第七章三角形测试题B1

合集下载

高考数学章节测试题及答案7

高考数学章节测试题及答案7

高考数学章节测试题及答案(第七章)(120分钟 150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2012·天津模拟)已知直线a、b是两条异面直线,直线c平行于直线a,则直线c与直线b( )(A)一定是异面直线(B)一定是相交直线(C)不可能是平行直线(D)不可能是相交直线2.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是( )(A)32π (B)52π (C)72π (D)92π3.如图,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且CF CG2CB CD3==,则( )(A)EF与GH互相平行(B)EF与GH异面(C)EF与GH的交点M可能在直线AC上,也可能不在直线AC上(D)EF与GH的交点M一定在直线AC上4.(2012·黄冈模拟)已知α,β是两个不同平面,m,n是直线,下列命题中不正确的是( )(A)若m∥n,m⊥α,则n⊥α(B)若m∥α,α∩β=n,则m∥n(C)若m⊥α,m⊥β,则α∥β(D)若m⊥α,m⊂β,则α⊥β5.(2011·江西高考)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为 ( )6.如图,下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )(A)①④(B)②④(C)①③④(D)①③7.如图,平行四边形ABCD中,AB⊥BD,沿BD将△ABD折起,使面ABD⊥面BCD,连接AC,则在四面体ABCD的四个面中,互相垂直的平面的对数为( )(A)4 (B)3 (C)2 (D)18.(2012·珠海模拟)如图为棱长是1的正方体的表面展开图,在原正方体中,给出下列三个命题:①点M到AB的距离为2;;②三棱锥C-DNE的体积是16.③AB与EF所成的角是2其中正确命题的个数是( )(A)0 (B)1 (C)2 (D)39.(易错题)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是( )(A)点H是△A1BD的垂心(B)AH的延长线经过点C1(C)AH垂直平面CB1D1(D)直线AH和BB1所成角为45°10.(2012·北京模拟)如图,四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD. 将四边形ABCD沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD,则下列结论正确的是( )(A)A′C⊥BD(B)∠BA′C=90°(C)CA′与平面A′BD所成的角为30°(D)四面体A′BCD的体积为13二、填空题(本大题共7小题,每小题5分,共35分.请把正确答案填在题中横线上)11.已知三个球的半径R1,R2,R3满足R1+2R2=3R3,则它们的表面积S1,S2,S3满足的等量关系是_________.12.(2012·长沙模拟)一个五面体的三视图如图,正视图与侧视图是等腰直角三角形,俯视图为直角梯形,部分边长如图所示,则此五面体的体积为_____.13.一个正四棱柱的各个顶点都在一个半径为2 cm的球面上,如果正四棱柱的底面边长为2 cm,那么该棱柱的表面积为________.14.一个球与一个正三棱柱的三个侧面和两个底面均相切,已知这个球的体积是32,那么这个三棱柱的体积是_________.315.如图,正方体ABCD-A1B1C1D1中,M、N、P、Q、R、S分别是AB、BC、C1D1、C1C、A1B1、B1B的中点,则下列判断:(1)PQ与RS共面;(2)MN与RS共面;(3)PQ与MN共面.则正确结论的序号是_________.16.已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是_________.17.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.三、解答题(本大题共5小题,共65分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(12分)(2011·陕西高考)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.(1)证明:平面ADB⊥平面BDC;(2)设BD=1,求三棱锥D-ABC的表面积.19.(13分)如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F 分别是棱CC1、AB的中点.(1)求证:CF⊥BB1;(2)求四棱锥A-ECBB1的体积.20.(13分)(预测题)如图,正方体ABCD-A1B1C1D1的棱长为2,点E在CC1上,点F是C1D1的中点.(1)若AF∥平面BDE,求CE的长;(2)若平面BDE⊥平面A1BD,求三棱锥F-ABE的体积.21.(13分)如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,D,E分别为BC,BB1的中点,四边形B1BCC1是边长为6的正方形.(1)求证:A1B∥平面AC1D;(2)求证:CE⊥平面AC1D.22.(14分)(2011·新课标全国卷)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D-PBC的高.答案解析1.【解析】选C.若c∥b,∵c∥a,∴a∥b,与已知矛盾.2.【解题指南】△ABC绕直线BC旋转一周后所得几何体为一圆锥,但其内部缺少一部分.用大圆锥的体积减去小圆锥的体积即为所求几何体的体积.【解析】选A.旋转后得到的几何体是一个大圆锥中挖去一个小圆锥.故所求体积为V=V大圆锥-V小圆锥=13πr2(1+1.5-1)=32π.3.【解析】选D.依题意可得EH∥BD,FG∥BD,故EH∥FG,所以E、F、G、H共面,因为EH=12BD,FG2BD3=,故EH≠FG,所以四边形EFGH是梯形,EF与GH必相交,设交点为M,因为点M在EF上,故点M在平面ACB上,同理,点M在平面ACD上,即点M是平面ACB与平面ACD的交点,而AC是这两个平面的交线,所以点M一定在平面ACB与平面ACD的交线AC上,故选D.4.【解析】选B.如图m∥α,α∩β=n,但m与n不平行.5.【解题指南】在左视图中,长方体的体对角线投到了侧面,成了侧面的面对角线,易得答案.【解析】选D.根据正投影的性质,结合左视图的要求知,长方体的体对角线投到了侧面,成了侧面的面对角线,结合选项即得选项D正确.6.【解析】选D.①取前面棱的中点,证AB平行于平面MNP即可;③可证AB与MP平行.7.【解析】选B.