矩形的判定证明题

合集下载

矩形的判定试题及答案

矩形的判定试题及答案

矩形的判定试题及答案一、选择题1. 下列选项中,不能判定四边形ABCD是矩形的是()。

A. AB∥CD,AD∥BCB. ∠A=∠B=∠C=∠D=90°C. 对角线AC=BD且互相平分D. AB=CD且AD=BC答案:D2. 如果一个平行四边形的对角线相等,那么这个平行四边形一定是()。

A. 正方形B. 菱形C. 矩形D. 梯形答案:C二、填空题3. 在矩形ABCD中,若∠BAC=90°,AB=3cm,BC=4cm,则对角线AC的长度为_________。

答案:5cm(根据勾股定理)4. 若矩形的长为8cm,宽为6cm,则其周长为_________。

答案:28cm(周长=2*(长+宽))三、解答题5. 已知平行四边形ABCD中,AB=3cm,BC=4cm,∠B=90°,求证:ABCD是矩形。

证明:由于ABCD是平行四边形,所以AB∥CD,AD∥BC。

又因为∠B=90°,根据平行四边形的性质,对应的角也相等,即∠A=∠C=∠D=90°。

因此,ABCD是一个矩形。

6. 如图所示,矩形EFGH中,EF=6cm,FH=8cm,求对角线EH的长度。

解:由于EFGH是矩形,所以EH是FH的对角线,并且EH=GF。

根据矩形的性质,对角线相等,所以EH=FH。

又因为FH=8cm,所以EH=8cm。

四、综合题7. 在矩形PQMN中,已知PQ=10cm,QM=4cm,求证:对角线PN的长度为√41cm。

证明:由于PQMN是矩形,所以PQ∥MN,PM∥QN,且∠PQM=∠QMN=90°。

根据勾股定理,PN² = PM² + QM²。

由于PM=QN=PQ=10cm,QM=4cm,所以PN² = 10² + 4² = 100 + 16 = 116。

因此,PN = √116 = √41cm。

答案:对角线PN的长度为√41cm。

九年级数学 第一章 特殊平行四边形2 矩形的性质与判定第2课时 矩形的判定作业

九年级数学 第一章 特殊平行四边形2 矩形的性质与判定第2课时 矩形的判定作业
( B)
A.4 B.4.8 C.5.2 D.6
第10题图
11.如图,在△ABC 中,AC 的垂直平分线分别交 AC,AB 于点 D, F,BE⊥DF 交 DF 的延长线于点 E,已知∠A=30°,BC=2,AF=BF, 则四边形 BCDE 的面积是_2___3____.
第11题图
12.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F 作FG⊥EF交BC于点G,连接GH,当AD,AB满足______A__B_=__A(D关系)时, 四边形EFGH为矩形.
第12题图
13.如图,AB∥CD,PM,PN,QM,QN分别为∠APQ,∠BPQ,∠CQP, ∠DQP的平分线.求证:四边形PMQN是矩形.
证明:∵PM,PN,QM 分别平分∠APQ,∠BPQ,∠CQP,∴∠MPQ
=21 ∠APQ,∠NPQ=21 ∠BPQ,∠MQP=21 ∠CQP.∵∠APQ+∠BPQ =180°,∴∠MPQ+∠NPQ=90°,即∠MPN=90°.同理可证∠MQN =90°.∵AB∥CD,∴∠APQ+∠CQP=180°,∴∠MPQ+∠MQP=90 °,即∠PMQ=90°,∴四边形 PMQN 是矩形
9.如图,顺次连接四边形ABCD各边的中点,得到四边形EFGH,在下列
条件中,能使四边形EFGH为矩形的是( C)
A.AB=CD B.AC=BD C.AC⊥BD D.AD∥BC
第9题图
10.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且 点P不与点B,C重合),PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为
第5题图
6.(2019·江西)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC, BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.

1.2 矩形的性质和判定 课时练习(含答案解析)

1.2 矩形的性质和判定 课时练习(含答案解析)

北师大版数学九年级上册第一章第二节矩形的性质与判定课时练习一、单选题(共15题)1.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变答案:C解析:解答:∵矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,∴AD=BC,AB=DC,∴四边形变成平行四边形,故A正确;BD的长度增加,故B正确;∵拉成平行四边形后,高变小了,但底边没变,∴面积变小了,故C错误;∵四边形的每条边的长度没变,∴周长没变,故D正确,故选C.分析: 由将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,由平行四边形的判定定理知四边形变成平行四边形,由于四边形的每条边的长度没变,所以周长没变;拉成平行四边形后,高变小了,但底边没变,所以面积变小了,BD的长度增加了2.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD 答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=12AC,OB=12BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.分析: 矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论3.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.20答案:D解析:解答: ∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=12CD=2.5,AC=22512=13,∵O是矩形ABCD的对角线AC的中点,∴BO=12AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选:D.分析: 本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好4. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cm B.8cm C.6cm D.5cm 答案:D解析:解答: ∵四边形ABCD是矩形,∴OA=OC=12AC,OD=OB=12BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.分析:根据矩形的性质求出OA=OB,AC=BD,求出AC的长,求出OA和OB的长,推出等边三角形OAB,求出AB=OA,代入求出即可5.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.18答案:C解析:解答: ∵矩形ABCD的两条对角线交于点O,∴OA=OB=12 AC,∵∠AOD=120°,∴∠AOB=180°-∠AOD=180°-120°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=12.故选C.分析: 本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键6.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A.4 B.3 C.2 D.1答案:A解析:解答: 在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.分析: 根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB,再根据矩形的对角线相等解答7.一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A.602B.702 C.1202 D.1402答案:A解析:解答:∵黄色三角形与绿色三角形面积之和是矩形面积的50%;∴矩形的面积=21÷(50%-15%)=21÷35%=60(2).故选:A.分析: 黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,用除法即可得出矩形的面积8.如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=3,则OE=()A.1 B.2 C.3 D.4答案:A解析:解答: ∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=3,∠OAD=60°,∴∠OAE=30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A分析: 先根据等边三角形的性质得出OA=3,根据△OAE是一个含30°的直角三角形,进而得出OE的长度9.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16 B.22或16 C.26 D.22或26答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AE=AB,①当AE=3,DE=5时,AD=BC=3+5=8,AB=CD=AE=3,即矩形ABCD的周长是AD+AB+BC+CD=8+3+8+3=22;②当AE=5,DE=3时,AD=BC=3+5=8,AB=CD=AE=5,即矩形ABCD的周长是AD+AB+BC+CD=8+5+8+5=26;即矩形的周长是22或26分析: 根据矩形性质得出AD=BC,AB=CD,AD∥BC,求出AE=AB,分为当AE=3或AE=5两种情况,求出即可10.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等答案:A解析:解答: ∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.分析: 根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.11.矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A.16cm B.22cm C.26cm D.22cm或26cm答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.分析: 根据矩形的性质得出AD=BC,AB=CD,AD∥BC,推出∠AEB=∠CBE,求出∠ABE=∠CBE=∠AEB,推出AB=AE=CD,分为两种情况,代入求出即可12. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A.57.5°B.32.5°C.57.5°,23.5°D.57.5°,32.5°答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=12×(180°-∠AOB)=12×(180°-65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°-57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.分析: 根据矩形的性质得出∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,推出OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,求出∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,根据三角形内角和定理求出即可13.矩形具有而菱形不具有的性质是()A.对角线相等B.对角线平分一组对角C.对角线互相平分D.对角线互相垂直答案:A解析:解答:矩形的对角线互相平分且相等;菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;根据矩形和菱形的性质得出:矩形具有而菱形不具有的性质是:对角线相等;故选:A.分析: 根据矩形好菱形的性质,容易得出结论.14.过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A.对角线相等的四边形B.对角线垂直的四边形C.对角线互相平分且相等的四边形D.对角线互相垂直平分的四边形答案:B解析:解答:如图所示:∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选:B.分析: 由矩形的性质得出∠E=90°,由平行线的性质得出∠EAO=∠EBO=90°,证出四边形AEBO是矩形,得出∠AOB=90°即可15. 若矩形的一条对角线与一边的夹角是40°,则两条对角线所夹的锐角的度数为()A.80°B.60°C.45°D.40°答案:A解析:解答:图形中∠1=40°,∵矩形的性质对角线相等且互相平分,∴OB=OC,∴△BOC是等腰三角形,∴∠OBC=∠1,则∠AOB=2∠1=80°.故选A.分析: 根据矩形的性质,得△BOC是等腰三角形,再由等腰三角形的性质进行答题.二、填空题(共5题)16.如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.答案: AC=BD.答案不唯一解析:解答: 添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可17.平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________答案:①⑤解析:解答: 要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可分析:四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可18.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(只填一个).答案:∠ABC=90°或AC=BD(不唯一)解析:解答: 根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD分析: 根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可19.如图,在四边形ABCD中,对角线AC,BD相交于点O,且AO=CO,BO=DO,在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上一个条件是________(填上你认为正确的一个答案即可)答案:∠DAB=90°解析:解答:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为:∠DAB=90°分析: 根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定20.木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)答案:合格解析:解答:∵AB=DC=8cm,BC=AD=15cm,∴四边形ABCD是平行四边形,∵AC=17cm,AB=8cm,BC=15cm,∴AC2=AB2+BC2,∴∠B=90°,∴四边形ABCD是矩形,即四边形是长方形,故答案为:合格.分析: 先退出思想是平行四边形,根据勾股定理的逆定理求出∠B=90°,根据矩形的判定推出即可三、解答题(共5题)21.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;答案:解答: (1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形答案:解答: (2)证明:连接BD,AC.∵AH=AE,AD=AB,∴AH AE AD AB∴HE∥BD,同理可证,GH∥AC,∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴∠EHG=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形解析:分析: (1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由1知四边形HGFE是平行四边形,故四边形HGFE 是矩形. 22.如图,在△ABC 中,AB =AC =5,BC =6,AD 为BC 边上的高,过点A 作AE ∥BC ,过点D 作DE ∥AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .求四边形AEBD 的面积答案: 解答:∵AE ∥BC ,BE ∥AC ,∴四边形AEDC 是平行四边形.∴AE =CD .在△ABC 中,AB =AC ,AD 为BC 边上的高,∴∠ADB =90°,BD =CD . ∴BD =AE .∴平行四边形AEBD 是矩形.在Rt △ADC 中,∠ADB =90°,AC =5,CD =12BC =3, ∴AD =2253 =4.∴四边形AEBD 的面积为:BD •AD =CD •AD =3×4=12.解析:分析:利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD 是矩形.在Rt △ADC 中,由勾股定理可以求得AD 的长度,由等腰三角形的性质求得CD (或BD )的长度,则矩形的面积=长×宽=AD •BD =AD •CD23.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.求证:四边形ABCD 是矩形答案:解答:证明:∵四边形ABCD 是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,21世纪教育网∴四边形ABCD是矩形.解析:分析: 欲证明四边形ABCD是矩形,只需推知∠DAB是直角24.有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?答案:AD=140cm.解析:解答:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°-150°=30°,∴∠MCD=60°-30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.分析: 过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM 求出即可25.如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案:见解答解析:解答:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=12(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.分析: 先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC 的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论。

