P(E),故⑥正确;在⑦中,由互斥事件概率计算公式得P(F)=1﹣P()≠P(A)+P(B),故⑦错误.故选:B.二.多选题(共4小题)9.(2020春•常熟市期中)一个人连续射击2次,则下列各事件关系中,说法正确的是()A.事件“两次均击中”与事件“至少一次击中”互为对立事件B.事件“第一次击中”与事件“第二次击中”互为互斥事件C.事件“恰有一次击中”与事件“两次均击中”互为互斥事件D.事件“两次均未击中”与事件“至少一次击中”互为对立事件【参考解答】解:对于A,事件“至少一次击中”包含“一次击中”和“两次均击中”,所以不是对立事件,A错误;对于B,事件“第一次击中”包含“第一次击中、第二次击中”和“第一次击中、第二次不中”,所以与事件“第二次击中”不是互斥事件,B错误;对于C,事件“恰有一次击中”是“一次击中、一次不中”,它与事件“两次均击中”是互斥事件,C正确;对于D,事件“两次均未击中”的对立事件是“至少一次击中”,D正确.故选:CD.10.(2020春•昆山市期中)抛掷一枚硬币三次,若记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为P1,P2,P3,P4,则下列结论中正确的是()A.P1=P2=P3=P4B.P3=2P1C.P1+P2+P3+P4=1 D.P4=3P2【参考解答】解:抛掷一枚硬币三次,记出现“三个正面”、“三个反面”、“二正一反”、“一正二反”的概率分别为P1,P2,P3,P4,则P1=()3,P2=()3,P3,P4,∴P1=P2<P3=P4,故A错误;P3=3P1,故B错误;P1+P2+P3+P4=1,故C正确;P4=3P2,故D正确.故选:CD.11.(2020春•芝罘区校级期末)从装有两个红球和三个黑球的口袋里任取两个球,那么不互斥的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”【参考解答】解:”至少有一个黑球“中包含“都是黑球,A正确;“至少有一个黑球”与“至少有一个红球”可能同时发生,B正确;“恰好有一个黑球”与“恰好有两个黑球”不可能同时发生,C不正确;“至少有一个黑球”与“都是红球”不可能同时发生,D不正确.故选:AB.12.以下对各事件发生的概率判断正确的是()A.甲,乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是B.每个大于2的偶数都可以表示为两个素数的和,例如8=3+5,在不超过14的素数中随机选取两个不同的数,其和等于14的概率为C.将一个质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是【参考解答】解:两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率应试,A错;不超过14的素数是2,3,5,7,11,13有6个数,从中随机选取两个不同的数有C15种,其和等于14的只有3,11一种情况,所以概率为,则B对;掷骰子2次向上的点数有36种情况,用列举法可求点数之和是6的有5种,所以概率是,则C对;从三正品,一次品中取2件的取法C6,全是正品的取法C3,所以概率为,则D对.故选:BCD.三.填空题(共4小题)13.(2019春•淮安期末)若三个原件A,B,C按照如图的方式连接成一个系统,每个原件是否正常工作不受其他元件的影响,当原件A正常工作且B,C中至少有一个正常工作时,系统就正常工作,若原件A,B,C正常工作的概率依次为0.7,0.8,0.9,则这个系统正常工作的概率为0.686【参考解答】解:系统正常工作的情况分成两个步骤,A正常工作且B,C至少有一个正常工作的情况, A正常工作的概率为:0.7;B,C至少有一个正常工作的情况的概率为1减去B,C都不正常工作的情况的概率,即:B,C至少有一个正常工作的概率为:1﹣(1﹣0.8)(1﹣0.9)=0.98,所以:这个系统正常工作的概率为:0.7×0.98=0.686;故正确答案为:0.686;14.(2019春•息县期中)在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点数出现”,则事件A∪发生的概率为.(表示B的对立事件)【参考解答】解:随机抛掷一颗骰子一次共有6中不同的结果,其中事件A“出现不大于4的偶数点”包括2,4两种结果,P(A),事件B“出现小于5的点数”的对立事件,P(B),P(),且事件A和事件是互斥事件,∴P(A).故正确答案为:.15.(2018秋•怀仁市校级期末)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的两球同色”,B=“取出的2球中至少有一个黄球”,C=“取出的2球至少有一个白球”,D=“取出的两球不同色”,E=“取出的2球中至多有一个白球”.下列判断中正确的序号为①④.①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件:④P(C∪E)=1;⑤P(B)=P(C).【参考解答】解:口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的两球同色”,B=“取出的2球中至少有一个黄球”,C=“取出的2球至少有一个白球”,D=“取出的两球不同色”,E=“取出的2球中至多有一个白球”.在①中,A与D为对立事件,故①正确;在②中,B与C能同时发生,不是互斥事件,故②错误;在③中,C与E能同时发生,不是对立事件,故③错误:在④中,∵C∪E=Ω,∴P(C∪E)=1,故④正确;在⑤中,P(B),P(C).故⑤错误.故正确答案为:①④.16.