因为AB⊥BD,面ABD⊥面BCD,且交线为BD,故有AB⊥面BCD,·则面ABC⊥面BCD,同理CD⊥面ABD,则面ACD⊥面ABD,因此共有3对互相垂直的平面.8.【解析】选D.依题意可作出正方体的直观图如图,显然M到AB的距离为12MC=22,∴①正确,而V C-DNE=111⨯⨯⨯⨯,∴②正确,111=326π,AB与EF所成的角等于AB与MC所成的角,即为2∴③正确.9.【解析】选D.因为三棱锥A-A1BD是正三棱锥,故顶点A在底面的射影是底面中心,A正确;平面A1BD∥平面CB1D1,而AH垂直平面A1BD,所以AH垂直平面CB1D1,C正确;根据对称性知B正确.故选D.10.【解析】选B.在题图(2)中取BD的中点M,连接MC、A′M.∵A′B=A′D,∴A′M⊥BD.又∵平面A′BD⊥平面BCD,∴A′M⊥平面BCD.①选项A中,若A′C⊥BD,那么BD⊥平面A′MC⇒BD⊥MC.而BD⊥CD,显然BD⊥MC不可能,∴A不正确;②选项B中,∵BD⊥CD且平面A′BD⊥平面BCD,可得CD⊥平面A′BD,可知CD⊥A′D,在△A′CD中,A′D=CD=1⇒A′..又∵A′B=1,∴∴在△A′BC中,A′B2+A′C2=BC2,∴∠BA′C=90°,故B正确;③选项C中,由②分析知,∠CA′D即为CA′与平面A′BD所成的角,在Rt△A′DC中,,cos∠CA′D=A'D∴∠CA ′D 为45°,故C 不正确;④选项D 中,由①知A ′M ⊥平面BCD,得V A ′-BCD =13S △BCD ×A ′M=1111=3226⨯⨯,故D 不正确.故选B.11.【解析】S 1=4πR 211,23,故123R R R ===,由R 1+2R 2=3R 3,12. 【解析】由三视图可知,此几何体是一个底面为直角梯形,有一条侧棱垂直于底面的四棱锥,其体积为V =1132⨯×(1+2)×2×2=2. 答案:2【方法技巧】三视图的考查方式三视图是新课标的新增内容,主要考查学生的空间想象能力,新增内容总会重点考查,所以近年来三视图的有关问题一直是高考考查的重点和热点,其考查方式有以下特点:一是给出空间图形选择其三视图;二是给出三视图,判断其空间图形或还原直观图,有时也会和体积、面积、角度的计算或线面位置关系的判定相结合.13.【解题指南】根据正四棱柱的体对角线与球直径相同解题. 【解析】设正四棱柱的高为h,则得h=.故S表=4×(2××22=8+2).答案:(8+214.【解题指南】根据组合体的特征求得三棱柱的底面边长和高,然后求体积即可.【解析】易求得球的半径为2,球与正三棱柱各个面都相切,可知各切点为各个面的中心,棱柱的高等于球的直径,设棱柱底面三角形的边长为a,则有1a23⨯=2⇒a=V24⨯=答案:15.【解析】可证PQ与RS平行,从而共面,NQ与PM平行,故PQ与MN也共面,故(1)、(3)正确,MN与RS是异面直线,故(2)错.答案:(1)、(3)16.【解析】取BC的中点N,连接B1N,则AN⊥平面B1C,∴AN⊥BM,由几何知识知B1N⊥BM,∴BM⊥平面AB1N,∴BM⊥AB1,故所求角为90°.答案:90°17.【解析】设正三棱柱的底面边长为a,高为2h,则BD=C1DBC1BC1D是面积为6 的直角三角形,得2222222(a h)a4h1(a h)62⎧⨯⎪⎨⎪⎩+=++=,解得2a8h2⎧⎨⎩==,故此三棱柱的体积为V=12×8×sin 60°×4=.答案:18.【解析】(1)∵折起前AD是BC边上的高,∴当△ABD折起后,AD⊥DC,AD⊥DB,又DB∩DC=D,∴AD⊥平面BDC,∵AD⊂平面ABD.∴平面ABD⊥平面BDC.(2)由(1)知,DA⊥DB,DB⊥DC,DC⊥DA,∵DB=DA=DC=1,∴,从而S△DAB=S△DBC=S△DCA=12×1×1=12,S△ABC=12×sin60°=2,故表面积:S=1219.【解析】(1)∵三棱柱ABC-A1B1C1是直棱柱, ∴BB1⊥平面ABC,又∵CF⊂平面ABC,∴CF⊥BB1.(2)∵三棱柱ABC-A1B1C1是直棱柱,∴BB1⊥平面ABC,又∵AC⊂平面ABC,∴AC⊥BB1,∵∠ACB=90°,∴AC⊥BC,∵BB1∩BC=B.∴AC⊥平面ECBB1,∴1A ECBB V -=1ECBB 1S 3四边形·AC,∵E 是棱CC 1的中点,∴EC=12AA 1=2,∴1ECBB S 边四形=12(EC+BB 1)·BC=12×(2+4)×2=6,∴1A ECBB V -=131ECBB S 边四形·AC=13×6×2=4.20.【解析】(1)连接AC 交BD 于O,连接CF 交DE 于P,连接PO∵AF ∥平面BDE,∴AF ∥PO,又O 为AC 中点, ∴P 为CF 中点.在正方形DD 1C 1C 中,延长DE 交D 1C 1的延长线 于点Q,则由平面几何知识得11C E 1=D D 3,所以CE=43. (2)如图,由平面BDE ⊥平面A 1BD 且EO ⊥BD, 所以EO ⊥平面A 1BD ,∵A 1B ⊥AB 1,A 1B ⊥B 1C 1,∴A 1B ⊥平面AB 1C 1, ∴A 1B ⊥AC 1, 同理A 1D ⊥AC 1, 又∵A 1B ∩A 1D=A 1,∴AC 1⊥平面A 1BD ,∴EO ∥AC 1,因此E 为CC 1的中点,连接BC 1,B 1C ⊥BC 1,B 1C ⊥AB, ∴B 1C ⊥平面ABC 1F ,即B 1C ⊥平面ABF , ∴E 点到平面ABF 的距离为14B 1C ,即22,又S△ABF=12AB·BC1=12×2×22=22,所以V F-ABE=V E-ABF=13S△ABF·22=23.21.【解析】(1)连接A1C,与AC1交于O点,连接OD.因为O,D分别为AC1和BC的中点,所以OD∥A1B.又OD⊂平面AC1D,A1B 平面AC1D,所以A1B∥平面AC1D.(2)在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,又AD⊂平面ABC,所以BB1⊥AD.因为AB=AC,D为BC的中点,所以AD⊥BC.又BC∩BB1=B,所以AD⊥平面B1BCC1.又CE⊂平面B1BCC1,所以AD⊥CE.因为四边形B1BCC1为正方形,D,E分别为BC,BB1的中点, 所以Rt△CBE≌Rt△C1CD,∠CC1D=∠BCE.所以∠BCE+∠C1DC=90°.所以C1D⊥CE.又AD∩C1D=D,所以CE⊥平面AC1D.22.【解析】(1)因为∠DAB=60°,AB=2AD, 由余弦定理得BD=3AD,从而BD2+AD2= AB2,故BD⊥AD,又PD⊥底面ABCD,可得BD⊥PD,又PD∩AD=D, 所以BD⊥平面PAD,故 PA⊥BD.(2)如图,作DE⊥PB,垂足为E.已知PD⊥底面ABCD,则PD⊥BC.由(1)知BD⊥AD,又BC∥AD,所以BC⊥BD,因为BD∩PD=D,故BC⊥平面PBD,所以BC⊥DE.则DE⊥平面PBC.由题设知,PD=1,则BD=3,PB=2,,根据DE·PB=PD·BD,得DE=32即棱锥D-PBC的高为3.2。