矩形的性质与判定典型例题

矩形的性质与判定典型例题

矩形的证明题目一.选择题(共5小题)1.(2016春•巴南区校级月考)如图矩形都是由大小不等的正方形按照一定规律组成的,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…,则第⑧个矩形的周长为()A.168 B.170 C.178 D.1882.(2016•姜堰区校级模拟)矩形ABCD中,AB=4,BC=8,矩形CEFG上的点G在CD边,EF=a,CE=2a,连接BD、BF、DF,则△BDF的面积是( )A.32 B.16 C.8 D.16+a23.(2016•深圳模拟)如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()A.1个 B.2个 C.3个 D.4个4.(2015•十堰一模)如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8B.8 C.4D.65.(2015•天台县模拟)如图,矩形ABCD中,BC=1,连接AC与BD交于点E1,过E1作E1F1⊥BC于F1,连接AF1交BD于E2,过E2作E2F2⊥BC于F2,连接AF2交BD于E3,过E3作E3F3⊥BC于F3,…,以此类推,则BF n (其中n为正整数)的长为( )A. B. C. D.二.解答题(共25小题)6.(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.7.(2015•玉林)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.8.(2015•石家庄二模)已知:如图所示,四边形ABCD是矩形,分别以BC、CD为一边作等边△EBC和等边△FCD,点E在矩形上方,点F在矩形内部,连接AE、EF.(1)求∠ECF的度数;(2)求证:AE=FE.9.(2015春•巴南区校级期末)如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.10.(2015秋•开江县期末)已知,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF 上一点,且AG=AC,∠ACG=2∠GAF.(1)若∠ACB=60°,求∠ECB的度数.(2)若AF=12cm,AG=6。

第04讲 矩形的判定、判定与性质综合(原卷版)-初中数学暑假自学课讲义(9年级北师大版)

第04讲 矩形的判定、判定与性质综合(原卷版)-初中数学暑假自学课讲义(9年级北师大版)

