第四章 几何图形初步A

合集下载

人教版七年级上册数学第四章几何图形初步线段长短的比较与运算ppt教学课件

人教版七年级上册数学第四章几何图形初步线段长短的比较与运算ppt教学课件

另外两个端点的位置作比较.
C (A)
BD
叠合法结论: A
C (A)
B 1. 若点 A 与点 C 重合,点 B 落
在C,D之间,那么 AB < CD. BD
A C (A)
B 2. 若点 A 与点 C 重合,点 B 与
(B) D
点 D 重合 ,那么 AB = CD.
A (A) C
B 3. 若点 A 与点 C 重合,点 B 落
a+b
a
b
A
a-b
D bB
C
做一做
1. 如图,点B,C在线段 AD 上则AB+BC=_A__C_; AD-CD=_A_C_;BC= _A_C_ -_A_B_= _B_D_ - _C_D_.
A
B
C
D
2. 如图,已知线段a,b,画一条线段AB,使
AB=2a-b.
a
b
2a
b
A 2a-b B
A
MB
在一张纸上画一条线段,折叠纸片,使 线段的端点重合,折痕与线段的交点处于线 段的什么位置?
反之也成立:∵ AM = MB = 1 AB 2
( 或 AB = 2 AM = 2 AB )
∴ M 是线段 AB 的中点
点 M , N 是线段 AB 的三等分点:
A
M
N
B
1
AM = MN = NB = __3_ AB
(或 AB = _3__AM = __3_ MN = __3_NB)
典例精析
例1 若 AB = 6cm,点 C 是线段 AB 的中点,点 D
连接两点间的线段的长度,叫做这两点的距离.
你能举出这条性质在生活中的应用吗?
想一想

第四章《几何图形初步》单元测试卷(A)2022-2023学年人教版七年级数学上册(含答案)

第四章《几何图形初步》单元测试卷(A)2022-2023学年人教版七年级数学上册(含答案)

人教版七年级数学上册第四章《几何图形初步》单元测试卷(A)一、单选题(本题共10小题,每小题5分,共50分)1.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.2.点A、B、C三点在同一直线上,且线段AB=4cm,BC=2cm,若点M为AC的中点,那么线段BM的长为()A.1cm B.3cm C.1cm或3cm D.无法确定3.如果一个角是50°,那么它的余角的度数是()A.40°B.50°C.100°D.130°4.用一个平面去截一个正方体,截出截面不可能是()A.三角形B.五边形C.六边形D.七边形5.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6B.7C.8D.96.如图,将甲,乙两把尺子拼在一起,两端重合,如果甲尺经校定是直的,那么乙尺不是直的,判断依据是()A.两点之间直线最短B.经过一点有且只有一条直线C.经过两点有且只有一条直线D.线段可以向两个方向延长7.用直尺和圆规作∠HDG=∠AOB的过程,弧∠是()A.以D为圆心,以DN为半径画弧B.以D为圆心,以EF为半径画弧C.以M为圆心,以DN为半径画弧D.以M为圆心,以EF为半径画弧8.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第二次将点A向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是()A.12B.13C.14D.159.如图,已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为4,且AB=6,动点P从点A出发,以每秒2个单位长度的速度沿数轴向左运动,在点P的运动过程中,M,N始终为AP,BP的中点,设运动时间为t(t>0)秒,则下列结论中正确的有()∠B对应的数是2;∠点P到达点B时,t=3;∠BP=2时,t=2;∠在点P的运动过程中,线段MN的长度不变.A.∠∠∠B.∠∠∠C.∠∠D.∠∠10.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点.且AB=80,BC=60,则MN的长为()A.10B.70C.10或70D.30或70二、填空题(本题共5小题,每小题5分,共25分)11.数轴上点P与原点距离为3,点Q与点P的距离为3,则点Q所表示的数为12.如图,P是直线a外一点,点A,B,C,D为直线a上的点PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是。

