5.4确定圆的条件
确定圆的条件PPT教学课件

Thank You For Wat13
2. 如图,△ABC 内接于 ⊙O,AD⊥BC于E,BF⊥AC于F,交AD于G, 试说明GE=DE.
2020/12/10
14
3. 如图,等边△ABC 内接于⊙O,D 是 B C 上一点,连接 BD、CD, 试说明 AD=BD+CD.
2020/12/10
15
PPT教学课件
2020/12/10
4
归纳:
1. 不在同一条直线上的三点确定一个圆. 2. 三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆
的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形. 3. 三角形的外心是三条边的垂直平分线的交点,它到三角形的三个顶点
的距离相等. 4. 到三角形的三个顶点的距离相等的点是三角形的外心.
2020/12/10
5
问题4: 分别作出锐角、直角、钝角三角形的外接圆,你有何发现?
锐角三角形
直角三角形
钝角三角形
O·
内部
2020/12/10
O·
斜边中点
O·
外部
6
巩固1:
1. 判断:
(1)经过三点一定可以作圆;
(× )
(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆; (√ )
(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;
5.4 确定圆的条件
2020/12/10
1
问题1: 经过已知点 A 作圆,可以作多少个?
2020/12/10
2
问题1: 经过已知点 A、B 作圆,可以作多少个?圆心在什么图形上?
2020/12/10
3
问题3:
经过 A、B、C 三点,能不能作圆?如果能,可以作多少个?圆心在什 么位置?如果不能,请说明理由.
5[1].4确定圆的条件
![5[1].4确定圆的条件](https://img.taocdn.com/s3/m/309b6561a45177232f60a2bd.png)
5.4确定圆的条件鞍湖实验学校九年级数学备课组学习目标1、了解不在同一条直线上的三个点确定一个圆以及过不在同一条直线上的三个点作圆的方法2、了解三角形的外接圆、三角形外心等概念3、形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神学习重、难点重点:不在同一直线上的三点确定一个圆以及三角形的外心难点:掌握解决问题策略的多样性学习过程:一、情境创设1、确定一个圆需要几个要素?(两个要素,一是位置,二是大小,而圆心确定它的位置,半径确定它的大小,只有圆心和半径都确定了,圆才能被确定)2、经过平面内一点可以作几条直线?过两点呢?三点呢?(经过操作探索可知:过平面内一点可作无数条直线,经过两点只能作一条直线,过三点要分两种情况,一是三点在同一直线上,可作一条直线,而三点不在同一直线上,不能作直线)3、在平面内过一点可以作几个圆?经过两点呢?三点呢?二、探索活动活动一操作、思考Array1、过平面内一点A作圆只需以平面内不同于AA的距离为半径作圆即可,即可作无数个圆。
2、过平面内两点A、B作圆如何作一个圆,使之过平面内两点A、B这两点在要作的圆上,所以它们到这个圆的圆心的距离要相等,并且都等于这个圆的半径,因此要作过这两点的圆就是要找到这两点的距离相等的点作为圆心,而这样的点应在这两点连线的垂直平分线上,而半径即为这条直线上的任意一点到点A 或点B 的距离,这样也可以作无数个圆。
3、过平面内三点A 、B 、C 作圆线的垂直平分线的交点。
而如果A 、B 、C 两点连线的垂直平分线互相垂直,不会出现交点,也就作不出过这三点的圆,所以只能过不在同一平面内的三点才能作圆。
由以上操作可得结论: 不在同一直线上的三点确定一个圆。
活动二 用直尺和圆规作锐角△ABC 的外接圆1、三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心叫做三角形的外心,这个三角形叫做个圆的内接三角形。