第04讲矩形的判定、判定与性质综合1.掌握矩形的判定定理.2.学会用矩形的性质与判定综合解题.矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.考点一:矩形的判定例1.下列条件不能判定一个四边形是矩形的是()A .四个内角都相等B .四条边都相等C .对角线相等且互相平分D .对角线相等的平行四边形例2.下列说法不正确的是()A .有一个角为直角的平行四边形是矩形B .有三个角为直角的四边形是矩形C .对角线相等的平行四边形是矩形D .对角线互相垂直的平行四边形是矩形例3.在平行四边形ABCD 中,对角线AC ,BD 相交于点O .下列条件不能..判定平行四边形ABCD 为矩形的是()A .∠ABC =90°B .AC =BD C .AC ⊥BD D .∠BAD =∠ADC例4.能判断一个平行四边形是矩形的条件是()A .两条对角线互相平分B .一组邻边相等C .两条对角线互相垂直D .两条对角线相等考点二:添加一个条件成为矩形例5.如图,要使平行四边形ABCD 为矩形,则可添加下列哪个条件()A .BO DO =B .AC BD ⊥C .AB BC =D .AO DO =例6.如图,在平行四边形ABCD 中,在不添加任何辅助线的情况下,添加以下哪个条件,能使平行四边形ABCD 是矩形()A .AD AB ⊥B .AB BC =C .AB CD D .A C∠=∠例7.如图,在四边形ABCD 中,AD BC ∥,AC 交BD 于点O ,再添加什么条件可以判定四边形ABCD 为矩形()A .,AB CD AB AD =∥B .,OA OC BC CD==C .,AB CD AC BD ==D .,AD BC AC BD==例8.如图,AD 是ABC 的中线,四边形ADCE 是平行四边形,下列条件中,能判定四边形ADCE 是矩形的是()A .90BAC ∠=︒B .AC 平分DAE ∠C .AB AC =D .AB AE =考点三:矩形的判定的证明例9.如图,BD 是平行四边形ABCD 的一条对角线,E 是CD 的中点,连接AE 并延长交BC 的延长线于F .(1)求证:BC CF =.(2)当DB DF =时,求证:四边形ABCD 是矩形.例10.如图,在平行四边形ABCD 中,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,BD ,90BDF ∠=︒.(1)求证:四边形ABDF 是矩形;(2)若4BC =,3DF =,求四边形ABCF 的面积S .例11.如图,四边形ABCD 的对角线AC BD 、交于点O ,BE AC ⊥于E ,DF AC ⊥于F ,点O 既是AC 的中点,又是EF 的中点.(1)求证:BOE DOF ≌;(2)若12OA BD =,求证:四边形ABCD 是矩形.例12.如图,平行四边形ABCD 的对角线AC BD ,交于点O ,E 为OC 中点,过点C 作CF BD ∥交BE 的延长线于F ,连接DF .(1)求证:FCE BOE ≅ (2)当ADC △满足什么条件时,四边形OCFD 为矩形?请说明理由.考点四:根据矩形的判定与性质求长度例13.如图,在矩形ABCD 中,EG 垂直平分BD 于点G ,若4AB =,3BC =,则线段EG 的长度是______.例14.四边形ABCD 的对角线相交于点O ,且OA OB OC OD ===,60AOB ∠=︒,则:AB AC =_______.例15.如图,在平行四边形ABCD 中,∠ACB =90°,过点D 作DE ⊥BC 交BC 的延长线于点E ,连接AE 交CD 于点F ,连接BF .若∠ABC =60°,CE =2,则BF =_____.例16.如图,在矩形ABCD 中,AB =4,AD =6,O 为对角线AC 的中点,点P 在AD 边上,且AP =2,点Q 在BC 边上,连接PQ 与OQ ,则PQ −OQ 的最大值为______.考点五:根据矩形的判定与性质求角度例17.如图,矩形ABCD 中,BE ⊥AC 于点E ,若∠ACB =23°,则∠DBE =_______度.例18.如图,在矩形ABCD 中,2=AD AB ,点E 在AD 上,且BE AD =,则ECD ∠=________.例19.如图,在ABCD Y 中,E 为边BC 上一点,以AE 为边作矩形AEFG .若40BAE ∠=︒,10CEF ∠=︒,则D ∠的大小为______度.例20.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,DE 平分∠ADC .若∠AOB =60°,则∠COE 的大小为____.例21.在矩形ABCD 中,AB =4,BC =3,过点A 作∠DAC 的角平分线交BC 的延长线于点H ,取AH 的中点P ,连接BP ,则S △ABP =___.考点六:根据矩形的判定与性质求面积例22.已知矩形ABCD ,点E 在AD 边上,DE AE <,连接BE ,点G 在BC 边上,连接EG ,BE 平分AEG ∠,若5BG GC =,2DE CG =,10BE =ABE 的面积是___________.例23.如图,在矩形ABCD 中,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.有下面的结论:①ODC ∆是等边三角形;②135AOE ∠=︒;③AOE COE S S ∆∆=.其中,正确结论的个数为_________.例24.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论:①BE =CD ;②∠DGF =135°;③△BEG ≌△DCG ;④∠ABG +∠ADG =180°;⑤若23AB AD =,则3S △BDG =13S △DGF .其中正确的结论是_____.(请填写所有正确结论的序号)一、单选题1.(2020·湖北·中考真题)已知ABCD Y 中,下列条件:①AB BC =;②AC BD =;③AC BD ⊥;④AC 平分BAD ∠,其中能说明ABCD Y 是矩形的是()A .①B .②C .③D .④2.(2020·山东菏泽·统考中考真题)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A .互相平分B .相等C .互相垂直D .互相垂直平分3.(2013·河北·中考真题)如已知:线段AB ,BC ,∠ABC ="90°."求作:矩形ABCD .以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对二、填空题4.(2021·黑龙江·统考中考真题)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形ABCD 是矩形..交DC 的延长线于点F ,延长(1)求证:△ABE ≌△FCE 别是OA ,OC 的中点.(1)求证:BE DF =;BD一、单选题1.如图,在四边形ABCD 中,对角线条件,不能判定四边形ABCD A .AB AD =2.连接菱形各边中点,可得到的A .菱形的四条边都相等C .菱形的对角线互相平分3.如图,平行四边形89EF AE ==,,AB 的长为(A .10B .73O ,若AO =BO ,AD A .42AB =,则四边形AECF 的面积为(A .3B .17.已知如图,AD BC ∥,面积为()A .2B .38.如图,在平行四边形ABCD 的延长线于点E ,连接AE ,交BC 于点F A .5B .259.如图,矩形1111D C B A 在矩形ABCD 结1BB ,1DB ,1BD ,1DD ,若矩形知道下列哪个值就一定可以求得四边形A .矩形ABCD 的面积2A .①②④B .②③④二、填空题11.矩形的判定定理包括:(1)___________的平行四边形是矩形;(2)____________的平行四边形是矩形;(3)____________的四边形是矩形.12.四边形ABCD 中,AC BD 、交于O ,给出条件①,OA OC OB OD ==;②,AB CD AC BD ==;③OA OB OC OD ===;④,AB BC AC BD ⊥=.其中能推得四边形ABCD 是矩形的是(填序号)___________.13.如图,AB ∥CD ,∠A =∠B =90°,AB =4cm ,BC =3cm ,则AB 与CD 之间的距离为________.14.如图,在ABC 中,AC BC =,D ,E 分别是边AB ,AC 的中点,将ADE V 绕点E 旋转180︒得CFE ,则四边形ADCF 的形状为______.15.如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .16.如图,在ABC 中,=AB AC ,120A ∠=︒,D 是BC 上任意一点,分别作DE AB ⊥于E ,DF AC ⊥于F .如果12BC =,那么+=DE DF ________.17.如图,ABC 是等腰直角三角形,90C = ∠,4AC BC ==,点P 是AB 上的一个动点(点P 与点A 、B 不重合),过点P 分别作PE BC ⊥于点E ,PF AC ⊥于点F ,连接EF .(1)四边形PECF 的形状是______;(2)线段EF 的最小值为______.18.如图,在矩形ABCD 中,8AB =,10AD =,点E F 、分别是AB BC 、上的动点,点E 不与AB 、重合,且EF AB =,点G 是五边形AEFCD 内点,GE GF =,且90EGF ∠=︒.①当点E 为AB 的中点时,AEG ∠=_____________.②点G 到AB 边距离为m ,则m 的取值范围为_____________.三、解答题19.如图,在平行四边形ABCD 中,点P 是AB 边上一点(不与A ,B 重合),过点P 作PQ ⊥CP ,交AD 边于点Q ,且∠QPA =∠PCB .求证:四边形ABCD 是矩形.20.如图,在平行四边形ABCD 中,过点D 作DE AB ⊥于点,E 点F 在CD 边上,,CF AE =连接,.AF BF (1)求证:四边形BFDE 是矩形;(2)若AF 平分,DAB ∠3,5,CF DF ==求四边形BFDE 的面积.21.如图,ABCD Y 四个内角的平分线围成四边形EFGH ,猜想四边形EFGH 的形状,并说明理由.22.如图,在平行四边形ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E ,连接,BD EC .(1)求证:四边形BECD 是平行四边形;(2)若55A ∠=︒,则当BOD ∠=__________时,四边形BECD 是矩形(不用证明)23.如图,在菱形ABCD 中,对角线AC 和BD 交于点O ,分别过点B 、C 作BE AC ∥,CE BD ∥,BE 与CE 交于点E .(1)求证:四边形OBEC 是矩形;(2)当60ABD ∠=︒,4=AD 时,求ED 的长.24.如图,菱形ABCD 的对角线AC 和BD 交于点O ,分别过点C 、D 作CE BD ∥,∥DE AC ,CE 和DE 交于点E .(1)判断四边形ODEC 的形状并说明理由;(2)连接AE ,交CD 于点F ,当602ADB AD ∠=︒=,时,求AE 的长.25.如图,平行四边形ABCD 的对角线交于点O ,以OD ,CD 为邻边作平行四边形DOEC ,OE 交BC 于点F ,连接BE .(1)求证:F 为BC 中点.(2)若OB ⊥AC ,OF =1,求平行四边形ABCD 的周长.26.如图,已知:如图,在四边形ABCD 中,点G 在边BC 的延长线上,CE 平分BCD ∠,CF 平分GCD ∠,EF BC ∥交CD 于点O .(1)求证:OE OF =;(2)若点O 为CD 的中点,求证:四边形DECF 是矩形.27.如图1,在DBF 中,DB DF =,DC BF ⊥于点C ,点E 是BD 的中点,连接CE 并延长,使AE CE =,连接AD AB 、.(1)求证:四边形ABCD 是矩形.(2)如图2,点H 为DF 的中点,连接CH ,若4AB =,2BC =,求四边形ECHD 的面积.28.如图,四边形ABCD 的对角线AC ,BD 交于点O ,其中AD ∥BC ,AD =BC ,AC =2OB ,AE 平分∠BAD 交CD 于点E ,连接(1)求证:四边形ABCD 是矩形;(2)若∠OAE =15°,①求证:DA =DO =DE ;②直接写出∠DOE 的度数.29.如图1,在平行四边形ABCD F .(1)当90ABC ∠=︒时,G 是EF 的中点,联结,DB DG (如图2),请直接写出BDG ∠的度数中点.(1)求证:C ABE DF ≌△△;(2)延长AE 至G ,使EG AE =,连接CG ,延长①当AB 与AC 满足什么数量关系时,四边形②若210AP DP ==,25CP =,5CD =,求四边形31.如图所示,在菱形ABCD 中,P 为边过点E 作EF AC ⊥于点F ,延长EF 交AD 点N .(1)当点E 与点P 重合时,求证:AFE BNE △≌△(2)如图①,若点E 在线段AP 上,且5AD =,△是什么特殊三角形?并证明你(3)如图②,若点E在线段BP上,连接NP、FP,则NFP的结论.。

矩形的判定(5种题型)(解析版)

矩形的判定(5种题型)(解析版)