《几何图形初步——直线、射线、线段》数学教学PPT课件(4篇)

《几何图形初步——直线、射线、线段》数学教学PPT课件(4篇)

直线公理
经过两点有一条直线,并且只有一条直线。 (两点确定一条直线。)
直线、线段、射线的表示
用两个大写字母表示; 用一个小写字母表示。
直线的表示
A
B
直线AB
线段的表示
A
B
线段AB
射线的表示
O
A
射线OA
l
直线l
a
线段a
l
射线l
1、如何比较两个人的身高? 我身高1.53米, 比你高3厘米。
目测法
我身高1.5米。
(1) 经过点 O 的三条线段 a,b,c; (2) 线段 AB,CD 相交于点 B.
解:(1)
a b
O c
A (2) C
B
D
针对训练
1、判断:
(1)射线是直线的一部分。 (2)线段是射线的一部分。 (3)画一条射线,使它的长度为3cm。 (4)线段AB和线段BA是同一条线段。 (5)射线OP和射线PO是同一条射线。 (6)如图,画一条线段ab。
解:(1) E
F
C
(2)
A
l
二 射线、线段
类比学习
问题1 类比直线的表示方法,想一想射线该如何表示?
O
A
d
1. 射线用它的端点和射线上的另一点来表示 ( 表示端 点的字母必须写在前面 ) 或用一个小写字母表示 记作: 射线 OA ( 或射线d )
思考: 射线 OA 与射线 AO 有区别吗
问题2 类比直线的表示方法,想一想线段该如何表示?
a
b
(√) (√ )
(× )
(√ )
(× ) (× )
2、用适当语句表述图中点与直线的关系