第七章《三角形》测试题

第七章《三角形》测试题

第七章《三角形》测试题班别___________ 姓名_______________一、选择题1、有下列长度的三条线段,能组成三角形的是( )A 、 2cm ,3cm ,4cmB 、 1cm ,4cm ,2cmC 、1cm ,2cm ,3cmD 、 6cm ,2cm ,3cm2、如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻 店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B. 带②去C. 带③去D. 带①和②去3、右图中三角形的个数是( ) A .6 B .7 C .8 D .94、能把一个任意三角形分成面积相等的两部分是( ) A.角平分线 B.中线 C.高 D.A 、B 、C 都可以5、下列不能够镶嵌的正多边形组合是( )A.正三角形与正六边形B.正方形与正六边形C.正三角形与正方形D.正五边形与正十边形6.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形7、三角形的一个外角是锐角,则此三角形的形状是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.无8、 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形, ④直角三角形中两锐角的和为900,其中判断正确的有( ) A.1个 B.2个 C.3个 D.4个9、在下列正多边形材料中,不能单独用来铺满地面的是( ). A .正三角形 B .正四边形 C .正五边形 D .正六边形 10、正多边形的一个内角等于144°,则该多边形是正( )边形. A .8 B .9 C .10 D .11 11、六边形的对角线的条数是( ) A. 7 B. 8 C. 9 D. 1012、如图所示,在长为5cm ,宽为3cm 的长方形内部有一平行四边形,则平行四边形的面积为( ).A .7cm 2B .8cm 2C .9cm 2D .10cm 2② ① ③ 2题C DA BE F3题13、.如图所示,BO,CO分别是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为().A.80° B.90° C.120° D.140°二、填空题:14.造房子时屋顶常用三角结构,从数学角度来看,是应用了____________________,而活动挂架则用了四边形的________________________.15.用长度为8cm,9cm,10cm的三条线段_______构成三角形.(•填“能”或“不能”)16.要使五边形木架不变形,则至少要钉上_______根木条.17.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.18.如图1所示,AB∥CD,∠A=45°,∠C=29°,则∠E=______.(1) (2) (3) 19.如图2所示,∠α=_______.20.如图3所示,共有_____个三角形,其中以AB为边的三角形有_____,以∠C•为一个内角的三角形有______.21.正十边形的内角和等于______,每个内角等于_______.22.等腰三角形的周长为20cm,一边长为6cm,则底边长为______.23.如图4所示,∠A+∠B+∠C+∠D+∠E=________.24.若一个等腰三角形的两边长分别是 3 cm和 5 cm,则它的周长是___________cm。

(完整版)七年级数学三角形测试题(附答案)

(完整版)七年级数学三角形测试题(附答案)

第七章 三角形班级: 姓名: 座号: 评分:一. 选择题。

(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. 19cB. 914cC. 1018cD. 无法确定2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A. n 个B. (n-1)个C. (n-2)个D. (n-3)个4. n 边形所有对角线的条数有( )A. ()12n n -条 B. ()22n n -条 C. ()32n n -条 D. ()42n n -条 5. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。

若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( )A. 1种B. 2种C. 3种D. 4种6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定 8. 若一个三角形的三边长是三个连续的自然数,其周 长m 满足1022m ,则这样的三角形有( ) A. 2个 B. 3个 C. 4个 D. 5个二. 填空题。