矩形的判定(5种题型)【知识梳理】一、矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)要点诠释:②证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.二.矩形的判定与性质(1)关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.在处理许多几何问题中,若能灵活运用矩形的这些性质,则可以简捷地解决与角、线段等有关的问题.(2)下面的结论对于证题也是有用的:①△OAB、△OBC都是等腰三角形;②∠OAB=∠OBA,∠OCB=∠OBC;③点O到三个顶点的距离都相等.【考点剖析】题型一:矩形的判定定理的理解例1.(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AD B.AC⊥BD C.AB=AC D.AC=BD【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A.∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项A不符合题意;B.∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C.▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项C不符合题意;D.∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟练掌握矩形的判定和菱形的判定是解题的关键.【变式】已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,那么下列结论中正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC BD⊥时,四边形ABCD是矩形C.当OA=OB时,四边形ABCD是矩形D.当ABD CBD∠=∠时,四边形ABCD是矩形【答案】C【解析】C答案中,当OA=OB时,可知四边形ABCD的对角线相等,则可得平行四边形ABCD是矩形.【总结】考察矩形的证明方法.题型二:添加一个条件使四边形是矩形例2.(2022•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是.【分析】先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.【解答】解:需添加的一个条件是∠A=90°,理由如下:∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,又∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°(答案不唯一).【点评】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.【变式】(2022•前进区一模)如图,已知四边形ABCD为平行四边形,对角线AC与BD交于点O,试添加一个条件,使▱ABCD为矩形.【分析】根据对角线相等的平行四边形是矩形可添加的条件是AC=BD.【解答】解:∵AC=BD,四边形ABCD为平行四边形,∴四边形ABCD为矩形.故答案为:AC=BD.【点评】本题考查矩形的判定,熟练掌握矩形的判定方法是解决本题的关键.题型三:证明四边形是矩形例3.(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC 至点G,使CG=CE,连接DG、DE、FG.(1)求证:△ABE≌△FCE;(2)若AD=2AB,求证:四边形DEFG是矩形.【分析】(1)由平行四边形的性质推出AB∥CD,根据平行线的性质推出∠EAB=∠CFE,利用AAS即可判定△ABE≌△FCE;(2)先证明四边形DEFG是平行四边形,再证明DF=EG,即可证明四边形DEFG是矩形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠CFE,又∵E为BC的中点,∴EC=EB,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);(2)∵△ABE≌△FCE,∴AB=CF,∵四边形ABCD是平行四边形,∴AB=DC,∴DC=CF,又∵CE=CG,∴四边形DEFG是平行四边形,∵E为BC的中点,CE=CG,∴BC=EG,又∵AD=BC=EG=2AB,DF=CD+CF=2CD=2AB,∴DF=EG,∴平行四边形DEFG是矩形.【点评】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定与性质,证明△ABE≌△FCE是解题的关键.【变式1】(2022•六盘水)如图,在平行四边形ABCD中,AE平分∠BAC,CF平分∠ACD.(1)求证:△ABE≌△CDF;(2)当△ABC AECF是矩形?请写出证明过程.【分析】(1)由ASA证△ABE≌△CDF即可;(2)由(1)可知,∠CAE=∠ACF,则AE∥CF,再由全等三角形的性质得AE=CF,则四边形AECF是平行四边形,然后由等腰三角形的在得∠AEC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AB∥CD,∴∠BAC=∠ACD,∵AE平分∠BAC、CF平分∠ACD,∴∠BAE=∠CAE=∠BAC,∠DCF=∠ACF=∠ACD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:当△ABC满足AB=AC时,四边形AECF是矩形,理由如下:由(1)可知,∠CAE=∠ACF,∴AE∥CF,∵△ABE≌△CDF,∴AE=CF,∴四边形AECF是平行四边形,又∵AB=AC,AE平分∠BAC,∴AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形的判定、全等三角形的判定与性质、等腰三角形的性质等知识,熟练掌握矩形的判定是解题的关键.【变式2】(2022•十堰)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设=k,当k为何值时,四边形DEBF是矩形?请说明理由.【分析】(1)利用平行四边形的性质,即可得到BO=OD,EO=FO,进而得出四边形BFDE是平行四边形,进而得到BE=DF;(2)先确定当OE=OD时,四边形DEBF是矩形,从而得k的值.【解答】(1)证明:如图,连接DE ,BF ,∵四边形ABCD 是平行四边形,∴BO =OD ,AO =OC ,∵E ,F 分别为AO ,OC 的中点,∴EO =OA ,OF =OC ,∴EO =FO ,∵BO =OD ,EO =FO ,∴四边形BFDE 是平行四边形,∴BE =DF ;(2)解:当k =2时,四边形DEBF 是矩形;理由如下:当BD =EF 时,四边形DEBF 是矩形,∴当OD =OE 时,四边形DEBF 是矩形,∵AE =OE ,∴AC =2BD ,∴当k =2时,四边形DEBF 是矩形.【点评】本题主要考查了平行四边形的判定与性质,矩形的判定,注意对角线互相平分的四边形是平行四边形.题型四:矩形的性质与判定求线段长 例4.(2022秋·广东佛山·九年级校考阶段练习)如图,在ABCD Y 中,AE BC ⊥于点E ,延长BC 至点F ,使CF E =,连接DF ,AF 与DE 交于点O .(1)求证:四边形AEFD 为矩形;(2)若3AB =,2OE =,5BF =,求DF 的长.【答案】(1)见解析 (2)125【分析】(1)根据线段的和差关系可得BC EF =,根据平行四边形的性质可得AD ∥BC ,AD BC =,即可得出AD EF =,可证明四边形AEFD 为平行四边形,根据AE BC ⊥即可得结论;(2)根据矩形的性质可得AF DE =,可得BAF 为直角三角形,利用“面积法”可求出AE 的长,即可得答案.【详解】(1)BE CF =,BE CE CF CE ∴+=+,即BC EF =, ABCD 是平行四边形,AD ∴∥BC ,AD BC =,AD EF ∴=, AD ∥EF ,∴四边形AEFD 为平行四边形,AE BC ⊥,90AEF ∴∠=︒,∴四边形AEFD 为矩形.(2)四边形AEFD 为矩形,AF DE ∴=,DF AE =,2OE =,∴4DE =,∵3AB =,5BF =,∴222AB AF BF +=,BAF ∴为直角三角形,90BAF ∠=︒,∴1122ABFS AB AF BF AE=⨯=⨯,∴125 AE=,∴125 DF AE==.【点睛】本题考查平行四边形的性质、矩形的判定与性质及勾股定理的逆定理,熟练掌握相关性质及判定定理是解题关键.【变式】如图,平行四边形ABCD中P是AD上一点,E为BP上一点,且AE=BE=EP.(1)求证:四边形ABCD是矩形;(2)过E作EF⊥BP于E,交BC于F,若BP=BC,S△BEF=5,CD=4,求CF.【答案】(1)证明:AE=BE=EP,∴∠EAB=∠EBA,∠EAD=∠EPA,∵∠ABE+∠EAB+∠EAP+∠APE=180°,2∠EAB+2∠EAP=180°,∴∠EAB+∠EAP=90°,∴∠BAD=90°,∵平行四边形ABCD∴四边形ABCD为矩形;(2)解:如图连接PF,作PM⊥BC于M,EN⊥BC于N,∵四边形ABCD为矩形,∴∠C=∠D=∠PMC=90°,∴四边形PMCD为矩形,同理四边形ABMP为矩形,∴PM=CD=4,∠PMC=∠PMF=90°,∵BE=EP,EN∥PM,∴BN=NM ,∴EN=12PM=2, ∵12·BF ·EN=5,∴BF=5,∵EF ⊥BP ,BE=EP∴PF=BF=5,∴FM=3,∴AP=BM=8,∴BC=BP=∴CF=BC-BF=.题型五:矩形的性质与判定求面积例5.(2022•云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°.(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .【分析】(1)由四边形ABCD 是平行四边形,得∠BAE =∠FDE ,而点E 是AD 的中点,可得△BEA ≌△FED (ASA ),即知EF =EB ,从而四边形ABDF 是平行四边形,又∠BDF =90°,即得四边形ABDF 是矩形;(2)由∠AFD =90°,AB =DF =3,AF =BD ,得AF ===4,S 矩形ABDF =DF •AF =12,四边形ABCD 是平行四边形,得CD =AB =3,从而S △BCD =BD •CD =6,即可得四边形ABCF 的面积S 为18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF===∴S矩形ABDF=DF•AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCD=BD•CD=×4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.【点评】本题考查平行四边形性质及应用,涉及矩形的判定,全等三角形判定与性质,勾股定理及应用等,解题的关键是掌握全等三角形判定定理,证明△BEA≌△FED.【变式1】已知ABCD 的对角线AC ,BD 相交于O ,△ABO 是等边三角形,AB =4,求这个平行四边形的面积.【答案】 解: ∵四边形ABCD 是平行四边形.∴△ABO ≌△DCO又∵△ABO 是等边三角形∴△DCO 也是等边三角形,即AO =BO =CO =DO∴AC =BD∴ ABCD 为矩形.∵AB =4,AC =AO +CO∴AC =8在Rt △ABC 中,由勾股定理得:BC =∴矩形ABCD 的面积为:AB BC =16 【变式2】(2023春·江苏南京·九年级统考期中)如图,O 为矩形ABCD 的对角线AC 的中点,过O 作EF AC ⊥分别交AD ,BC 于点E ,F .