c

七年级数学第四章几何图形初步典型例题及答题技巧

七年级数学第四章几何图形初步典型例题及答题技巧

七年级数学第四章几何图形初步典型例题及答题技巧单选题1、一个几何体由大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则从正面看该几何体的形状图为()A.B.C.D.答案:A解析:由已知条件可知,从正面看有3列,每列小正方形数目分别为4,2,3,据此可得出图形.解:根据所给出的图形和数字可得:从正面看有3列,每列小正方形数目分别为4,3,2,则符合题意的是:故选:A.小提示:本题考查了从不同方向看几何体等知识,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平2、下列各角中,是钝角的是( ).A .14周角B .23平角C .平角D .14平角答案:B解析:直接利用角的定义逐项分析即可得出答案.解:A. 14周角= 14×360°=90°,不是钝角,不合题意; B. 23平角=23×180°=120°,是钝角,符合题意;C. 平角=180°,不是钝角,不合题意;D. 14平角=14×180°=45°,不是钝角,不合题意. 故选:B小提示:此题主要考查了角的概念,正确掌握平角、周角、钝角的概念是解题关键.3、已知∠AOB =30°,如果用10倍的放大镜看,这个角的度数将( )A .缩小10倍B .不变C .扩大10倍D .扩大100倍答案:B解析:根据角是从同一点引出的两条射线组成的图形.它的大小与图形的大小无关,只与两条射线形成的夹角有关系,直接判断即可.解:角的大小只与角的两边张开的大小有关,放大镜没有改变顶点的位置和两条射线的方向,所以用10倍放大镜观察这个角还是30度.小提示:本题考查了角的概念.解题关键是掌握角的概念:从同一点引出的两条射线组成的图形叫做角,明确角的大小只与角的两边张开的大小有关.4、如图所示,∠COD的顶点O在直线AB上,OE平分∠COD,OF平分∠AOD,已知∠COD=90°,∠BOC=α,则∠EOF的度数为()A.90°+αB.90°+α2C.45°+αD.90°﹣α2答案:B解析:先利用∠COD=90°,∠BOC=α,求出∠BOD的度数,再求出∠AOD的度数,利用角平分线,分别求出∠FOD和∠EOD的度数,相加即可.解:∵∠COD=90°,∠BOC=α,∴∠BOD=90°-∠BOC=90°-α,∴∠AOD=180°-∠BOD=90°+α,∵OF平分∠AOD,∴∠DOF=12∠AOD=45°+12α,∵OE平分∠COD,∴∠DOE=12∠COD=45°,∴∠EOF=∠FOD+∠DOE=90°+α;2故选:B.小提示:本题考查了角平分线的计算,解题关键是准确识图,弄清角之间的和差关系.5、观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D.答案:B解析:利用正方体及其表面展开图的特点解题.解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.小提示:本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.6、下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线答案:B解析:根据两点确定一条直线进而得出答案.在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.小提示:此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.7、如图是一个正方体的平面展开图,把展开图折叠成正方体后,“红”字的面的对面上的字是()A.传B.国C.承D.基答案:D解析:正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,则:“传”与“因”是相对面,“承”与“色”是相对面,“红”与“基”是相对面.故选:D.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8、如图,是一个几何体的表面展开图,则该几何体中写“英”的面相对面上的字是( )A.战B.疫C.情D.颂答案:B解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“战”与“情”是相对面,“疫”与“英”是相对面,“颂”与“雄”是相对面.故选:B.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手分析是解题的关键.填空题9、下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:_____.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:_______.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:_________.答案:(3)(2)(1)解析:解:观察图形,根据所给的信息可得:①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).所以答案是:(3);(2);(1).小提示:本题考查了直线、射线与线段的知识,注意掌握三者的特点,给出图形应该能判断出是哪一个.10、一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π)答案:12π或16π解析:根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.解:绕它的直角边所在的直线旋转所形成几何体是圆锥,π×32×4=12π,①当绕它的直角边为3cm所在的直线旋转所形成几何体的的体积是:13π×42×3=16π,②当绕它的直角边为4cm所在的直线旋转所形成几何体的的体积是:13所以答案是:12π或16π.小提示:此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论.11、如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是________答案:丁解析:能围成正方体的“一四一”,“二三一”,“三三”,“二二二”的基本形态要记牢.解题时,据此即可判断答案.解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁,所以答案是:丁.小提示:本题考查了展开图折叠成正方体的知识,解题关键是根据正方体的特征,或者熟记正方体的11种展开图,只要有“田”,“凹”字格的展开图都不是正方体的表面展开图.12、如图,∠AOC=∠BOD=90°,∠AOB=70°,在∠AOB内画一条射线OP得到的图中有m对互余的角,其中∠AOP=x°,且满足0<x<50,则m=_______.答案:3或4或6解析:分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.∠AOB =35°时,∠BOP=35°①∠AOP=12∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共3对.则m=3或4或6.所以答案是:3或4或6.小提示:本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.13、已知∠A=20°18',则∠A的余角等于__.答案:69°42′解析:根据互为余角的两个角之和为90°解答即可.解:∵∠A=20°18',∴∠A的余角为90°﹣20°18′=69°42′.所以答案是:69°42′.小提示:本题考查余角定义,熟知互为余角的两个角之和为90°是解答的关键.解答题14、如图,线段AB=8cm,C是线段AB上一点,M是AB的中点,N是AC的中点.(1)AC=3cm,求线段CM、NM的长;(2)若线段AC=m,线段BC=n,求MN的长度(m<n用含m,n的代数式表示).答案:(1)CM=1cm,NM=2.5cm;(2)12n解析:(1)求出AM长,代入CM=AM-AC求出即可;分别求出AN、AM长,代入MN=AM-AN求出即可;(2)分别求出AM和AN,利用AM-AN可得MN.解:(1)∵AB=8cm,M是AB的中点,∴AM=12AB=4cm,∵AC=3cm,∴CM=AM−AC=4−3=1cm;∵AB=8cm,AC=3cm,M是AB的中点,N是AC的中点,∴AM=12AB=4cm,AN=12AC=1.5cm,∴MN=AM−AN=4−1.5=2.5cm;(2)∵AC=m,BC=n,∴AB=AC+BC=m+n,∵M是AB的中点,N是AC的中点,∴AM =12AB =12(m +n),AN =12AC =12m ,∴MN =AM −AN =12(m +n)−12m =12n . 小提示:本题考查了两点之间的距离,线段中点的定义的应用,解此题的关键是求出AM 、AN 的长.15、已知:如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若线段AC =6,BC =4,求线段MN 的长度;(2)若AB =a ,求线段MN 的长度;(3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上”,(1)小题的结果会有变化吗?求出MN 的长度. 答案:(1)5cm ;(2)12a ;(3)1或5. 解析:(1)由点M 、N 分别是AC 、BC 的中点.可知MC =3,CN =2,从而可求得MN 的长度.(2)由点M 、N 分别是AC 、BC 的中点,MN =MC +CN =12(AC +BC )=12AB .(3)由于点C 在直线AB 上,所以要分两种情况进行讨论计算MN 的长度.解:(1)∵ AC =6,BC =4,∴ AB =6+4=10,又∵ 点M 是AC 的中点,点N 是BC 的中点,∴ MC =AM =12AC ,CN =BN =12BC ,∴ MN =MC +CN =12AC +12BC =12(AC +BC )=12AB =5(cm ).(2)由(1)中已知AB =10cm 求出MN =5cm ,分析(1)的推算过程可知MN =12AB ,故当AB=a时,MN=12a,从而得到规律:线段上任一点把线段分成的两部分的中点间的距离等于原线段长度的一半.(3)分类讨论:当点C在点B的右侧时,如图可得:MN=MC−NC=12AC−12BC=12(AC−BC)=12×(6−4)=1;当点C在线段AB上时,如(1);当点C在点A的左侧时,不满足题意.综上可得:点C在直线AB上时,MN的长为1或5.小提示:本题考查线段计算问题,涉及线段中点的性质,分类讨论的思想,属于基础题型.。