(2019秋•米东区校级期中)若随机事件A、B互斥,A、B发生的概率均不等于0,且分别为P(A)=2﹣a,P(B)=3a﹣4,则实数a的取值范围为(].【参考解答】解:∵随机事件A、B互斥,A、B发生的概率均不等于0,且分别为P(A)=2﹣a,P(B)=3a﹣4,∴,即,解得.故正确答案为:(].四.参考解答题(共5小题)17.(2019春•兴庆区校级月考)某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.(1)打进的电话在响5声之前被接的概率是多少?(2)打进的电话响4声而不被接的概率是多少【参考解答】解:(1)设事件“电话响第k声时被接”为A k(k∈N),那么事件A k彼此互斥,设“打进的电话在响5声之前被接”为事件A,根据互斥事件概率加法公式,得:P(A)=P(A1∪A2∪A3∪A4)=P(A1)+P(A2)+P(A3)+P(A4)=0.1+0.2+0.3+0.35=0.95.(2)事件“打进的电话响4声而不被接”是事件A,“打进的电话在响5声之前被接”的对立事件,记为.根据对立事件的概率公式,得P()=1﹣P(A)=1﹣0.95=0.05.18.(2019春•九台区期中)甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)两人都射中的概率;(2)两人中恰有一人射中的概率;(3)两人中至少有一人射中的概率.【参考解答】解:设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B.事件A与B 是相互独立的.(1)两人都射中的概率为P(AB)=P(A)P(B)=0.8×0.9=0.72.(2)两人中恰有一人射中的概率为P(A)+P(B)=0.8×(1﹣0.9)+(1﹣0.8)×0.9=0.26.(3)两人中至少有一人射中的概率等于1减去两个人都没有击中的概率,∴所求的概率等于1﹣P()=1﹣P()•P()=1﹣0.2×0.1=0.98.19.(2020•西宁模拟)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望.【参考解答】解:设指针落在A,B,C区域分别记为事件A,B,C.则.(Ⅰ)若返券金额不低于30元,则指针落在A或B区域.∴即消费128元的顾客,返券金额不低于30元的概率是.(Ⅱ)由题意得,该顾客可转动转盘2次.随机变量X的可能值为0,30,60,90,120.;;;;.所以,随机变量X的分布列为:X0 30 60 90 120P其数学期望.20.(2020•南通模拟)某种质地均匀的正四面体玩具的4个面上分别标有数字0,1,2,3,将这个玩具抛掷n次,记第n次抛掷后玩具与桌面接触的面上所标的数字为a n,数列{a n}的前n和为S n.记S n是3的倍数的概率为P(n).(1)求P(1),P(2);(2)求P(n).【参考解答】解:(1)抛掷一次,出现一个0和一个3时符合要求,故P(1),抛掷两次,出现1+2,2+1,0+0,3+3,0+3,3+0时,符合要求,故计6种情况,故P(2).(2)设S n被3除时余1的概率为p1(n),S n被3除时余2的概率为P2(n),则P(n+1),①P1(n+1),②P2(n+1),③①﹣(②+③),得:P(n+1)﹣[P1(n+1)+P2(n+1)][P1(n)+P2(n)],化简,得4P(n+1)=p(n)+1,∴P(n+1)[P(n)],又P(1),∴P(n).21.(2020•北京模拟)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要“的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况.现分别从A,B,C三块试验田中各随机抽取7株植物测量高度,数据如表(单位:厘米):A组10 11 12 13 14 15 16B组12 13 14 15 16 17 18C组13 14 15 16 17 18 19 假设所有植株的生长情况相互独立.从A,B,C三组各随机选1株,A组选出的植株记为甲,B组选出的植株记为乙,C组选出的植株记为丙.(Ⅰ)求丙的高度小于15厘米的概率;(Ⅱ)求甲的高度大于乙的高度的概率;(Ⅲ)表格中所有数据的平均数记为μ0.从A,B,C三块试验田中分别再随机抽取1株该种植物,它们的高度依次是14,16,15 (单位:厘米).这3个新数据与表格中的所有数据构成的新样本的平均数记为μ1,试比较μ0和μ1的大小.(结论不要求证明)【参考解答】解:(Ⅰ)设事件A i为“甲是A组的第i株植物”,事件B i为“乙是B组第i株植物”,事件∁i为“丙是C组第i株植物”,i=1,2,3,4, (7)由题意得P(A i)=P(B i)=P(∁i),i=1,2,3,4, (7)设事件D为“丙的高度小于15厘米”,由题意D=C1∪C2,且C1与C2互斥,∴丙的高度小于15厘米的概率为:P(D)=P(C1∪C2).(Ⅱ)设事件E为“甲的高度大于乙的高度”,∴甲的高度大于乙的高度的概率为:P(E)=P(A4B1)+P(A5B1)+P(A6B1)+P(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A6B3)+P(A7B3)+P(A7B4)=10P(A4B1)=10.(Ⅲ)所有数据的平均数μ0(10+11+12+13+14+15+16+12+13+14+15+16+17+18+13+14+15+16+17+18+19)≈14.67,μ1(10+11+12+13+14+15+16+12+13+14+15+16+17+18+13+14+15+16+17+18+19+14+16+15)≈14.71.∴μ0<μ1.。