(1)求证:四边形AFCE 是菱形.(2)若6AB =,12BC =,求菱形AFCE 的面积.【答案】(1)见解析(2)45【分析】(1)先根据矩形的性质可得OA OC =,AD BC ∥,再根据ASA 定理证出AOE COF ≌,根据全等cm cm cm cm 2cm三角形的性质可得OE OF =,然后根据菱形的判定即可得证;(2)设菱形AFCE 的边长为x ,则12BF x =−,在Rt ABF 中,利用勾股定理求出x 的值,然后根据菱形的面积公式即可得.【详解】(1)证明:四边形ABCD 是矩形,∴OA OC =,AD BC ∥,OAE OCF ∴∠=∠,∵O 为矩形ABCD 的对角线AC 的中点,∴OA OC =,在AOE △和COF 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA AOE COF ∴≌, OE OF ∴=,∴四边形AECF 是平行四边形,又EF AC ⊥,∴四边形AECF 是菱形.(2)解:四边形ABCD 是矩形,90ABC ∴∠=︒,设菱形AFCE 的边长为x ,则AF CF x ==,12BC =,12BF BC CF x ∴=−=−,在Rt ABF 中,222AB BF AF +=,即()222612x x +−=,解得7.5x =, 7.5CF ∴=,则四边形AFCE 的面积为7.5645CF AB ⋅=⨯=.【点睛】本题考查了矩形的性质、菱形的判定与性质、勾股定理等知识点,熟练掌握菱形的判定与性质是解题关键.【过关检测】一、单选题 1.(2023·河北邯郸·统考模拟预测)如图,在四边形ABCD 中,给出部分数据,若添加一个数据后,四边形ABCD 是矩形,则添加的数据是( )A .4CD =B .2CD =C .2OD = D .4OD =【答案】D 【分析】根据对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形即可得到答案.【详解】解:当4OD =时,由题意可知,4AO CO ==,4BO DO ==,∴四边形ABCD 是平行四边形,∵8AC BD ==,∴四边形ABCD 是矩形,故选:D【点睛】此题考查了矩形的判定,熟练掌握矩形的判定方法是解题的关键.2.(2023·浙江湖州·统考模拟预测)如图,在Rt △ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 的中点,AC =8,BC =6,则四边形CEDF 的面积是( )A .6B .12C .24D .48【答案】B【分析】利用三角形的中位线定理,先证明四边形DECF 是矩形,再利用矩形的面积公式进行计算即可. 【详解】解: 点D ,E ,F 分别是边AB ,AC ,BC 的中点,AC =8,BC =6,11//,3,//,4,22DE BC DE BC DF AC DF AC ∴====∴ 四边形DECF 是平行四边形,90,C ∠=︒∴ 四边形DECF 是矩形,3412.DECF S ∴=⨯=矩形故选:.B【点睛】本题考查的是三角形的中位线的性质,矩形的判定与性质,掌握利用三角形的中位线证明四边形是平行四边形是解题的关键. A .3B .【答案】A 【分析】连接AC ,由菱形的性质可证ABC 和ACD 是等边三角形,从而求得2AC =,根据点E 、F 是AB 、CD 的中点可得CE AB ⊥,AF CD ⊥,进而证明四边形AECF 是矩形,再利用勾股定理求出=EC 即可求出结果.【详解】解:连接AC ,∵四边形ABCD 是菱形,ABC ∠︒=60,2AB =,==60B D ∴∠∠︒ ,====2AB BC CD AD ,==120BAD BCD ∠∠︒,==60BAC BCA ∴∠∠︒,==60DAC DCA ∠∠︒,∴ABC 和ACD 是等边三角形,2AC AB ==,∵点E 、F 是AB 、CD 的中点,CE AB ∴⊥,AF CD ⊥,==30CAF ACE ∠∠︒,==90BAF DCE ∴∠∠︒,∴四边形AECF 是矩形, 1==12AE AB ,∴在Rt AEC 中,EC∴矩形AECF 的面积为:=1AE EC ⨯故选:A .【点睛】本题考查了菱形的性质、矩形的判定和性质及等边三角形的判定和性质和勾股定理,熟练运用相关知识,正确作出辅助线是解题的关键. A .232−B .2【答案】C 【分析】根据矩形的性质得出AD BC ∥,得出DEC BCE ∠=∠,证明45ABE AEB ∠==︒,得出2AB AE ==,根据勾股定理求出BE =【详解】解:∵四边形ABCD 是矩形,∴AD BC ∥,∴DEC BCE ∠=∠,∵EC 平分DEB ∠,∴DEC BEC ∠=∠,∴BEC ECB ∠=∠,∴BE BC =,∵四边形ABCD 是矩形,∴90A ∠=︒,∵=45ABE ∠︒,∴45ABE AEB ∠=∠=︒,∴2AB AE ==.∵由勾股定理得:BE ===,∴BC BE ==∴2DE AD AE BC AB =−=−=,故选:C .【点睛】本题主要考查了矩形的性质、角平分线的性质、等腰三角形的性质、勾股定理的应用等知识;要学会添加常用的辅助线,构造特殊三角形来解决问题.熟练掌握矩形的性质、等腰三角形的判定与性质是解决问题的关键. 5.(2023·江苏无锡·校考一模)如图,ABCD Y 的对角线AC 与BD 相交于点O ,添加下列条件不能证明ABCD Y 是菱形的是( )A .ABD ADB ∠=∠ B .AC BD ⊥C .AB BC =D .AC BD =【答案】D 【分析】由菱形的判定、矩形的判定分别对各个选项进行判断即可.【详解】解:A 、∵ABD ADB ∠=∠,∴AB AD =,∴ABCD Y 是菱形,故选项不符合题意;B 、∵四边形ABCD 是平行四边形,AC BD ⊥,∴ABCD Y 是菱形,故选项不符合题意;C 、∵四边形ABCD 是平行四边形,AB BC =,∴ABCD Y 是菱形,故选项不符合题意,D 、∵四边形ABCD 是平行四边形,AC BD =,∴ABCD Y 是矩形,故选项符合题意;故选:D .【点睛】本题考查了菱形的判定、矩形的判定,熟练掌握菱形的判定方法是解题的关键.【答案】C【分析】根据矩形的判定定理逐一判断即可.【详解】解:A 、一组对角相等的平行四边形不一定是矩形,是假命题,不符合题意;B 、对角线相等且平分的四边形是矩形,是假命题,不符合题意;C 、顺次连接菱形四边中点得到的四边形是矩形,是真命题,符合题意;如图所示,在菱形ABCD 中,E F G H 、、、分别是AB BC CD AD 、、、的中点,∴EH 是ABD △的中位线,∴12EH BD EH BD =,∥,同理得111222EF AC EF AC FG BD GH AC ===,∥,,, ∴EH FG EF GH ==,,∴四边形EFGH 是平行四边形,∵四边形ABCD 是菱形,∴AC BD ⊥,∴EH EF ⊥,∴四边形EFGH 是矩形;D 、对角线相等的四边形不一定是矩形,也有可能是等腰梯形,是假命题,不符合题意;故选C .【点睛】本题主要考查了判断命题真假,矩形的判定,熟知矩形的判定定理是解题的关键.【答案】C【分析】连接CM ,先证四边形PCQM 是矩形,得PQ CM =,再由勾股定理得3BD =,当CM BD ⊥时,CM 最小,则PQ 最小,然后由面积法求出CM 的长,即可得出结论.【详解】解:如图,连接CM ,MP CD ⊥于点P ,MQ BC ⊥于点Q ,90CPM CQM ∴∠=∠=︒,四边形ABCD 是矩形,6BC AD ∴==,8CD AB ==,90BCD ∠=︒,∴四边形PCQM 是矩形,PQ CM ∴=,由勾股定理得:10BD ==,当CM BD ⊥时,CM 最小,则PQ 最小, 此时,1122BCD S BD CM BC CD =⋅=⋅△, 即11106822CM ⨯⨯=⨯⨯,245CM ∴=, PQ ∴的最小值为245,故选:C .【点睛】勾股定理、垂线段最短以及三角形面积等知识,熟练掌握矩形的判定与性质是解题的关键. 8.(2023·山东德州·统考二模)如图,矩形ABCD 中,6AB =,4=AD ,点E ,F 分别是AB ,DC 上的动点,EF BC ∥,则BF DE +最小值是( )A .13B .10C .12D .5【答案】B 【分析】延长AD ,取点M ,使得AD DM =,连接MP ,根据全等三角形的判定得到ADE DMF ≌,得到DE MF =,故当B ,F ,M 三点共线时,BF DE +的值最小,即为BM 的值.【详解】延长AD ,取点M ,使得AD DM =,连接MP ,如图∵EF BC ∥,四边形ABCD 是矩形∴四边形AEFD 和四边形EBCF 是矩形∵AD DM =,AE DF =,90EAD FDM ==︒∠∠∴ADE DMF ≌∴DE MF =∴=BF DE BF FM ++∵点E ,F 分别是AB ,DC 上的动点故当B ,F ,M 三点共线时,BF DE +的值最小,且BF DE +的值等于BM 的值在Rt BAM △中,10BM ===故选:B . 【点睛】本题考查了矩形的判定和性质,全等三角形的判定和性质,勾股定理等,做出辅助线,构建DMF 使得ADE DMF ≌是解决本题的关键.二、填空题 9.(2023·甘肃武威·统考三模)如图矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =3,BC =4,则图中阴影部分的面积为_____.【答案】6.【分析】首先结合矩形的性质证明△AOE ≌△COF ,得△AOE 、△COF 的面积相等,从而将阴影部分的面积转化为△BCD 的面积.【详解】∵四边形ABCD 是矩形,∴OA =OC ,∠AEO =∠CFO ;又∵∠AOE =∠COF ,在△AOE 和△COF 中,∵AEO CFO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠∠⎩=,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,∴S 阴影=S △AOE+S △BOF+S △COD =S △AOE+S △BOF+S △COD =S △BCD ;∵S △BCD =12BC•CD =6,∴S 阴影=6.故答案为6.【点睛】本题主要考查矩形的性质,三角形全等的判定和性质定理,掌握三角形的判定和性质定理,是解题的关键.【答案】AE BC ⊥(答案不唯一)【分析】根据矩形的判定方法即可求解.【详解】解:菱形ABCD ,BE DF =,∴AD DF BC BE −=−,即CE AF =,且AF CE =,∴四边形AECF 是平行四边形,根据矩形的判定,①四边形AECF 是平行四边形,AE BC ⊥,∴90AEC ∠=︒,平行四边形AECF 是矩形;②四边形AECF 是平行四边形,若CF AD ⊥,∴90AFC ∠=︒,平行四边形AECF 是矩形;故答案为:AE BC ⊥(答案不唯一).【点睛】本题主要考查矩形,掌握矩形的判定方法是解题的关键. 11.(2023春·吉林·八年级期中)如图,在ABCD Y 中AC BD 、相交于点O ,8AC =,当OD =______时,ABCD Y 是矩形.【答案】4【分析】根据矩形的判定与性质即可解答.【详解】解:四边形ABCD 为平行四边形,∴要使四边形ABCD 为矩形,则8BD AC ==,142OD BD ∴==,故答案为:4.【点睛】本题主要考查了矩形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解题的关键.12.(2023·江苏徐州·统考一模)如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A′B′C′=S △ABC ,BC=B′C′,BC ∥B′C′,∴四边形B′C′CB 为平行四边形,∵BB′⊥BC ,∴四边形B′C′CB 为矩形,∵阴影部分的面积=S △A′B′C′+S 矩形B′C′CB-S △ABC=S 矩形B′C′CB=4×2=8(cm2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【答案】14【分析】有矩形的性质和勾股定理分别求出EJ FJ =AK BK ==【详解】解:在矩形ABCD 中,∵4590BAF ABF ∠=︒∠=︒,,∴45454ABG AFB AB BF ∠=︒∠=︒==,,,∵6BC =,∴2BE CF AH DG ====,∴2HG EF ==,∴EJ FJ =∵4AB =,∴AK BK ===∴(24614S ⎡⎤=⨯−=⎢⎥⎣⎦阴影.