第四章 几何图形初步章节复习(课件)七年级数学上册教材配套教学课件(人教版)

第四章 几何图形初步章节复习(课件)七年级数学上册教材配套教学课件(人教版)


=17°+6.6′
6.6

°
60


=17+
=5719′12″
【点睛】按1°=60′,1′=60″,先把度化成分,再把分化成秒.
(小数化整
=17.11.
数)
1
1
【点睛】按1″= ′,1′= °先把秒化成分,再把分化成度.
60
60
(整数化小数)
2
2
∴MN=CM+CN=4+3=7(cm).
A
M
C
N
B
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的
长度吗?并说明理由;
1
猜想:MN= acm.
2
A
M
C
N
B
证明:同(1)可得
11CM= AC,C= BC,22
1
1
1
1
∴MN=CM+CN= AC+ BC= (AC+BC)= a(cm).
经过两点有一条直线,并且只有一条直线.
2.直线、射线、线段的联系与区别
3.基本作图
(1)作一线段等于已知线段;
(2)利用尺规作图作一条线段等于两条线段的和、差.
4.线段的中点
C是线段AB的中点,
1
AC=BC= AB,
2
AB=2AC=2BC.
A
C
B
5. 有关线段的基本事实 两点之间,线段最短.
6.连接两点的线段的长度,叫做这两点间的距离.
5
的中点,求DE的长.
3
解:∵AC=15cm,CB= AC,
5
3
∴CB= ×15=9cm,