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

高中同步测试卷·人教b数学必修2:高中同步测试卷(十二) 含答案

高中同步测试卷·人教b数学必修2:高中同步测试卷(十二) 含答案

高中同步测试卷(十二)圆与方程微专题(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( )A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=02.直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是( ) A.3x+2y-1=0 B.3x+2y+7=0C.2x-3y+5=0 D.2x-3y+8=03.过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为( )A.2x+y-3=0 B.2x-y-3=0C.4x-y-3=0 D.4x+y-3=04.已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则( )A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能5.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是( ) A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心6.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为23,则a=( )A .2 B.12 C .1 D.37.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A.33B .-33C .±33D .-38.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( )A .52-4 B.17-1 C .6-22 D.179.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M 、N 两点,若|MN|≥23,则k 的取值范围是( )A.⎣⎢⎢⎡⎦⎥⎥⎤-34,0B.⎝⎛⎦⎥⎥⎤-∞,-34∪[)0,+∞C.⎣⎢⎢⎡⎦⎥⎥⎤-33,33 D.⎣⎢⎢⎡⎦⎥⎥⎤-32,0 10.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y(y -mx -m)=0有四个不同的交点,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎪⎫-33,33 B.⎝ ⎛⎭⎪⎪⎫-33,0∪⎝ ⎛⎭⎪⎪⎫0,33C.⎣⎢⎢⎡⎦⎥⎥⎤-33,33D.⎝ ⎛⎭⎪⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎪⎫33,+∞二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)11.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________.12.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是________.13.过点A(4,1)的圆C 与直线x -y -1=0相切于点B(2,1),则圆C 的方程为________.14.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15°;②30°;③45°;④60°;⑤75°.其中正确答案的序号是________(写出所有正确答案的序号).三、解答题(本大题共6小题,共60分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分10分)设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.证明:l 1与l 2相交.。