故答案为:14.【点睛】本题主要考查矩形的性质、勾股定理,掌握相关知识并理解题意是解题的关键. 统考一模)如图,ABC 的边,将ABC 平移得到A B C ''',且 【答案】62【分析】利用平行的性质可得2BB CC ''==,BC B C ''==A ABC B C '''≌△△,利用两组对边分别相等的四边形是平行四边形,可证四边形BCC B ''是平行四边形,同时可证得ABC A B C S S '''=△△,再证明四边形BCC B ''是矩形,由此可得阴影部分的面积等于矩形BCC B ''的面积,然后利用矩形的面积公式进行计算.【详解】解:∵将ABC 平移2cm 得到A B C ''',∴2BB CC ''==,BC B C ''==A ABC B C '''≌△△, ∴四边形BCC B ''是平行四边形,∵BB BC '⊥,90B BC ∴='∠︒,∴四边形BCC B ''是矩形,∴22BCC B S S ''==⨯=阴影,故答案为:【点睛】本题考查了平移的性质、平行四边形的判定与性质、矩形的判定与性质,熟练掌握平移的性质,证明四边形BCC B ''是矩形是解题的关键.三、解答题 分别是ABC 各边的中点. 请你为ABC 添加一个条件,使得四边形【答案】(1)四边形ADEF 为平行四边形,证明见解析(2)90DAF ∠=︒,四边形ADEF 为矩形,证明见解析【分析】(1)根据三角形中位线定理得到DE AC EF AB ∥,∥,根据平行四边形的判定定理证明结论;(2)根据矩形的判定定理证明.【详解】(1)解:四边形ADEF 为平行四边形,理由如下:∵D ,E ,F 分别是ABC 各边的中点,∴DE AC EF AB ∥,∥,∴四边形ADEF 是平行四边形;(2)90DAF ∠=︒,四边形ADEF 为矩形,理由如下:由(1)得:四边形ADEF 为平行四边形,又∵90DAF ∠=°,∴平行四边形ADEF 是矩形.【点睛】本题考查的是三角形中位线定理、平行四边形和矩形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. (1)求证:四边形ABCF (2)若ED EC =,求证:【答案】(1)见解析(2)见解析【分析】(1)根据,AB DC FC AB =∥,可得四边形ABCF 是平行四边形,再由90BCD ∠=︒,即可求证;(2)根据四边形ABCF 是矩形,90AFD AFC ∠=∠=︒,从而得到90,90DAF D CGF ECD ∠=︒−∠∠=︒−∠,再由ED EC =,可得D ECD ∠=∠,从而得到DAF CGF ∠=∠,进而得到EAG EGA ∠=∠,即可求证.【详解】(1)证明:∵,AB DC FC AB =∥,∴四边形ABCF 是平行四边形.∵90BCD ∠=︒,∴四边形ABCF 是矩形.(2)证明:∵四边形ABCF 是矩形,∴90AFD AFC ∠=∠=︒,∴90,90DAF D CGF ECD ∠=︒−∠∠=︒−∠.∵ED EC =,∴D ECD ∠=∠.∴DAF CGF ∠=∠.∵EGA CGF ∠=∠,∴EAG EGA ∠=∠.∴EA EG =.【点睛】本题主要考查了矩形的判定和性质,等腰三角形的判定和性质,熟练掌握矩形的判定和性质,等腰三角形的判定和性质是解题的关键.【答案】见解析【分析】首先证明四边形ABCD 是平行四边形,得出OA OC =,OB OD =,根据OA OD =,得出AC BD =,即可证明.【详解】解:证明:∵AB CD =,AB CD ∥,∴四边形ABCD 为平行四边形,∴OA OC =,OB OD =.又∵OA OD =,∴AC BD =,∴平行四边形ABCD 为矩形.【点睛】本题考查了矩形的判定、平行四边形的判定与性质;熟练掌握矩形的判定是解题的关键. 18.(2023·湖北恩施·统考二模)如图,在平行四边形ABCD 中,对角线,BD AC 相交于点,,O AE BD BF AC ⊥⊥,垂足分别为,E F .若CF DE =,求证:四边形ABCD 为矩形.【答案】见解析【分析】利用HL 证明ADE BCF ≌,得出AE BF =,利用AAS 证明AOE BOF △≌△,得出AO BO =,结合平行四边形的性质可得出AC BD =,然后利用矩形的判定即可证明.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC =,2AC AO =,2BD BO =,∵,AE BD BF AC ⊥⊥,∴90AED AEO BFC BFO ∠=∠=∠=∠=︒,又CF DE =∴()Rt Rt HL ADE BCF ≌,∴AE BF =,又AOE BOF ∠=∠,∴()AAS AOE BOF ≌,∴AO BO =,又2AC AO =,2BD BO =,∴平行四边形ABCD 是矩形.【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,矩形的判定等知识,证明AO BO =是解题的关键. 19.(2023·湖南岳阳·模拟预测)如图所示,ABC 中,D 是BC 中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF BD =,连接BF .请从以下三个条件:①AB AC =;②FB AD =;③E 是AD 的中点,选择一个合适作为已知条件,使四边形AFBD 为矩形.(1)你添加的条件是 ;(填序号)(2)添加条件后,请证明四边形AFBD 为矩形.【答案】(1)①(2)见解析【分析】(1)根据已知可得四边形AFBD 是平行四边形,添加条件能证明四边形是矩形即可求解;(2)先证明四边形AFBD 是平行四边形,①根据三线合一得出AD BD ⊥,能证明四边形是矩形;②只能证明四边形为平行四边形;③证明AFE DCE △≌△,可得AF DC =,进而根据已知得出BD AF =,不能证明四边形是矩形.【详解】(1)解:添加的条件是①故答案为:①.(2)证明:∵AF BC ∥,AF BD =,∴四边形AFBD 是平行四边形,①AB AC =;∵ABC 中,D 是BC 中点,∴四边形AFBD 是矩形;②添加FB AD =;四边形AFBD 是平行四边形,不能证明四边形AFBD 是矩形;③E 是AD 的中点∴AE DE =,∵AF BC ∥,∴FAE DCE ∠=∠,又AEF DEC ∠=∠,∴()AAS AFE DCE ≌,∴DC AF =,又BD CD =,∴BD AF =,∴③不能证明四边形AFBD 是矩形.【点睛】本题考查了矩形的判定,熟练掌握矩形的判定定理是解题的关键. (1)求证:四边形OCED 是矩形;(2)设AC =12,BD =16,求OE 的长.【答案】(1)见解析(2)10【分析】(1)先证明平行四边形ABCD 为菱形,可得AC BD ⊥,通过CE BD ∥,DE AC ∥证明四边形OCED 为平行四边形,结合AC BD ⊥即可证明;(2)由(1)可得平行四边形ABCD 为菱形,故12OC AO AC ==,12OB DO BD ==,结合四边形OCED 是矩形,运用勾股定理即可求得OE 的长. 【详解】(1)∵四边形ABCD 为平行四边形,AB BC =,∴平行四边形ABCD 为菱形,∴AC BD ⊥,∵CE BD ∥,DE AC ∥,∴四边形OCED 为平行四边形,又∵AC BD ⊥,∴四边形OCED 为矩形.(2)∵=12AC ,16BD =, ∴162OC AC ==,182DO BD ==,在Rt COD 中,10CD =,由(1)知四边形OCED 为矩形,∴10OE CD ==.【点睛】本题考查了菱形的判定和性质,矩形的判定和性质,勾股定理等,熟练掌握四边形的判定和性质是解题的关键. 21.(2023·湖南长沙·校考二模)如图,平行四边形ABCD 中,AC BC ⊥,过点D 作∥DE A C 交BC 的延长线于点E ,点M 为AB 的中点,连接CM .(1)求证:四边形ADEC 是矩形;(2)若5CM =,且8AC =,求四边形ADEB 的周长.【答案】(1)证明见解析(2)36【分析】(1)根据平行四边形的性质得到AD BC ∥,由∥DE A C 即可证明四边形ADEC 是平行四边形,再由AC BC ⊥即可证明平行四边形四边形ADEC 是矩形;(2)先根据直角三角形斜边上的中线等于斜边的一半求出10AB =,进而利用勾股定理求出6BC =,再利用平行四边形的性质得到6AD =,由此即可利用矩形周长公式求出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∵∥DE A C , ∴四边形ADEC 是平行四边形,∵AC BC ⊥,即A C C E ⊥,∴平行四边形四边形ADEC 是矩形;(2)解:∵AC BC ⊥,点M 为AB 的中点,5CM =,∴210AB CM ==,在Rt ABC △中,由勾股定理得6BC ==, ∵四边形ABCD 是平行四边形,四边形ADEC 是矩形∴6AD BC CE ===,8DE AC ==∴四边形ADEB 的周长68661036AD DE CE CB AB =++++=++++=.【点睛】本题主要考查了矩形的性质与判定,平行四边形的性质与判定,勾股定理,直角三角形斜边上的中线的性质,熟知矩形的性质与判定定理是解题的关键. 22.(2023·山东济南·统考三模)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,DF ⊥AC 于点F . 求证:AE =DF .【答案】见解析【分析】根据矩形的性质得到OA =OC =OB =OD ,再根据AE ⊥BD ,DF ⊥AC 得出∠AEO =∠DFO ,从而证明出△AOE ≌△DOF 即可.【详解】证明:∵四边形ABCD 是矩形,对角线AC ,BD 相交于点O ,∴OA =OC =OB =OD ,∵AE ⊥BD ,DF ⊥AC ,∴∠AEO =∠DFO =90°,在△AOE 和△DOF 中,AEO DFO AOE DOFAO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△DOF (AAS ),∴AE =DF .【点睛】本题主要考查矩形的性质和三角形全等的判定与性质,解题关键是找到全等三角形,熟练运用全等三角形的判定进行证明. 八年级北京交通大学附属中学校考期中)如图,在ABC 中,点(1)求证:四边形ADFE 为矩形;(2)若30C ∠=︒,2AF =,写出矩形【答案】(1)证明见解析(2)2【分析】(1)连接DE ,先根据三角形的中位线的性质证明四边形ADFE 是平行四边形,再根据对角线相等的平行四边形是矩形证明即可;(2)根据矩形的性质得出90BAC FEC ∠=∠=︒,再根据直角三角形斜边上的中线等于斜边的一半得出4BC =,2CF =,然后解直角三角形求出矩形的边长即可得出矩形的周长.【详解】(1)连接DE ,如图,∵点E ,F 分别是边AC ,BC 的中点,∴EF AB ∥,12EF AB =.∵点D 是边AB 的中点, ∴12AD AB =.∴AD EF =.∴四边形ADFE 是平行四边形.∵点D ,E 分别是边AB ,AC 的中点, ∴12DE BC =. ∵2BC AF =,∴AF DE =.∴平行四边形ADFE 是矩形.(2)∵四边形ADFE 为矩形,∴90BAC FEC ∠=∠=︒.∵2AF =,点F 是边BC 的中点,∴24BC AF ==,2CF AF ==.∵30C ∠=︒,∴1EF =,CE∴AE CE ==∴矩形ADFE 的周长为:())2212AE EF +==.【点睛】本题主要考查了矩形的判定和性质,三角形的中位线的性质,直角三角形的性质以及解直角三角形,熟练掌握矩形的判定和性质是解题的关键.。