(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

3. 要使六边形木架不变形,至少要再钉上 根木条。

4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。

第七章 三角形测试题组

第七章 三角形测试题组

第七章 三角形测试题组姓名___________班级__________学号__________分数___________一、选择题1.(3338)如图AB ∥CD ,︒=∠38A ,︒=∠80C ,则=∠M ( )A .︒52;B .︒42;C .︒40;D .︒10;2.(6373)若AD 是△ABC 的角平分线,∠B = 42º,∠C = 78º,则∠BAD 等于( )A .60º;B .45º;C .30º;D .15º;3.(7394)直角三角形两锐角的角平分线所交成的角的度数是( )A .45°;B .135°;C .45°或135°;D .都不对;4.(9818)如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC =20°,横板上下可转动的最大角度(即∠A ′OA )是( ) A B A ′B ′O CA .80°B .60°C .40°D .20°5.(376)以下列长度(cm )的三条小木棒,如果首尾顺次连洁,能钉成三角形的是( )A .10、14、24;B .12、16、32;C .16、6、4;D .8、10、12;6.(475-2006北京)已知等腰三角形的一边等于3,一边等于6,则它的周长为( )A .12;B .12或15;C .15;D .15或18;7.(403)在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( )A .4cm ;B .5cm ;C .9cm ;D .13cm ;8.(284)三角形一个外角小于与它相邻的内角,这个三角形是( )A .锐角三角形;B .钝角三角形;C .直角三角形;D .不能确定;9.(389)能把一个三角形分成面积相等的两部分是三角形的( )A .中线;B .高线;C .角平分线;D .过边的中点和高垂直的直线;10.(255)下列长度的三条线段可以组成三角形的是( )A .3 , 4 , 2;B .12 , 5 , 6;C .1 , 5 , 9;D .5,2,7;二、填空题11.(9669)如图,△ABC 中,∠ABC =∠C =∠BDC ,点D 在AC 上,且∠A =∠ABD ,则∠A 的度数为________.D BE AMC DB12.(8336)如图∠A =75º,∠ABE =30º,∠ACD =25º,则∠BDC = ,∠BEC = ,∠BFC = ;F E DC B A13.(3252)图中有____________个三角形. FED C BA14.(463-2007广东韶关)按如图规律摆放三角形:则第⑷堆三角形的个数为______;第(n )堆三角形的个数为______.15.(3330)不等边△ABC 的三边长分别是3、4、x ,周长为偶数,则整数 x ____________.16.(315-2008湖南长沙)如下图已知AD 与BC 相交于点O ,AB ∥CD 如果∠B=60度,∠D =40°,那么∠BOD 为______度. C D BA O17.(215)如图∠A =75º,∠ABE =30º,∠ACD =25º,则∠BDC = ,∠BEC = ,∠BFC = ;F ED C B A18.(312-2008江苏常州)如下图,在△ABC 中,BE 平分∠ABC ,DE ∥BC , ∠ABE =35°,则∠DEB=______ °,∠ADE =______.C D BE19.(281)如图,∠ABD 与∠ACE 是△ABC 的两个外角,若∠A =70°,则∠ABD +∠ACE =_____. AB C D E20.(431-08江苏兴化)如下图,一扇窗户打开后,用窗钩BC 可将其固定,这里所运用的几何原理是______.CB三、证明题21.(418)如图,△ABC 中,AB AC ,∠ABC 的平分线和外角∠ACF 的平分线交于点P ,PD ∥BC ,D 在AB 上,PD 交AC 于E ,求证:DE =BD -CE .A B C D E PF22.(279)如图,E 是△ABC 的边CA 延长线上一点,F 是AB 上一点,D 点在BC 的延长线上,试说明:∠1<∠2.21FED C B A四、解答题23.(462)已知小明有两根木条,长度为2cm 、6cm ;小王有两根木条,长度是4cm 与6cm ;小张有两根木条,长度为3cm 、7cm ,每人各取一根,能组成多少个三角形?24.(5113)如图,在△ABC 中,∠A =60º,∠B =70º,∠ACB 的平分线交AB 于D ,DE ∥BC 交AC 于E ,求∠BDC 、∠EDC . ED C BA25.(356)如图,E 是△ABC 中AC 边延长线上一点,∠BCE 的平分线交AB 延长线于点D ,若∠CAB =40°,∠CBD =68°,求∠CDB 的度数.EAB C D26.(238)如图,在△ABC 中,∠B =60°,∠BAC =50°,AD 平分∠BAC ,D 点在BC 上,求∠1、∠2的度数.。

人教版数学七年级下册第七章测试卷3(含答案解析)

人教版数学七年级下册第七章测试卷3(含答案解析)