高中同步测试卷·人教b数学必修2:高中同步测试卷(三) 含答案

高中同步测试卷·人教b数学必修2:高中同步测试卷(三) 含答案

高中同步测试卷(三)单元检测平面的性质及点、线、面的位置关系(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个条件中,能确定一个平面的是( )A.空间任意三点B.空间两条直线C.两条平行直线D.一条直线和一个点2.若OA∥O′A′,OB∥O′B′,且∠AOB=130°,则∠A′O′B′=( )A.130°B.50°C.130°或50°D.不确定3.已知a,b是异面直线,直线c∥直线a,那么c与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线4.下列推断中,错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合5.若直线a不平行于平面α,则下列结论成立的是( )A.α内的所有直线均与a异面B.α内不存在与a平行的直线C.α内直线均与a相交D.直线a与平面α有公共点6.若一直线上有一点在已知平面外,则下列命题正确的是( )A.直线上所有的点都在平面外B.直线上有无数多个点都在平面外C.直线上有无数多个点都在平面内D.直线上至少有一个点在平面内7.以下四个命题:①三个平面最多可以把空间分成八部分;②若直线a⊂平面α,直线b⊂平面β,则“a与b相交”与“α与β相交”等价;③若α∩β=l,直线a⊂平面α,直线b⊂平面β,且a∩b=P,则P∈l;④若n条直线中任意两条共面,则它们共面.其中正确的是( )A.①②B.②③C.③④D.①③8.空间四边形ABCD中,AB,BC,CD的中点分别是P,Q,R,且PQ=2,QR=5,PR=3,那么异面直线AC和BD所成的角是( ) A.90°B.60°C.45°D.30°9.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系是( )A.平行B.相交C.重合D.平行或相交10.下列说法中正确的个数是( )①如果a,b是两条直线,a∥b,那么a平行于经过b的任何一个平面;②如果直线a和平面α满足a∥α,那么a与平面α内的任何一条直线平行;③如果直线a,b满足a∥α,b∥α,则a∥b;④若a在平面α外,则a∥α.A.0 B.1C.2 D.3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)11.经过平面外两点可作该平面的平行平面的个数是________.12.平面α∩β=c,直线a∥α,a与β相交,则a与c的位置关系是________.13.若直线a⊂α,直线b⊂β,a,b是异面直线,则α,β的位置关系是________.14.正方体ABCD-A′B′C′D′中,E,F分别为平面A′B′C′D′与AA′D′D的中心,则EF与CD所成角的度数是________.。

必修二高中数学人教B版模块综合测试(附答案)

必修二高中数学人教B版模块综合测试(附答案)