专题15 矩形的性质与判定(解析版)

专题15 矩形的性质与判定(解析版)

专题15 矩形的性质与判定【考点归纳】(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)(5)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.【好题必练】一、选择题1.(2020秋•光明区期末)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5【答案】A【解析】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.2.(2020秋•凤翔县期末)如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,连接BP、MN,若AB=6,BC=8,当点P在斜边AC上运动时,则MN的最小值是()A.1.5B.2C.4.8D.2.4【答案】C.【解析】解:∵∠ABC=90°,AB=6,BC=8,∴AC===10,∵PM⊥AB,PN⊥BC,∠C=90°,∴四边形BNPM是矩形,∴MN=BP,由垂线段最短可得BP⊥AC时,线段MN的值最小,此时,S△ABC=BC•AB=AC•BP,即×8×6=×10•BP,解得:BP=4.8,即MN的最小值是4.8,故选:C.3.(2020•竹溪县模拟)下列说法中,错误的是()A.菱形的对角线互相垂直B.对角线互相垂直的四边形是菱形C.矩形的四个内角都相等D.四个内角都相等的四边形是矩形【答案】B【解析】解:A、∵菱形的对角线互相垂直,∴选项A不符合题意;B、∵对角线互相垂直平分的四边形是菱形,∴选项B符合题意;C、∵矩形的四个角都是直角,∴矩形的四个内角都相等,∴选项C不符合题意;D、∵四个内角都相等的四边形是四个角都是直角,∴四个内角都相等的四边形是矩形,∴选项D不符合题意;故选:B.4.(2020秋•武侯区校级月考)如图,在△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则PM的最小值为()A.5B.2.5C.4.8D.2.4【答案】D.【解析】解:连接AP,如图所示:∵∠BAC=90°,AB=6,AC=8,∴BC==10,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP,EF与AP互相平分,∵M是EF的中点,∴M为AP的中点,∴PM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样PM也最短,∴当AP⊥BC时,AP==4.8,∴AP最短时,AP=4.8,∴当PM最短时,PM=AP=2.4.故选:D.5.(2020春•沙坪坝区校级月考)下列说法正确的是()A.矩形的对角线互相垂直且平分B.矩形的邻边一定相等C.对角线相等的四边形是矩形D.有三个角为直角的四边形为矩形【答案】D.【解析】解:A、∵矩形的对角线互相平分且相等,∴选项A不符合题意;B、∵矩形的邻边一定垂直,不一定相等,∴选项B不符合题意;C、∵对角线相等的平行四边形是矩形,∴选项C不符合题意;D、∵有三个角为直角的四边形为矩形,∴选项D符合题意;故选:D.6.(2020春•江夏区期末)如图,点P是Rt△ABC中斜边AC(不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,点O是MN的中点,若AB=6,BC=8,当点P在AC上运动时,则BO的最小值是()A.1.5B.2C.2.4D.2.5【答案】C.【解析】解:连接BP,如图所示:∵∠ABC=90°,PM⊥AB于点M,作PN⊥BC于点N,∴四边形BMPN是矩形,AC===10,∴BP=MN,BP与MN互相平分,∵点O是MN的中点,∴BO=MN,当BP⊥AC时,BP最小===4.8,∴MN=4.8,∴BO=MN=2.4,故选:C.二、填空题7.(2020•顺义区一模)如图,将一矩形纸片ABCD沿着虚线EF剪成两个全等的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE的长是.【答案】3【解析】解:过F作FQ⊥AD于Q,则∠FQE=90°,∵四边形ABCD是长方形,∴∠A=∠B=90°,AB=DC=4,AD∥BC,∴四边形ABFQ是矩形,∴AB=FQ=DC=4,∵AD∥BC,∴∠QEF=∠BFE=45°,∴EQ=FQ=4,∴AE=CF=×(10﹣4)=3,故答案为:3.8.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.【答案】【解析】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.9.在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,连接EF,则EF的最小值为cm.【答案】【解析】解:∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∵PE⊥AB于E,PF⊥AC于F,∴∠AEP=∠AFP=90°,∴四边形AEPF为矩形,连接AP,如图,EF=AP,当AP的值最小时,EF的值最小,当AP⊥BC时,AP的值最小,根据△ABC面积公式,×AB•AC=×AP•BC,∴AP===,∴EF的最小值为.故答案为.10.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.【答案】【解析】解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.11.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为.【答案】2.4【解析】解:连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故答案为:2.4.三、解答题12.如图,在菱形ABCD中,对角线AC与BD交于点O,过点C作AC的垂线,过点D作BD的垂线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,求四边形的ABCD面积.【答案】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE⊥AC,DE⊥BD,∴平行四边形OCED是矩形;(2)解:由(1)知,四边形OCED是菱形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.13.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF =BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.【答案】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.【解析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD 的面积,根据等腰三角形的性质得到结论.14.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.【答案】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:∵AE=4,AD=5,∴AB=5,BE=3.∵AB=BC=5,∴CE=8.∴AC=4,∵对角线AC,BD交于点O,∴AO=CO=2.∴OE=2.【解析】(1)根据菱形的性质得到AD∥BC,推出四边形AECF是平行四边形,根据矩形的判定定理即可得到结论;(2)根据已知条件得到得到CE=8.求得AC=4,于是得到结论.15.(2020•石景山区一模)如图,在▱ABCD中,∠ACB=90°,过点D作DE⊥BC交BC的延长线于点E.(1)求证:四边形ACED是矩形;(2)连接AE交CD于点F,连接BF.若∠ABC=60°,CE=2,求BF的长.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠CAD=∠ACB=90°.又∵∠ACE=90°,DE⊥BC,∴四边形ACED是矩形.(2)解:∵四边形ACED是矩形,∴AD=CE=2,AF=EF,AE=CD.∵四边形ABCD是平行四边形,∴BC=AD=2,AB=CD.∴AB=AE.又∵∠ABC=60°,∴△ABE是等边三角形.∴∠BFE=90°,.在Rt△BFE中,.【解析】(1)根据四边形ABCD是平行四边形,可得AD∥BC.所以∠CAD=∠ACB=90°.又∠ACE =90°,即可证明四边形ACED是矩形;(2)根据四边形ACED是矩形,和四边形ABCD是平行四边形,可以证明△ABE是等边三角形.再根据特殊角三角函数即可求出BF的长.16.(2020春•灌云县期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若△ABC是边长为2的正三角形,求四边形AODE的面积.【答案】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形;(2)解:∵△ABC是边长为2的正三角形,∴AB=AC=2,∠ABC=60°,∵四边形ABCD为菱形,∴AO=AC=1,OD=OB,∵∠AOB=90°,∴OB===,∴OD=OB=,∵四边形AODE是矩形,∴四边形AODE的面积=×1=.【解析】(1)根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD =90°,继而可判断出四边形AODE是矩形;(2)由菱形的性质和勾股定理求出OB,得出OD,由矩形的面积公式即可得出答案。