单元测验卷一.选择题.1.(3分)点P(3,﹣1)在第()象限.A.一B.二C.三D.四2.(3分)点A(0,2)在()A.第二象限B.x轴的正半轴上C.y轴的正半轴上D.第四象限3.(3分)如果点P(﹣3,b)在第三象限内,则b()A.是正数B.是负数C.是0 D.可以是正数,也可以是负数4.(3分)如果点A(2,﹣3)和点B关于原点对称,则点B的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)5.(3分)点P(2,﹣5)到x轴、y轴的距离分别为()A.2、5 B.2、﹣5 C.5、2 D.﹣5、26.(3分)在第二、四象限内两坐标轴夹角的平分线上的点的横坐标和纵坐标()A.相等B.互为倒数C.之差为零D.互为相反数7.(3分)在平面直角坐标系中,将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位8.(3分)△DEF(三角形)是由△ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A.(2,2),(3,4)B.(3,4),(1,7)C.(﹣2,2),(1,7)D.(3,4),(2,﹣2)9.(3分)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2) B.(3,2) C.(3,3) D.(2,3)10.(3分)如图,下列说法正确的是()A.A与D的横坐标相同B.A与B的横坐标相同C.B与C的纵坐标相同 D.C与D的纵坐标相同11.(3分)将点A(﹣3,2)先向右平移3个单位,再向下平移5个单位,得到A′、将点B(﹣3,6)先向下平移5个单位,再向右平移3个单位,得到B′,则A′与B′相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度12.(3分)已知点A(m,n)在第二象限,则点B(|m|,﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题.13.(3分)如果将一张“9排5号”的电影票简记为(9,5),那么(5,9)表示的电影票表示的是排号.14.(3分)平面直角坐标系中,原点O的坐标为,x轴上的点的坐标为0,y轴上的点的坐标为0.15.(3分)将点A(﹣2,3)向左平移2个单位长度后,所得点的坐标为;把A向下平移1个单位长度后,所得点的坐标为.16.(3分)已知|x﹣2|+(y+1)2=0,则点P(x,y)在第个象限,坐标为.三.解答题.17.在平面直角坐标系列中,标出下列各点:(1)点A在x轴的正半轴上,距离原点1个单位长度;(2)点B在y轴的负半轴上,距离原点2个单位长度;(3)点C在第四象限,距离x轴1个单位长度,距离y轴3个单位长度;(4)点D在第一象限,距离x轴1个单位长度,距离y轴4个单位长度.请用线段依次连接这些点,你能得到什么图形?18.若线段AB平行于x轴,AB的长为4,且A的坐标为(2,3),求点B的坐标.19.三角形ABC三个顶点的坐标分别为A(﹣2,﹣3)、B(3,2)、C(2,﹣1),如果将这个三角形三个顶点的横坐标都加3,同时纵坐标都减1,分别得到点A1、B1、C1,依次用线段连接A1、B1、C1所得三角形A1B1C1.(1)分别写出点A1、B1、C1坐标;(2)三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?20.如图是网格图,每个小正方形的边长均为1.△ABC(“△”表示“三角形”)是格点三角形(即每个顶点都在小正方形的顶点上),它在坐标平面内平移,得到△PEF,点A平移后落在点P的位置上.(1)请你在图中画出△PEF,并写出顶点P、E、F的坐标;(2)说出△PEF是由△ABC分别经过怎样的平移得到的?21.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)如果台阶有10级,请你求出该台阶的长度和高度;(3)若这10级台阶的宽度都是2m,单位长度为1m,现要将这些台阶铺上地毯,需要多少平方米?四、解答题(共1小题,满分0分)22.阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为.观察应用:(1)如图,在平面直角坐标系中,若点P1(0,﹣1)、P2(2,3)的对称中心是点A,则点A的坐标为;(2)另取两点B(﹣1.6,2.1)、C(﹣1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为、.拓展延伸:(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.参考答案与试题解析一.选择题.1.(3分)点P(3,﹣1)在第()象限.A.一B.二C.三D.四【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(3,﹣1)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)点A(0,2)在()A.第二象限B.x轴的正半轴上C.y轴的正半轴上D.第四象限【考点】D1:点的坐标.【分析】根据象限的特点,判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:∵点A(0,2)的横坐标是0,纵坐标是正数,∴点A在平面直角坐标系y轴的正半轴上.故选C.【点评】本题考查了象限以及x轴、y轴的特点,难度适中.3.(3分)如果点P(﹣3,b)在第三象限内,则b()A.是正数B.是负数C.是0 D.可以是正数,也可以是负数【考点】D1:点的坐标.【专题】11 :计算题.【分析】根据第三象限内点的坐标特点得到b<0.【解答】解:∵P(﹣3,b)在第三象限内,∴b<0.故选B.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.4.(3分)如果点A(2,﹣3)和点B关于原点对称,则点B的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答即可.【解答】解:∵点A(2,﹣3)和点B关于原点对称,∴点B的坐标为(﹣2,3).故选A.【点评】本题考查了关于原点对称的点的坐标,熟记关于原点的对称点的横坐标、纵坐标都相反数是解题的关键.5.(3分)点P(2,﹣5)到x轴、y轴的距离分别为()A.2、5 B.2、﹣5 C.5、2 D.﹣5、2【考点】D1:点的坐标.【分析】求得﹣5的绝对值即为点P到x轴的距离,求得2的绝对值即为点P到y轴的距离.【解答】解:∵|﹣5|=5,|2|=2,∴点P到x轴的距离为5,到y轴的距离为2.故选:C.