必修二高中数学人教B 版模块综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在某几何体的三视图中,主视图、左视图、俯视图是三个全等的圆,圆的半径为R ,则这个几何体的体积是( ) A.31πR 3 B.32πR 3 C.πR 3 D.334R π 解析:由题意,这个几何体是球,故体积为34πR 3. 答案:D2.在空间直角坐标系中,方程x 2-4(y-1)2=0表示的图形是( )A.两个点B.两条直线C.两个平面D.一条直线和一个平面解析:由原方程可得(x+2y-2)(x-2y+2)=0,∴x+2y-2=0或x-2y+2=0.答案:C3.长方体各面上的对角线所确定的平面个数是( )A.20B.14C.12D.6解析:相对两平行平面中有两组平行对角线,可以确定两个平面,这样有6个平面.又因为每个顶点对应一个符合条件的平面,这样又有8个平面,共有14个平面.答案:B4.与直线2x+3y-6=0关于点(1,-1)对称的直线方程是( )A.3x-2y+2=0B.2x+3y+7=0C.3x-2y-12=0D.2x+3y+8=0解:设(x 0,y 0)是直线2x+3y-6=0上任一点,其关于点(1,-1)的对称点的坐标是(x,y),则2x 0+3y 0-6=0.(*) 又由对称性知⎪⎪⎩⎪⎪⎨⎧-=+=+.12,1200y y x x∴⎩⎨⎧--=-=.2,200y y x x 代入(*)式得2(2-x)+3(-2-y)-6=0,即2x+3y+8=0. 答案:D5.与圆C:x 2+(y+5)2=3相切,且纵截距和横截距相等的直线共有( )A.2条B.3条C.4条D.6条解析:原点在圆C 外,过原点的两条切线在坐标轴上的截距也是相等的;若切线不过原点,设为x+y=a,圆心为(0,-5),半径为3, ∴32|50|=--a .∴a=-5±6.∴在两轴上截距相等、斜率为-1的直线又有两条,共有4条.答案:C6.(2020高考天津卷,文7)若l 为一条直线,α、β、γ为三个互不重合的平面,给出下面三个命题:①α⊥γ,β⊥γ⇒α⊥β;②α⊥γ,β∥γ⇒α⊥β;③l ∥α,l ⊥β⇒α⊥β.其中正确的命题有( )A.0个B.1个C.2个D.3个 解析:本题考查线面和面面的垂直平行垂直关系.①中可由长方体的一角证明是错误的;②③易证明是正确的.答案:C7.(2020高考全国卷Ⅰ,理7文9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A.16πB.20πC.24πD.32π 解析:本题考查长方体和正四棱柱的关系以及球的表面积的计算.由题意可得该正四棱柱的底面面积为4,边长为2.因正四棱柱属于长方体,因此所求球的球心在该长方体的中心即球的直径为62,根据球的表面积公式,可得球的表面积为24π. 答案:C 8.将若干毫升水倒入底面半径为4 cm 的圆柱形器皿中,量得水面高度为8 cm,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( )A.36B.6C.3184D.398 解:设水面高度为h.由42×8π=31×(33h)2πh , ∴h=3184.故选C. 答案:C9.已知点P(2,-3)、Q(3,2),直线ax-y+2=0与线段PQ 相交,则a 的取值范围是( )A.a≥34 B.a≤34- C.25-≤a≤0 D.a≤34-或a≥21 解析:直线ax-y+2=0可化为y=ax+2,斜率k=a,恒过定点A(0,2).如图,直线与线段PQ 相交,0≥k≥k A P,即25-≤a≤0.答案:C10.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有( )A.1个B.2个C.3个D.4个解:圆心(3,3)到直线3x+4y-11=0的距离为d=5|113433|-⨯+⨯=2,圆的半径是3. ∴圆上的点到直线3x+4y-11=0的距离为1的点有3个.答案:C11.直线l 与直线3x+4y-15=0垂直,与圆x 2+y 2-18x+45=0相切,则l 的方程是( )A.4x-3y-6=0B.4x-3y-66=0C.4x-3y-6=0或4x-3y-66=0D.4x-3y-15=0解:由直线l 与直线3x+4y-15=0垂直,则可设l 的方程是4x-3y+b=0.由圆x 2+y 2-18x+45=0,知圆心O′(9,0),半径r=6,∴5|0394|b +⨯-⨯=6,|36+b|=30. ∴b=-6或b=-66.故l 的方程为4x-3y-6=0或4x-3y-66=0.答案:C12.直线3x-2y+m=0和直线(m 2-1)x+3y-3m+2=0的位置关系是( )A.平行B.重合C.相交D.不能确定解析:因为3×3-2(m 2-1)=0,m 无解,可得3×3≠2(m 2-1),即两直线斜率不相等,所以这两条直线不平行或重合,由两直线相交的条件,可得两直线相交.答案:C二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.已知A(-1,-2,1)、B(2,2,2),点P 在z 轴上,且d(P,A)=d(P,B),则点P 的坐标为___________. 解:∵P 在z 轴上,∴设P 点坐标为(0,0,z).又∵|PA|=|PB|,∴利用距离公式得z=3.答案:(0,0,3)14.若P 在坐标平面xOy 内,A 点坐标为(0,0,4),且d(P,A)=5,则点P 组成的曲线为___________. 解析:考查两点距离公式的应用和探究问题的能力.设P(x,y,0),则d(P,A)=222)40()0()0(-+-+-y x ,因为|PA|=5,所以x 2+y 2+16=25,即x 2+y 2=9.所以P 点在xOy 坐标面上形成一个以(0,0)为圆心,以3为半径的圆.答案:以(0,0)为圆心,以3为半径的圆15.如图1,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是___________.