2、作法如活动一中过不在同一直线上的三点作圆。
初三圆知识点总结

初三圆知识点总结初三圆知识点总结11、圆的有关概念:(1)确定圆心和半径。
(2)①连结圆上任意两点的线段叫做弦。
②经过圆心的弦叫做直径。
③圆上任意两点间的部分叫做圆弧,简称弧。
④小于半圆周的圆弧叫做劣弧。
⑤大于半圆周的圆弧叫做优弧。
⑥在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦顶点在圆上,并且两边和圆相交的角叫圆周角。
⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。
⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。
2、圆的有关性质(1)定理在同一圆或等圆内,如果圆心角相等,那么它对着的弧相等,它对着的弦相等,它对着的弦的弦心相等。
推断在同一个圆或等圆内,如果两个圆心角、两个圆弧、两个弦或两个弦的弦间距离中的一组量相等,那么它们配对的其他几组量分别相等。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论二:一个圆的两条平行弦所夹的圆弧相等。
(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。
推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。
推论2半圆或直径所对的圆周角都相等,都等于90 。
90 的圆周角所对的弦是圆的直径。
推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。
性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。
确定圆的条件

5.4确定圆的条件知识点1: 1、定理:不在同一条直线上的三个点确定一个圆.2、三角形的外接圆.定义:经过三角形各项点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形3、三角形的外心:(l)三角形外接圆的圆心叫做三角形的外心;(2)三角形的外心是三角形三边垂直平分线的交点;(3)三角形的外心到三角形的三个顶点的距离相等.练习1:按图填空:(1)是⊙O的_________三角形;(2)⊙O是的_________圆,2、.经过一点作圆可以作个圆;经过两点作圆可以个圆,这些圆的圆心在这两点的上;经过的三点可以作个圆,并且只能作个圆。
3、Rt⊿ABC中,∠C=900,AC=6cm,BC=8cm,则其外接圆的半径为。
4、等边三角形的边长为a,则其外接圆的半径为 .练习2:判断题:(1)经过三点一定可以作圆;()(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;()(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;()(4)三角形的外心是三角形三边中线的交点;()(5)三角形的外心到三角形各项点距离相等.()练习3:钝角三角形的外心在三角形()(A)内部(B)一边上(C)外部(D)可能在内部也可能在外部4.在Rt△ABC中,∠C=90°,若AC=6,BC=8.求Rt△ABC的外接圆的半径和面积。
5.已知AB=7cm,则过点A,B,且半径为3cm的圆有()A 0个B 1个C 2个D 无数个6.如图,平原上有三个村庄A,B,C,现计划打一水井P,使水井到三个村庄的距离相等。
在图中画出水井P的位置。