【点评】本题考查了点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.6.(3分)在第二、四象限内两坐标轴夹角的平分线上的点的横坐标和纵坐标()A.相等B.互为倒数C.之差为零D.互为相反数【考点】D5:坐标与图形性质.【分析】根据角平分线上的点到角的两边的距离相等以及第二、四象限内点的横坐标与纵坐标的符号相反解答.【解答】解:∵角平分线上的点到角的两边的距离相等,第二、四象限内点的横坐标与纵坐标的符号相反,∴第二、四象限内两坐标轴夹角的平分线上的点的横坐标和纵坐标互为相反数.故选D.【点评】本题考查了坐标与图形,熟记平面直角坐标系与各象限内点的符号特点是解题的关键.7.(3分)在平面直角坐标系中,将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图形相比()A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位【考点】Q3:坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,可得答案.【解答】解:将三角形各点的横坐标都减去3,纵坐标保持不变,所得图形与原图形相比向左平移了3个单位.故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,关键是掌握点的变化规律.8.(3分)△DEF(三角形)是由△ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A.(2,2),(3,4)B.(3,4),(1,7)C.(﹣2,2),(1,7)D.(3,4),(2,﹣2)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:点A的对应点D,是横坐标从﹣1到1,说明是向右移动了1﹣(﹣1)=2个单位,纵坐标是从﹣4到﹣1,说明是向上移动了﹣1﹣(﹣4)=3个单位,那么其余两点移运转规律也如此,即横坐标都加2,纵坐标都加3.故点E、F的坐标为(3,4)、(1,7).故选B.【点评】本题考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标.9.(3分)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2) B.(3,2) C.(3,3) D.(2,3)【考点】D5:坐标与图形性质;LB:矩形的性质.【分析】本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.【解答】解:如图可知第四个顶点为:即:(3,2).故选:B.【点评】本题考查学生的动手能力,画出图后可很快得到答案.10.(3分)如图,下列说法正确的是()A.A与D的横坐标相同B.A与B的横坐标相同C.B与C的纵坐标相同 D.C与D的纵坐标相同【考点】D5:坐标与图形性质;L5:平行四边形的性质.【分析】由图意得BC∥x轴,那么B与C的纵坐标相同.【解答】解:因为AD∥x,BC∥x,所以A、D纵坐标相同,B、C纵坐标相同,根据选项可知C正确,故选C.【点评】本题用到的知识点为:平行于x轴的直线上的点的纵坐标都相等.11.(3分)将点A(﹣3,2)先向右平移3个单位,再向下平移5个单位,得到A′、将点B(﹣3,6)先向下平移5个单位,再向右平移3个单位,得到B′,则A′与B′相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度【考点】Q3:坐标与图形变化﹣平移.【分析】根据向右平移横坐标加,向下平移纵坐标减求出点A′的坐标,再求出点B′的坐标,然后解答即可.【解答】解:∵点A(﹣3,2)先向右平移3个单位,再向下平移5个单位,∴点A′(0,﹣3),∵点B(﹣3,6)先向下平移5个单位,再向右平移3个单位,∴点B′(0,1),∴A′与B′相距4个单位.故选A.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(3分)已知点A(m,n)在第二象限,则点B(|m|,﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,即可确定出m、n的正负,从而确定|m|,﹣n的正负,即可得解.【解答】解:∵点A(m,n)在第二象限,∴m<0,n>0,则可得|m|>0,﹣n<0,∵点B的坐标为(|m|,﹣n),∴点B在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,熟记各象限内点的坐标的符号是解题的关键.二.填空题.13.(3分)如果将一张“9排5号”的电影票简记为(9,5),那么(5,9)表示的电影票表示的是5排9号.【考点】D3:坐标确定位置.【分析】由于9排5号的电影票简记为(9,5),则(5,9)的电影票表示的是5排9号.【解答】解:∵“9排5号”的电影票简记为(9,5),∴(5,9)的电影票表示为5排9号.故答案为5,9.【点评】本题考查了坐标确定位置:直角坐标平面内点的位置由有序实数对确定,有序实数对与点一一对应.14.(3分)平面直角坐标系中,原点O的坐标为(0,0),x轴上的点的纵坐标为0,y轴上的点的横坐标为0.【考点】D1:点的坐标.【分析】直接根据坐标系中各个象限内及坐标轴上的点的坐标特点可求解.【解答】解:平面直角坐标系中,原点O的坐标为(0,0),x轴上的点的纵坐标为0,y轴上的点的横坐标为0.故各空依次填(0,0)、纵、横.【点评】要掌握平面直角坐标系中各个部位上的点的坐标特点,只有掌握住了,在解题的过程中才能准确而迅速的解题.15.(3分)将点A(﹣2,3)向左平移2个单位长度后,所得点的坐标为(﹣4,3);把A向下平移1个单位长度后,所得点的坐标为(﹣2,2).【考点】Q3:坐标与图形变化﹣平移.【分析】根据平移规律,左右移,纵不变,横减加;上下移,横不变,纵加减.【解答】解:将点A(﹣2,3)向左平移2个单位长度后,所得点的坐标为(﹣2﹣2,3),即(﹣4,3);把A向下平移1个单位长度后,所得点的坐标为(﹣2,3﹣1),即(﹣2,2).故答案为:(﹣4,3),(﹣2,2).【点评】本题主要考查点坐标的平移变换.关键是熟练掌握点平移的变化规律:左减右加,上加下减.16.(3分)已知|x﹣2|+(y+1)2=0,则点P(x,y)在第四个象限,坐标为(2,﹣1).【考点】D1:点的坐标;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质列式求出x、y的值,然后根据各象限内点的坐标特征解答.【解答】解:由题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,∴点P(x,y)在第四象限,坐标为(2,﹣1).