图1解析:可以考虑用一个与原来全等的几何体,倒过来拼接到原几何体上,得到一个底面半径为r ,母线长为(a+b)的圆柱,其体积为πr 2(a+b),故所求体积为21πr 2(a+b).答案:21πr 2(a+b) 16.过圆x 2+y 2-6x+4y-3=0的圆心,且平行于x+2y+11=0的直线方程是___________. 解:圆x 2+y 2-6x+4y-3=0的圆心为(3,-2).设所求直线斜率为k,则k=21-. ∴方程为y+2=21-(x-3),即x+2y+1=0. 答案:x+2y+1=0三、解答题(共74分)17.(本小题12分)如图2,在正方体ABCD-A 1B 1C 1D 1中,求证:图2(1)A 1D ∥平面CB 1D 1;(2)平面A 1BD ∥平面CB 1D 1.证明:(1)∵A 1B 1∥CD 且A 1B 1=CD,∴四边形A 1B 1CD 是平行四边形,故A 1D ∥B 1C.又B 1C ⊂平面CB 1D 1且A 1D ⊂平面CB 1D 1,∴A 1D ∥平面CB 1D 1.(2)由(1)A 1D ∥平面CB 1D 1,同理可得A 1B ∥平面CB 1D 1,又A 1D∩A 1B=A 1,且A 1D 和A 1B 都在平面A 1BD 内,所以平面A 1BD ∥平面CB 1D 1.18.(本小题12分)如图3,在直三棱柱ABC —A 1B 1C 1中,AB 1⊥BC 1,AB=CC 1=1,BC=2.图3(1)求证:A 1C 1⊥AB ;(2)求点B 1到平面ABC 1的距离.(1)证明:连结A 1B ,则A 1B ⊥AB 1.又∵AB 1⊥BC 1,∴AB 1⊥平面A 1BC 1.∴AB 1⊥A 1C 1.又∵A 1C 1⊥BB 1,∴A 1C 1⊥平面ABB 1.∴A 1C 1⊥AB.(2)解:由(1)知AB ⊥AC ,∵AB ⊥AC 1,又∵AB=1,BC=2,∴AC=3,AC 1=2.∴1ABC S ∆=1.设所求距离为d ,∴1111ABB C ABC B V V --=. ∴31S △ABC 1·d=131ABB S ∆·A 1C 1. ∴31·1·d=31·21·3. ∴d=23. 19.(本小题12分)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为22,求圆的方程.解:设圆的方程为(x-a)2+(y-b)2=r 2.∵圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,∴圆心在x+2y=0上.∴a+2b=0. ① ∵圆被直线截得的弦长为22,∴(2|1|+-b a )2+(2)2=r 2. ② 由点A(2,3)在圆上,得(2-a)2+(3-b)2=r 2. ③联立①②③,解得⎪⎩⎪⎨⎧=-==⎪⎩⎪⎨⎧=-==.244,7,1452,3,622r b a r b a 或∴圆的方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244.20.(本小题12分)已知圆C :(x-1)2+y 2=9内有一点P(2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,写出直线l 的方程;(3)当直线l 的倾斜角为45°时,求弦AB 的长.解:(1)已知圆C :(x-1)2+y 2=9的圆心为C(1,0),因直线过点P 、C ,所以直线l 的斜率为2,直线l 的方程为y=2(x-1),即2x-y-2=0.(2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为y-2=21-(x-2),即x+2y-6=0. (3)当直线l 的倾斜角为45°时,斜率为1,直线l 的方程为y-2=x-2,即x-y=0.圆心到直线l 的距离为21,圆的半径为3,弦AB 的长为34. 21.(本小题12分)如图4,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是AA 1、D 1C 1的中点,过D 、M 、N 三点的平面与正方体的下底面相交于直线l ;图4(1)画出直线l ;(2)设l∩A 1B 1=P,求PB 1的长;(3)求D 到l 的距离.解:(1)连结DM 并延长交D 1A 1的延长线于Q.连结NQ ,则NQ 即为所求的直线l.(2)设QN∩A 1B 1=P,△A 1MQ ≌△MAD,∴A 1Q=AD=A 1D 1,A 1是QD 1的中点.∴A 1P=21D 1N=4a .∴PB 1=43a. (3)作D 1H ⊥l 于H ,连结DH ,可证明l ⊥平面DD 1H ,则DH ⊥l,则DH 的长就是D 到l 的距离.在Rt △QD 1N 中,两直角边D 1N=2a ,D 1Q=2a,斜边QN=a 217,∴D 1H·QN=D 1N·D 1Q,即D 1H=a 17172,DH=a a a 17357)17172(22=+,∴D 1到l 的距离为a 17357. 22.(本小题14分)设有半径为3 km 的圆形村落,A 、B 两人同时从村落中心出发,B 向北直行,A 先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B 相遇,设A 、B 两人速度一定,其速度比为3∶1,问两人在何处相遇.解:如图,建立平面直角坐标系,由题意可设A 、B 两人速度分别为3V 千米/小时、V 千米/小时,再设出发x 0小时,在点P 改变方向,又经过y 0小时,在点Q 处与B 相遇,则P 、Q 两点坐标为(3Vx 0,0)、(0,Vx 0+y 0).由|OP|2+|OQ|2=|PQ|2,知(3Vx 0)2+(Vx 0+y 0)2=(3Vy 0)2,即(x 0+y 0)(5x 0-4y 0)=0.∵x 0+y 0>0,∴5x 0=4y 0. ① 将①代入k PQ =0003x y x +-,得k PQ =43-. 又已知PQ 与圆O 相切,直线PQ 在y 轴上的截距就是两人相遇的位置. 设直线y=43-x+b 与圆O :x 2+y 2=9相切,则有2243|4|+b =3, ∴b=415.。