巩固提高一、选择题1.三角形的外心是()A.三条中线的交点B.三条边的中垂线的交点C.三条高的交点D.三条角平分线的交点2.下列命题中,真命题的个数是()①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个B.3个C.2个D.1个3.(2010•大庆)在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙P外部且在⊙Q内部的是()A.(1,2)B.(2,1)C.(2,-1)D.(3,1)4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块5.下图中,每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是( )A .B .C .D .6.在△ABC 中,∠A=30°,∠B=60°,AC=6,则△ABC 外接圆的半径为( )A .23B .33C .3D .37.在△ABC 中,I 是外心,且∠BIC=130°,则∠A 的度数是( )A .65°B.115°C.65°或115°D.65°或130°8.正三角形的外接圆的半径和高的比为( )A .1:2B .2:3C .3:4D .1:39.平面上有不在同一直线上的4个点,过其中3个点作圆,可以作出n 个圆,那么n 的值不可能为( )A .1B .2C .3D .410.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=42 ,则⊙O 的直径等于( )A .225 B .3 2 C .52 D .7二、填空题1.已知直角三角形的两条直角边长分别为6cm 和8cm ,则这个直角三角形的外接圆的半径为 cm .2.(2002•辽宁)△ABC 是半径为2的圆的内接三角形,若BC=23 ,则∠A 的度数为 。
(完整)初中数学教材目录(苏教版)

七年级上第一章我们与数学同行1.1生活数学1.2活动思考第二章有理数2.1 比0小的数2.2 数轴2.3 绝对值与相反数2.4 有理数的加法与减法2.5 有理数的乘法与除法2.6 有理数的乘方2.7 有理数的混合运算第三章第三章用字母表示数3.1 字母表示数3.2 代数式3.3 代数式的值3.4 合并同类项3.5 去括号第四章一元一次方程4.1 从问题到方程4.2 解一元一次方程4.3 用方程解决问题第五章走进图形世界5.1 丰富的图形世界5.2 图形的变化5.3 展开与折叠5.4 从三个方向看第六章平面图形的认识(一)6.1 线段射线直线6.2 角6.3 余角补角对顶角6.4 平行6.5 垂直七年级下第七章平面图形的认识(二)7.1 探索直线平行的条件7.2 探索平行线的性质7.3 图形的平移7.4 认识三角形7.5 三角形的内角和第八章幂的运算8.1 同底数幂的乘法8.2 幂的乘方与积的乘方8.3 同底数幂的除法第九章从面积到乘法公式9.1 单项式乘单项式9.2 单项式乘多项式9.3 多项式乘多项式9.4 乘法公式9.5 单项式乘多项式法则的再认识------因式分解(一)9.6 乘法公式的再认识------因式分解(二)第十章二元一次方程10.1 二元一次方程10.2 二元一次方程组10.3 解二元一次方程组10.4 用方程组解决问题第十一章图形的全等11.1 全等图形11.2 全等三角形11.3 探索三角形全等的条件第十二章数据在我们身边12.1 普查与抽样调查12.2 统计图的选用12.3 频数分布表和频数分布图第十三章感受概率13.1 确定与不确定13.2 可能性八年级上第一章轴对称图形1.1 轴对称与轴对称图形1.2 轴对称的性质1.3 设计轴对称图案1.4 线段、角的轴对称性1.5 等腰三角形的轴对称性1.6 等腰梯形的轴对称性第二章勾股定理与平方根2.1 勾股定理2.2 神秘的数组2.3 平方根2.4 立方根2.5 实数2.6 近似数与有效数字2.7 勾股定理的应用第三章中心对称图形3.1 图形的旋转3.2 中心对称与中心对称图形3.3 设计中心对称图形图案3.4 平行四边形3.5 矩形、菱形、正方形3.6 三角形、梯形的中位线第四章数量、位置的变化4.1 数量的变化4.2 位置的变化4.3 平面直角坐标系第五章一次函数5.1 函数5.2 一次函数5.3一次函数的图象5.4一次函数的应用5.5 二元一次方程组的图象解法第六章数据的集中程度6.1 平均数6.2 中位数与众数6.3 