故答案为:四,(2,﹣1).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).三.解答题.17.在平面直角坐标系列中,标出下列各点:(1)点A在x轴的正半轴上,距离原点1个单位长度;(2)点B在y轴的负半轴上,距离原点2个单位长度;(3)点C在第四象限,距离x轴1个单位长度,距离y轴3个单位长度;(4)点D在第一象限,距离x轴1个单位长度,距离y轴4个单位长度.请用线段依次连接这些点,你能得到什么图形?【考点】D5:坐标与图形性质.【分析】根据平面直角坐标系与点的坐标的确定找出点A、B、C、D的位置,然后顺次连接即可.【解答】解:如图所示,用线段依次连接这些点,得到一个平行四边形.【点评】本题考查了坐标与图形的性质,熟练掌握在平面直角坐标系中确定点的位置的方法是解题的关键.18.若线段AB平行于x轴,AB的长为4,且A的坐标为(2,3),求点B的坐标.【考点】D5:坐标与图形性质.【分析】根据平行于x轴的点的纵坐标相同求出点B的纵坐标,再分点B在点A 的左边与右边两种情况讨论求解.【解答】解:∵线段AB平行于x轴,A的坐标为(2,3),∴点B的纵坐标是3,∵AB=4,∴点B在点A的左边时,横坐标为2﹣4=﹣2,点B在点A的右边时,横坐标为2+4=6,∴点B的坐标为(6,3)或(﹣2,3).【点评】本题考查了坐标与图形性质,熟记平行于x轴的点的纵坐标相同,难点在于要分情况讨论.19.三角形ABC三个顶点的坐标分别为A(﹣2,﹣3)、B(3,2)、C(2,﹣1),如果将这个三角形三个顶点的横坐标都加3,同时纵坐标都减1,分别得到点A1、B1、C1,依次用线段连接A1、B1、C1所得三角形A1B1C1.(1)分别写出点A1、B1、C1坐标;(2)三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?【考点】Q3:坐标与图形变化﹣平移.【分析】(1)根据题意进行计算即可;(2)根据坐标与图形的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.【解答】解:(1)A1(1,﹣4),B1(6,1),C1(5,﹣2);(2)三角形A1B1C1的大小、形状与三角形ABC的大小、形状完全一样,仅是位置不同,三角形A1B1C1是将三角形ABC沿x轴方向向右平移3个单位,再沿y 轴方向向下平移1个单位得到的.【点评】此题主要考查了坐标与图形的变化,关键是掌握平移后点的坐标的变化规律.把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.20.如图是网格图,每个小正方形的边长均为1.△ABC(“△”表示“三角形”)是格点三角形(即每个顶点都在小正方形的顶点上),它在坐标平面内平移,得到△PEF,点A平移后落在点P的位置上.(1)请你在图中画出△PEF,并写出顶点P、E、F的坐标;(2)说出△PEF是由△ABC分别经过怎样的平移得到的?【考点】Q4:作图﹣平移变换.【分析】(1)根据A点平移到P点的方法,分别找到B、C两点平移后的对应点,再写出坐标即可;(2)根据图中△ABC和△PEF的位置进行描述即可.【解答】解:(1)如图所示:P(﹣3,﹣3),E(﹣2,0),F(﹣1,﹣1);(2)先把△ABC向左平移3个单位长度,再把它向下平移2个单位长度(或先向下平移2个单位长度,再向左平移3个单位长度).【点评】此题主要考查了作图﹣﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1),(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)如果台阶有10级,请你求出该台阶的长度和高度;(3)若这10级台阶的宽度都是2m,单位长度为1m,现要将这些台阶铺上地毯,需要多少平方米?【考点】D5:坐标与图形性质.【专题】11 :计算题.【分析】(1)以点A为坐标原点建立平面直角坐标系,然后写出各点的坐标即可;(2)根据平移的性质求横向与纵向的长度,即为台阶的长度和高度;(3)根据(2)求出地毯的长度,然后乘以台阶的宽度计算即可得解.【解答】解:(1)建立平面直角坐标系如图所示,C(2,2),D(3,3),E(4,4),F(5,5);(2)台阶的长度:1×(10+1)=11,高度:1×10=10;(3)∵单位长度为1m,∴地毯的长度为:(11+10)×1=21m,∵台阶的宽度都是2m,∴地毯的面积为21×2=42m2,答:将这些台阶铺上地毯,需要42平方米.【点评】本题考查了坐标与图形性质,主要利用了平面直角坐标系的定义和在平面直角坐标系中确定点的坐标的方法,平移的性质.四、解答题(共1小题,满分0分)22.阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为.观察应用:(1)如图,在平面直角坐标系中,若点P1(0,﹣1)、P2(2,3)的对称中心是点A,则点A的坐标为(1,1);(2)另取两点B(﹣1.6,2.1)、C(﹣1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为(﹣5.2,1.2)、(2,3).拓展延伸:(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.【考点】D5:坐标与图形性质;R4:中心对称.【专题】16 :压轴题;21 :阅读型.【分析】(1)直接利用题目所给公式即可求出点A的坐标;(2)首先利用题目所给公式求出P2的坐标,然后利用公式求出对称点P3的坐标,依此类推即可求出P8的坐标;(3)由于P1(0,﹣1)→P2(2,3)→P3(﹣5.2,1.2)→P4(3.2,﹣1.2)→P5(﹣1.2,3.2)→P6(﹣2,1)→P7(0,﹣1)→P8(2,3),由此得到P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环,利用这个规律即可求出点P2012的坐标,也可以根据图形求出在x轴上与点P2012、点C 构成等腰三角形的点的坐标.【解答】解:(1)(1,1);(2)P3、P8的坐标分别为(﹣5.2,1.2),(2,3);(3)∵P1(0,﹣1)→P2(2,3)→P3(﹣5.2,1.2)→P4(3.2,﹣1.2)→P5(﹣1.2,3.2)→P6(﹣2,1)→P7(0,﹣1)→P8(2,3);∴P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环.∵2012÷6=335…2.∴P2012的坐标与P2的坐标相同,为P2012(2,3);在x轴上与点P2012、点C构成等腰三角形的点的坐标为.【点评】此题是一个阅读材料的题目,读懂题目,利用题目所给公式是解题的关键,利用公式可以解决后面的所有问题。