《矩形的性质和判定》同步练习及答案

《矩形的性质和判定》同步练习及答案

矩形的性质和判定一.填空题1.如图,矩形ABCD中,∠ABC的平分线交AD边于点E,点F是CD的中点,连接EF.若AB=8,且EF平分∠BED,则AD的长为.题1 题3 题42.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是.3.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.4.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.5.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE= .·题5 题6 题76.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF= cm.7.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.8.如图,在四边形ABCD中,对角线AC、BD相交于点O,且AO=CO,BO=DO,要使四边形ABCD 为矩形,则需添加的条件为(填一个即可).题8 题11 题129.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为.10.木匠做一个矩形木框,长为80cm,宽为60cm,对角线的长为100cm,则这个木框(填“合格”或“不合格”)11.如图,在四边形ABCD中,已知AB∥DC,AB=DC,在不添加任何辅助线的情况下,请补充一个条件,使四边形ABCD成为矩形,这个条件是.12.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.)二.解答题13.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.14.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;[(2)若AB=17,BC=16,求四边形ADCE的面积.15.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若EA=EG,求证:ED=EC.[16.如图,在▱ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.(1)求证:四边形AEFD是矩形;(2)若AB=6,DE=8,BF=10,求AE的长.17.平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;`(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.矩形的性质和判定解析一.填空题(共12小题)1.如图,矩形ABCD中,∠ABC的平分线交AD边于点E,点F是CD的中点,连接EF.若AB=8,且EF平分∠BED,则AD的长为12 .【分析】根据两直线平行,内错角相等求出∠AEB=∠EBC,再求出∠ABE=∠EBC,根据等角对等边可得AE=AB,然后根据AD=AE+ED代入数据计算即可得解.【解答】解:∵矩形ABCD中,∴AD∥BC,∴∠AEB=∠EBC,∵∠ABC的平分线交AD边于点E,【∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=8,同理得出ED=DF=DC=4,∴AD=AE+ED=8+4=12,故答案为:12.2.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是80°.【分析】因为两条对角线相交所成的锐角只有一个,直接应用三角形的内角和定理求解即可.【解答】解:由矩形的对角线相等且互相平分,所构成的三角形为等腰三角形,利用等边对等角,所以另一底角为40°,两条对角线相交所成的钝角为:180°﹣40°×2=100°]故它们所成锐角为:180°﹣100°=80°.故答案为80.3.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,—∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,》∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.|4.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt △DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM 中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴ AO=OC= AC=3 , OD=OB , ∠ AOB=9°0 ,
由勾股定理得:
2
2
2
BO =AB ﹣ AO ,而 AB=5 ,
∴ DO=BO=4 ,
∴ 四边形 CODE 的周长 =2( 3+4 ) =14.
理由如下: ∵ DE ∥ AC ,CE ∥BD ,
∴ 四边形 OCED 是平行四边形,
∵ 四边形 ABCD 是菱形,
∴∠ COD=9°0 ,
∴ 四边形 OCED 是矩形;
( 2)在菱形 ABCD 中, ∵ AC=6 , BD=8 ,
∴ OC= AC= ×6=3, OD= BD= ×8=4,
∴ CD=
在 △ MOD 和 △ NOB 中, ∠ MDO= ∠NBO ,DO=BO, ∠ MOD= ∠ NOB
∴△ MOD ≌△ NOB ( AS BMDN 是平行四边形
∵ MD=MB
∴ 平行四边形 BMDN 是菱形
( 2)解:根据( 1)可知:
设 MD 长为 x,则 MB=DM=x , AM=8-x
=
=5 ,
在矩形 OCED 中, OE=CD=5 .
答案:( 1)证明见解析( 2)
3.考点:菱形的性质与判定矩形的性质和判定
试题解析:( 1)证明: ∵ 四边形 ABCD 是矩形,
∴ AD ∥ BC ,
∴∠ MDO= ∠NBO
∵ MN 是 BD 的中垂线,
∴ DO=BO ,BD ⊥MN,MD=MB
∴∠ BEA= ∠ CDA , BE=CD ,
∵ DE=CB ,
∴ 四边形 BCDE 是平行四边形,
∵ AE=AD ,
∴∠ AED= ∠ ADE ,
∵∠ BEA= ∠ CDA ,
∴∠ BED= ∠ CDE ,
∵ 四边形 BCDE 是平行四边形,
∴ BE ∥ CD,
∴∠ CDE+ ∠ BED=18°0 ,
2
2
2
在 Rt△ AMB 中, BM =AM +AB
2
22
即 x =( 8﹣ x) +4 ,
解得: x=5,
答: MD 长为 5。
4.考点:矩形的性质和判定
试题解析:( 1) ∵四边形 ABCD 是平行四边形,
∴ AB ∥ CD .
∵ BE ∥ DF, BE=DF ,
∴ 四边形 BFDE 是平行四边形.
∴ DE =OC=3, CE=OD =4.

,
∴ 在 Rt△
中,
15.考点:矩形的性质和判定菱形的性质与判定
试题解析:( 1)如图, ∵ 四边形 ABCD 为菱形, ∴∠ COD=9°0 ;而 CE∥BD , DE ∥ AC , ∴∠ OCE= ∠ ODE=9°0 , ∴ 四边形 CODE 是矩形. ( 2) ∵ 四边形 ABCD 为菱形,
试题解析:( 1)先求出四边形 OCED 是平行四边形,再根据菱形的对角线互相垂直求出
∠ COD=9°0 ,然后根
据有一个角是直角的平行四边形是矩形解答;
( 2)根据菱形的对角线互相平分求出 OC、 OD ,再根据勾股定理列式求出 CD,然后根据矩形的对角线相等求
解.
解:( 1)四边形 OCED 是矩形.
∴ BD ∥ AE , BD=AE ,
∴ AE ∥ CD
∵ 点 D 是 BC 中点,
∴ BD=CD ,
∴ AE=CD ,
∴ 四边形 ADCE 是平行四边形
在 △ ABC 中, AB=AC ,BD=CD ,
∴ AD ⊥ BC ,
∴∠ ADC=9°0 ,
∴ 四边形 ADCE 是矩形
2.考点:矩形的性质和判定菱形的性质与判定
1.考点:矩形的性质和判定全等三角形的判定
试题解析:( 1)证明: ∵ 四边形 ABDE 是平行四边形, ∴ AB ∥ DE , AB=DE , ∴∠ B= ∠ EDC 又 ∵ AB=AC , ∴ AC=DE ∴∠ EDC= ∠ ACD
在 △ ACD 和 △ EDC 中
∴△ ACD ≌△ EDC
( 2)证明: ∵四边形 ABDE 是平行四边形,
1.如图,在 △ ABC 中, AB=AC , D 为边 BC 上一点,以 AB , BD 为邻边作平行四边形 ABDE ,连接 AD 、 CE .( 1)求证: △ ACD ≌△ EDC ;( 2)若点 D 是 BC 中点,说明四边形 ADCE 是矩形.
2.已知:点 O 为菱形 ABCD 对角线的交点, DE∥ AC, CE∥ BD,( 1)试判断四边形 OCED 的形状,并说明理 由.( 2)若 AC=6, BD=8,求线段 OE 的长.
7.如图,菱形 ABCD 的对角线交于 O 点, DE∥ AC, CE∥BD.( 1)求证:四边形 OCED 是矩形;( 2)若 AD =5, BD =8 ,计算 tan∠ DCE 的值.
8.如图,已知菱形 ABCD 中,对角线 AC 、 BD 相交于点 O,过点 C 作 CE∥ BD ,过点 D 作 DE∥ AC ,CE 与 DE 相交于点 E.( 1)求证:四边形 CODE 是矩形;( 2)若 AB=5 , AC=6 ,求四边形 CODE 的周长.
∴∠ DAF= ∠ FAB ,
即 AF 平分 ∠ DAB .
5. .考点:全等三角形的判定矩形的性质和判定
试题解析:证明: ∵∠ BAD= ∠ CAE ,
∴∠ BAD ﹣ ∠ BAC= ∠ CAE ﹣ ∠ BAC ,
∴∠ BAE= ∠ CAD ,
∵ 在 △ BAE 和△ CAD 中
∴△ BAE ≌△ CAD ( SAS),
3. 已知:如图,平行四边形 ABCD的四个内角的平分线分别相交于点 E,F,G,H,求证:四边形 EFGH是矩形。
4.在平行四边形 ABCD 中,过点 D 作 DE⊥ AB 于点 E,点 F 在边 CD 上, DF=BE ,连接 AF , BF. ( 1)求 证:四边形 BFDE 是矩形;( 2)若 CF=3 , BF=4 ,DF=5 ,求证: AF 平分 ∠ DAB .
\
5.如图, AB=AC , AD=AE ,DE=BC ,且 ∠ BAD= ∠ CAE .求证:四边形 BCDE 是矩形.
6.如图, CD 垂直平分 AB 于点 D ,连接 CA, CB,将 BC 沿 BA 的方向平移,得到线段 DE ,交 AC 于点 O,连接 EA , EC.( 1)求证:四边形 ADCE 是矩形;( 2)若 CD =1,AD =2,求 sin∠COD 的值.
∵ DE ⊥ AB ,
∴∠ DEB=90° ,
∴ 四边形 BFDE 是矩形;( 6 分)
( 2)解: ∵ 四边形 ABCD 是平行四边形,
∴ AB ∥ DC ,
∴∠ DFA= ∠ FAB .
在 Rt△ BCF 中,由勾股定理,得
BC=FC2+FB2=32+42=5 , ∴ AD=BC=DF=5 , ∴∠ DAF= ∠ DFA ,
∴∠ BED= ∠ CDE=9°0 ,
∴ 四边形 BCDE 是矩形.
7.考点:菱形的性质与判定
试题解析:( 1) ∵DE∥ AC, CE∥ BD
∴ 四边形
是平行四边形.
∵ 四边形
是菱形 ,




∴ 平行四边形
是矩形.
( 2) ∵ 四边形
是菱形, BD =8,

, CD=AD =5.


∵ 四边形
是矩形 ,
相关文档
最新文档