七年级数学上册第四章几何图形初步4.2直线射线线段 新人教版

七年级数学上册第四章几何图形初步4.2直线射线线段 新人教版
特征 性质 比较线段 的大小
重要提示
内容
(1)连接AB,就是要画出以A、B为端点的线段, 不要向任何一方延伸; (2)画一条线段等于已知线段a,可以用圆规在 射线AC上截取AB=a,也可以先量出线段a的 长度,再画一条等于这个长度的线段
图例
有两个端点,不可延伸,可度量
两点之间,线段最短
(1)度量法:用刻度尺量出两条线段的长度,再比较两者的大小; (2)叠合法:把要比较的两条线段移到同一条直线上,使它们的一个端点重合,另一个端点落在 重合的端点的同一侧,进行比较
(1)两点间的距离:连接两点间的线段的长度,叫做这两点间的距离; (2)线段的中点一定在线段上; (3)“线段”是一个几何图形,而“线段的长度”是一个正数,二者是有区别的,不要混淆
.
例3 如图4-2-3,点A,B,C,D是直线l上的四个点,则图中共有几条线段?
图4-2-3 解析 解法一:(端点确定法) 以点A为左端点的线段有3条:线段AB,线段AC,线段AD;以点B为左端点 的线段有2条:线段BC和线段BD;以点C为左端点的线段有1条:线段CD. 因此共有3+2+1=6(条)线段. 说明:用端点确定法确定线段条数时,直线上的任意一点只能作为左端 点(或右端点),否则线段会重复. 解法二:(画线确定法) 先从左边第一个点(A)开始向右依次画弧线,共有3条,再从第二个点(B) 开始向右依次画弧线,共有2条,再从第三个点(C)开始向右画弧线,共有1 条,最后一点不再考虑.故题图中共有3.+2+1=6(条)线段.
图4-2-5 (2)将射线反向延伸就可得到直线;将线段向一方延伸就可得到射线;将 线段向两方延伸就可得到直线.
.
2.三者的区别如下表:
直线

从立体图形到平面图形__几何图形初步课件

从立体图形到平面图形__几何图形初步课件

从正面看
从左面看
从上面看
分别从正面、左面、上面看圆柱、圆锥、球,各能得到什么 平面图形?
立体图形 从正面看 从左面看 从上面看
这个点 一定要 画出来
从正面、左面、上面观察三棱柱,看一看各能得到什么平面图形?
从正面看
从左面看
从上面看
看得见的轮廓, 要用实线画出来
从正面、左面、上面观察四棱锥,看一看各能得到什么平面图形?
从左面看
从上面看
右图是一个由 9 个正方体组成的立 体图形,分别从正面、左面、上面观 察这个图形,各能得到什么平面图形 ?
正面
左面
上面
从正面、左面、上面看这个由正方 体组合成的立体图形各能得到什么 平面图形?
从正面看
从左面看
从上面看
从正面、左面、上面看这个由正方体组 合成的立体图形各能得到什么平面图形 ?
对于一些立体图形的问题,常把它们转化为平面图形来 研究和处理.从不同方向看立体图形,往往会得到不同形状 的平面图形.
借助计算机,可以 用这些平面图形还 原出立体图形.
这是一个工件的立体图,设计师们常常画出从不同方向 看它得到的平面图形来表示它.
分别从正面、左面、上面观察这个长方体,看一看各能得到 什么平面图形?
从正面看
从左面看
从上面看
看得见的轮廓, 要用实线画出来
如图,右面三幅图分别是从哪个方向看这个棱柱得到的?
上面
正面
左面
如图是一个正六棱柱,从上面看到的图形是(C ).
水平放置的下列几何体,从正面看不是长方形的是(B ).
从正面、左面、上面看这个由正方体组合成 的立体图形各能得到什么平面图形?
从正面看
教学重点