七级数学下册第七章《三角形》综合测试题

七级数学下册第七章《三角形》综合测试题

一、选择题(每题3分,共33分)1.等腰三角形两边长分别为 3,7,则它的周长为 ( )A 、 13B 、 17C 、 13或17D 、 不能确定2.一个多边形内角和是10800,则这个多边形的边数为 ( )A 、 6B 、 7C 、 8D 、 9 3.若三角形三个内角的比为1:2:3,则这个三角形是( )A 、 锐角三角形B 、直角三角形C 、等腰三角形D 、钝角三角形 4.图中有三角形的个数为 ( )A 、4个 B 、 6个 C 、 8个 D 、 10个5. 如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。

那么图中与∠A 相等的角是( )A 、 ∠B B 、 ∠ACDC 、 ∠BCD D 、 ∠BDC 6. 能将三角形面积平分的是三角形的( )A 、 角平分线B 、 高C 、 中线D 、外角平分线第(4)题EDCB A第(5)题D CBA7. 在平面直角坐标系中,点A(-3,0),B(5,0),C(0,4)所组成的三角形ABC的面积是()A、32;B、4;C、16;D、88. 以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()(A)1个 (B)2个 (C)3个 (D)4个依次观察左边三个图形,并判断照此规律从左向右第四个图形是()(A(B(C)(D10. 等腰三角形的底边BC=8 cm,且|AC-BC|=2 cm,则腰长AC为( )A.10 cm或6 cmB.10 cmC.6 cmD.8 cm或6 cm11. 如果在△ABC中,∠A=70°-∠B,则∠C等于()A 、35° B、70° C 、110° D、140°二、填空(每小题3分,共33分)12.如图,从A 处观测C 处仰角∠CAD=300,从B 处观测C 处的仰角∠CBD=450,从C 外观测A 、B 两处时视角∠ACB=度13.已知:如图,CD ∥AB ,∠A=400,∠B=600,那么∠1=度,∠2=度 14.一个三角形有两条边相等,周长为20㎝,三角形的一边长为5㎝,那么其它两边长分别为 . 15.填表:用长度相等的火柴棒拼成如图所示的图形16.要使五边形木架(用5根木条钉成)不变形,至少要再钉根木条。

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

人教版七年级数学下册第七章平面直角坐标系单元测试题 (Word含答案)一、选择题(每小题3分,共30分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是() A、P(2,5)表示这个点在平面C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16) D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)

第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。

A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 三角形
B1卷•能力训练级级高
班级 姓名 得分
一、选择题(4分×6=24分)
1.一个多边形的内角和为10800,则这个多边形的边数为 ( )
A 、 6
B 、 7
C 、 8
D 、 不能确定
2. 在三角形的三个外角中,锐角最多只有 ( )
A 、 3个
B 、 2个
C 、 1 个
D 、 0个
3.若三角形三个外角的比为1:2:3,则这个三角形是( )
A 、 锐角三角形
B 、 直角三角形
C 、 等腰三角形
D 、 钝角三角形
4.等腰三角形两边长分别为 3,7,则它的周长为 ( ) A 、 13 B 、 17 C 、 13或17 D 、 不能确定
5.如图,下列说法错误的是( ) A 、∠B>∠ACD B 、 ∠B+∠ACB=1800-∠A C 、 ∠B+∠ACB<1800 D 、∠HEC>∠B
6.能将三角形面积平分的是三角形的() A 、 角平分线 B 、 高 C 、 中线 D 、外角平分线
二、填空题(4分×8=32分)
7.一个三角形有两条边相等,周长为20㎝,三角形的一边长为5㎝,那么其它两边长分别为 8.已知:如图,∠A=∠C ,∠B=∠D ,
那么AB 与CD 的位置关系是 ,
AD 与BC 的位置关系是
9.填表:用长度相等的火柴棒拼成如图所示的图形
10.要使五边形木架(用5根木条钉成)不变形,至少要再钉 根木条。

11.如图,从A 处观测C 处仰角∠CAD=300,从B 处观测C 处的仰角∠CBD=450,从C 外
观测A 、B 两处时视角∠ACB= 度
12.已知:如图,CD ∥AB ,∠A=400,∠B=600,那么∠1= 度,∠2= 度
第(5)题H
E
D C
B A 第(8)题D
C B A 第(11)题
D C B A 第(12)题 2 1 D C B A
13.六边形共有 条对角线,它的内角和是 度
14.一个多边形的内角和是外角和的3倍,它是 边形;一个多边形的各内角都等于
1200,它是 边形。

三、解答题
15.读句画图:(3分×4=12分)
⑴ 画钝角△ABC (900<∠A<1800),且AB>AC
⑵ BC 上的中线AD
⑶画AC 上的高BE
⑷画角平分线CF
16.(10分)如图,飞机要从A 地飞往B 地,因受大风影响,一开始就偏离航线(AB )180
(即∠A=1800)飞到了C 地,已知∠ABC=100,问飞机现在应以怎样的角度飞行才能到达B 处?(即求∠BCD 的度数)
17.(12分)如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠A=500,∠C=600,求∠DAC 及∠BOA
第(12)题D C B A
E D
B
18(10分)如图在△ABC中,DE∥BC,∠DBE=300,∠EBC=250,求∠BDE的度数。

附加题(20分)
如图,试说明①∠BDC>∠A
②∠BDC=∠B+∠C+∠A
如果点D在线段BC的另一侧,结论会怎样?
E D
C B
A
D
C
B
A
B1卷:1C 2C 3B 4B 5A 6C 7 7.5 7.5; 8 .AB∥CD,AD∥BC; 9. 11,2n+1; 10 .两根11 .
15 ;12 .800,600; 13. 9,7200;14. 8,6; 15. 画图略16. 28 ;17. ∠DAC=300,∠BOA=1200;18. 125 0附加题:延长BD交AC于E,则∠BDC>∠DEC,而∠DEC>∠A所以∠BDC>∠A 由∠BDC=∠C+∠DEC,而∠DEC=∠A+∠B所以∠BDC=∠A+∠B+∠C。

相关文档
最新文档