高中同步测试卷·人教b数学必修2:高中同步测试卷(五) 含答案

高中同步测试卷·人教b数学必修2:高中同步测试卷(五) 含答案

高中同步测试卷(五)单元检测线面、面面垂直的判定和性质(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于直线l,m及平面α,β,下列说法中正确的是( )A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,l∥β,则α⊥βD.若l∥α,m⊥l,则m⊥α2.给出下列四个命题:①垂直于同一直线的两条直线互相平行;②垂直于同一平面的两条直线互相平行;③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行;④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.其中假命题的个数是( )A.1 B.2C.3 D.43.若斜线段AB是它在平面α上的射影的长的2倍,则AB与平面α所成的角是( )A.60°B.45°C.30°D.120°4.设a,b是两条直线,α,β是两个平面,则下列命题中正确的是( ) A.若a∥b,a∥α,则b∥αB.若α∥β,a∥α,则a⊥βC.若α⊥β,a⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β5.设M表示平面,a,b表示直线,给出下列四个命题:①若a∥b,a⊥M,则b⊥M;②若a⊥M,b⊥M,则a∥b;③若a⊥M,a⊥b,则b∥M;④若a∥M,a⊥b,则b⊥M.其中正确的命题是( )A.①②B.①②③C.②③④D.①②④6.已知PA⊥矩形ABCD所在的平面,如图所示,图中互相垂直的平面有( )A.1对B.2对C.3对D.5对6题图7题图8题图7.三棱锥P-ABC的所有棱长都相等,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是( )A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面ABC D.平面PAE⊥平面ABC8.如图,S为△ABC平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,则下列结论成立的是( )A.AB⊥BC B.平面SAC⊥平面SBCC.SB=SC D.以上都不对9.如图,三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,则二面角B-PA-C 的大小为( )A.90°B.60°C.45°D.30°10.如图(1)所示,四边形ABCD中,AD∥BC,AD=AB,∠DCB=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD(如图(2)所示),则在四面体ABCD中,下列说法正确的是( )A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中同步测试卷(十)
空间几何体微专题
(时间:100分钟,满分:120分)
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( )
A.500π3 cm 3
B.866π3
cm 3 C.1 372π3 cm 3 D.2 048π3
cm 3 2.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )
3.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172 B .210
C.132 D .310
4.某几何体的三视图如图所示,则该几何体的体积为( )
A .16+8π
B .8+8π
C .16+16π
D .8+16π
4题图 5题图
5.一个空间几何体的三视图如图所示,则该几何体的表面积为( )
A .48
B .32+817
C .48+817
D .80
6.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( ) A.3
3
B.233
C.4
33 D.533
7.某四棱台的三视图如图所示,则该四棱台的体积是( ) A .4
B.143
C.163 D .6
7题图8题图8.某三棱锥的三视图如图所示,该三棱锥的表面积是( )
A.28+6 5 B.30+6 5
C.56+12 5 D.60+12 5
9.设球的体积为V1,它的内接正方体的体积为V2,下列说法中最合适的是( )
A.V1比V2大约多一半B.V1比V2大约多两倍半
C.V1比V2大约多一倍D.V1比V2大约多一倍半
10.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )
A.V1<V2<V4<V3 B. V1<V3<V2<V4
C.V2<V1<V3<V4D.V2<V3<V1<V4。

相关文档
最新文档