2022年人教版七年级上册数学第四章几何图形初步单元教案

2022年人教版七年级上册数学第四章几何图形初步单元教案

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 几何图形初步(A 卷)
一、填空题(每题3分,共30分)
1、如果一个角的补角是130°,那么这个角的余角是 .
2、47.51°= (用度、分、秒表示).53°27′18″= °.
3、如图,点C 是∠AOB 的边OA 上一点,D 、E 是OB 上两点,则图中共有 条线段, 条射线.
4、已知AB =2cm ,延长AB 至点C ,使BC =1 AB ,延长BA 到点D ,使BA 是BD 的2 ,则DC = cm.
5、若一个立体图形的三视图均相同,则这个立体图形是 .
6、若∠α的补角是125°,∠β的余角是37°,则∠α、∠β的大小关系为∠α ∠β.
7、如图,把一张长方形纸片ABCD 沿EF 折叠后,若∠AEB’=70°,则∠B’EF = . 8、如图,O 是直线AB 上的点,OD 是∠AOC 的平分线,∠COD =31°28′,∠BOD = . 9、OA 是方向是北偏西15°,OB 的方向是北偏西40°,(1)若∠AOC =∠AOB ,则OC 的方向是 ;
(2)若OD 是OB 的反向延长线,则OD 的方向是 .
10、如图,平面内有公共端点的六条射线OA 、OB 、OC 、OD 、OE 、OF ,从射线OA 开始按逆时针依次在射线上数数:1,2,3,4,5,6,7,…,则2012在射线 上.
二、选择题(每题3分,共30分)
11、若一个立体图形从正面看、从左面看是圆,则这个立体图形是( )
A 、圆柱体
B 、球体
C 、圆锥体
D 、三棱锥
12、下列图形中,哪一个是正方体的展开图( )
13、三条直线两两相交,有( )个交点
A 、1
B 、2
C 、3
D 、1或3
14、点B 在线段AC 上,以下五个等式:①AB =BC ;②BC =12 AC ;③AC =2AB ;④BC =14 AB ;⑤AB
+BC =AC ,其中能表示点B 是线段AC 的中点的有( )
A 、1个
B 、2个
C 、3个
D 、4个
15、下列说法正确的是( )
A 、两点之间的连线中,直线最短
B 、若点P 是线段AB 的中点,则AP =BP
C 、若AP =BP ,则点P 是线段AB 的中点
D 、两点之间的线段叫做两点之间的距离
16、已知线段AB =10cm ,直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,则线段AM 的长为( )cm. A 、3 B 、7 C 、3或7 D 、不能确定
17、如图,O 为直线AB 上一点,∠AOD =120°,∠AOC =90°,
OE 平分∠BOD ,则图中彼此互补的角有( )对. A 、3 B 、4 C 、5 D 、6 18、中午12点15分时,钟表上的时针和分针所成的角是( )
A 、90°
B 、75°
C 、82.5°
D 、60°
19、甲看乙的方向为南偏西25°,那么乙看甲的方向是( )
A 、北偏西75°
B 、南偏东75°
C 、北偏东25°
D 、北偏西25°
20、如图∠BOD =90°,EF 是过点O 的一条直线,
则∠1与∠2的关系一定成立的是( )
A 、相等
B 、互为余角
C 、互为补角
D 、以上都有可能
三、解答题(共60分)
21、(12分)线段AB 上有两动点M 、N ,点M 将AB 分成2:3两部分,点N 将AB 分成4:1两部分,且MN =3cm ,求AN 的长.
22、(10分)一个角的余角比它的补角的13 还少20°,求这个角.
23、(10分)已知∠AOB =80°,∠BOC =60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠EOF 的度数.
第17第第
A
B C
24、(12分)(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度.
(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,你能猜出MN的长度吗?请你用一句话表述你所发现的规律.
(3)在(1)中,如果我们这样叙述它,已知线段AC=6cm,BC=4cm,点C在直线AB上,点M、N分别是AC、BC的中点,求线段MN的长度,结果会有变化吗?如果有,请求出结果.
25、(16分)已知∠AOB=65°,∠BOC=35°.
(1)若OM平分∠AOC,请画出图形,写出求∠AOM度数的过程.
(2)若OM、ON是∠AOC的三等分线,请直接定写出∠MON的度数.。

相关文档
最新文档