用计算器求平均数八年级下第七章一元一次不等式(11课时)7.1生活中的不等式(1课时)7.2不等式的解集(1课时)7.3不等式的性质(1课时)7.4解一元一次不等式(2课时)7.5解一元一次不等式解决问题(1课时)7.6一元一次不等式组(2课时)7.7一元一次不等式与一元一次方程、一次函数(2课时)复习与小结第八章分式(10课时)8.1分式(1课时)8.2分式的基本性质(2课时)8.3分式的加减(1课时)8.4分式的乘除(2课时)8.5分式方程(3课时)复习与小结第九章反比例函数(6课时)9.1反比例函数(1课时)9.2反比例函数的图象与性质(3课时)9.3反比例函数的应用(1课时)复习与小结第十章图形的相似(14课时)10.1图上距离与实际距离(1课时)10.2黄金分割(1课时)10.3相似图形(1课时)10.4探索三角形相似的条件(4课时)10.5相似三角形的性质(2课时)10.6图形的位似(1课时)10.7相似三角形的应用(3课时)复习与小结第十一章图形的证明(一)(9课时)11.1你的判断对吗(1课时)11.2说理(2课时)11.3证明(3课时)11.4互逆命题(2课时)复习与小结第十二章认识概率(5课时)12.1等可能性(1课时)12.2等可能条件下的概率(一)(2课时)12.3等可能条件下的概率(二)(1课时)课题学习:游戏公平吗?复习与小结九年级上第一章二次根式1.1 二次根式1.2 二次根式的乘除1.3 二次根式的加减1 数学活动1 小结与思考 1 复习题第二章一元二次方程2.1 一元二次方程2.2 一元二次方程的解法2.3 用一元二次方程解决问题2 数学活动 2 小结与思考2 复习题第三章图形与证明(二)3.1 等腰三角形的性质与判定3.2 直角三角形全等的判定3.3 平行四边形、矩形、菱形、正方形的性质与判定3.4 等腰梯形的性质与判定3.5 中位线3 数学活动3 小结与思考3 复习题第四章中心对称图形(二)4.1 圆4.2 圆的对称性4.3 圆周角4.4 确定圆的条件4.5 直线与圆的位置关系4.6 圆与圆的位置关系4.7 正多边形与圆4.8 弧长及扇形的面积4.9 圆锥的侧面积4 数学活动4 小结与思考 4 复习题第五章数据的离散程度5.1 极差5.2 方差与标准差5.3 用计算器求标准差的方差5 数学活动 5 小结与思考5 复习题九年级下第六章:二次函数第一节二次函数第二节二次函数的图象第三节二次函数与一元二次方程第四节二次函数的应用第七章:锐角函数第一节正切第二节正弦、余弦第三节特殊角的三角函数第四节由三角函数值求锐角第五节解直角三角形第六节锐角三角函数的简单应用第八章:统计的简单应用第一节货比三家第二节中学生的视力情况调查第九章:概率的简单应用第一节抽签方法合理吗第二节概率帮你做估计第三节保险公司怎样才能不亏本八年级物理上册(江苏科学技术出版社)第一章声现象 1.1 声音是什么 1.2乐音的特征 1.3 噪声及其控制 1.4 人耳听不到的声音第二章物态变化2.1 物质的三态温度的测量 2.2 汽化和液化 2.3 熔化和凝固 2.4 升华和凝华 2.5 水循环第三章光现象3.1光的色彩颜色 3.2 人眼看不见的光 3.3 光的直线传播 3.4 平面镜 3.5 光的反射第四章透镜及其应用4.1光的折射 4.2透镜4.3凸透镜成像的规律 4.4照相机与眼睛视力的矫正4.5望远镜与显微镜第五章物体的运动5.1 长度和时间的测量 5.2 速度 5.3直线运动 5.4运动的相对性苏科版八年级物理下册第六章物质的物理属性 6.1 物体的质量 6.2 测量物体的质量 6.3 物质的密度 6.4 密度知识的应用 6.5 物质的物理属性第七章从粒子到宇宙 7?:.1 走进分子世界 7.2静电现象 7.3 探索更小的微粒 7.4 宇宙探密第八章力 8.1 力弹力 8.2 重力力的示意图 8.3 摩擦力8.4 力的作用是相互的第九章力与运动 9.1 二力平衡 9.2 牛顿第一定律 9.3 力与运动的关系第十章压强与浮力 10.1 压强 10.2 液体的压强 10.3 气体的压强 10.4 浮力 10.5 物体的浮与沉苏科版九年级物理上册第十一章简单机械与功 11.1 杠杆 11.2 滑轮 11.3 功 11.4 功率 11.5 机械效率第十二章机械能与内能 12.1 动能势能机械能 12.2 内能热传递 12.3 物质的比热容12.4机械能和内能的相互转化第十三章简单电路 13.1 初识家用电器和电路 13.2 电路连接的基本方式 13.3 电流和电流表的使用 13.4 电压表和电流表的使用第十四章欧姆定律 14.1 电阻 14.2 变阻器 14.3 欧姆定律 14.4 欧姆定律的应用苏科版九年级物理下册第十五章电功与电热 15.1 电能表与电功 15.2 电功率15.3 电热器电流的热效应 15.4 家庭电路与安全用电第十六章电磁转换 16.1 磁体与磁场 16.2 电流的磁场16.3 磁场对电流的作用电动机 16.4 安装直流电动机模型 16.5 电磁感应发电机第十七章电磁波与现代通信 17.1 信息与信息传播 17.2 电磁波及其传播17.3 现代通信——走进信息时代第十八章能源与可持续发展 18.1 能源利用与可持续发展 18.2 核能 18.3 太阳能18.4 能量转化的基本规律 18.5 能源与可持续发展。
九上第5章中心对称图形教案

5.1圆 (1)教学目标1、理解圆的有关概念.2、理解点与圆的位置关系以及如何确定点与圆的3种位置关系.3、经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系.教学重点圆的定义教学难点点与圆的位置关系教学方法:观察、启发,总结教学过程教学反思5.1圆 (2)教学目标1、认识圆的弦、弧、优弧与劣弧、直径及其相关概念.2、认识圆心角、等圆、等弧的概念.3、了解“同圆或等圆的半径相等”并能用之解决问题.教学重点了解圆的相关概念教学难点容易混淆圆的概念的辨析教学方法:观察、启发,总结教学反思5.2圆的对称性(1)教学目标1.经历探索圆的对称性(中心对称)及有关性质的过程.2.理解圆的对称性及有关性质.3.会运用圆心角、弧、弦之间的关系解决有关问题.教学重点中心对称性及相关性质教学难点运用圆心角、弧、弦之间的关系解决有关问题教学方法动手操作、合作探究教学反思5.2圆的对称性(2)教学目标1.理解圆的对称性(轴对称)及有关性质.2.理解垂径定理并运用其解决有关问题. 教学重点垂径定理及其运用教学难点灵活运用垂径定理教学方法动手操作、合作探究教学反思5.3圆周角(1)教学目标1、经历探索圆周角的有关性质的过程2、知道圆周角定义,掌握圆周角定理,会用定理进行推证和计算。
3、体会分类、转化等数学思想教学重点圆周角的性质及应用教学难点定理证明教学过程在⊙O上,点在圆外, CD、BD分别交⊙与∠BDC的大小,并说明理由。
教学反思OC5.3圆周角(2)教学目标1、经历探索圆周角的有关性质的过程2、知道圆周角定义,掌握圆周角定理,会用定理进行推证和计算。
3、体会分类、转化等数学思想教学重点圆周角的性质及应用教学难点圆周角的性质及应用教学过程教学反思5.4确定圆的条件教学目标1、经历不在同一直线上的三点确定一个圆的探索过程2、了解不在同一直线上的三点确定一个圆,了解三角形的外接圆、三角形的外心、圆的外接三角形的概念3、会过不在同一直线上的三点作圆教学重点确定圆的条件教学难点不在同一直线上的三点确定一个圆的探索过程教学过程5.5直线与圆的位置关系(1)教学目标1、经历探索直线与圆位置关系的过程。
九年级数学教学案

5.4 确定圆的条件学习目标:(1)通过观察实验,了解不在同一条直线上的三个点确定一个圆的方法.(2)了解三角形的外接圆、三角形的外心等概念.(3)体验解决问题的多样性,发展实践能力与创新精神,学会与人合作,并能与他人交流思维的过程和结果.教学过程:一、情境创设如图,有一个圆形的工件和一把“T形尺”(虚线为其横条的垂直平分线),你能用仅有的“T形尺”找圆形工件的圆心吗?请简要叙述其方法.二、预习检查:问题:1.构成一个圆的两个要素是什么? 2.圆形成后,圆上这些点到圆心的距离如何?三、新课讲解:经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点呢?活动一:实验发现(1)作圆,使它经过已知点A,你能作出几个这样的圆?(2)作圆,使它经过已知点A、B你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系? 为什么?(3)作圆,使它经过已知点A、B、C (A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?得出结论:不在同一直线上的三个点确定一个圆.三角形的外接圆:经过三角形的三个顶点,可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心.这个三角形叫做这个圆的内接三角形活动二:新知应用分别作直角、锐角、钝角三角形的外接圆,分别观察外心的位置.思考:①.三角形的外心一定在形外吗?②.三个点一定能确定一个圆吗?为什么?③.一个圆中有多少个内接三角形?一个三角形有多少个外接圆?④.三角形的外心有什么性质?活动三:例题讲解例1.已知平面直角坐标系中的三个点分别为A (1,—1)、B (—2,5)、C (4,—6).试判断过A、B、C这三个点能否确定一个圆,并说明你的理由.例2.如图△ABC内接于⊙O,其中AB=AC=13cm,BC=10cm,求⊙O的半径.四、课堂练习:1.下列命题中正确的是( ) A.三点确定一个圆B.任何一个三角形有且仅有一个外接圆C.任何一个四边形都有一个外接圆D.等腰三角形的外心一定在它的内部2.三角形的外心是( ) A.三角形三条中线的交点B.三角形三边的垂直平分线的交点C.三角形三个内角平分线的交点D.三角形三条高的交点3.Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外心与顶点C的距离为( ) A.5 B.6 C.7 D.84.如图,A、B、C三点表示三个村庄,为了解决村民子女就近入学,计划建一所小学,使学校到三个村庄的距离相等,请你在图中用尺规确定学校位置.5.如右图所示,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D,已知AB=24crn,CD=8cm(1)求作此残片所在的圆(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.6.思考:我们知道只要不在同一直线上,过三点一定可以作出一个圆.过四点呢?通常四点是不共圆的,那么四点共圆需要具备什么条件?五、作业P.125 1.2.3.如右图,在△ABC中,AC=BC=5 cm,∠ACB=120°,求△ABC的外接圆的半径.。
苏教版数学课本目录(小五到高中)

小学五年级数学五年级上册(约66课时)第一章小数乘除法(以计算题、填空题为主)1、小数乘除法重点考点:连乘、连加、连除、连减,混合运算和简便运算9课时2、整数乘法运算乘法运算的换算、估算,小数点的移位、列式计算6课时3、循环小数循环节的概念、循环小数的简便写法6课时4、积和商的凑整四舍五入法的凑整3课时第二章统计(以简答题为主)1、平均数平均数的计算和应用9课时第三章简易方程(以简答题为主)1、应用题、方程、化简与求值15课时此部分要讲重点题型、一般会涉及到相遇与追及问题,比例问题,初步二元一次方程(拓展)第四章几何小实践(以简答题为主,必考)9课时1、平行四边形、梯形、三角形(学校好的话会涉及到圆、正方形、长方形)周长面积的计算第五章整理与提高(好的学校的拓展部分)9课时一般会涉及到:数学广场(竞赛)中包括、时间的计算、编码五年级下册(约63课时)第一章正数和负数初步认识1、正数与负数、数轴3课时第二章简易方程(重难点,以简答题为主)30课时1、列方程解应用题图形应用题:面积、周长、边长(下学期重视几何,考的较多)6课时经济型应用题:买东西3课时统计型应用题:平均数3课时和倍差应用题:几倍多少(考的最多)9课时路程型应用题:相遇、追及6课时第三章几何小实践(以简答题为主)1、长方形、正方形、组合图形的体积与表面积(难)18课时第四章问题解决(若好学校试题会很难,依据学生情况和选择学校定难易程度12课时)1、可能性问题(类似于概率,不会考很难很深入的)3课时选择题4-5题3分12-15分填空题10-12题3分30-36分简答题5-6题8-12分49-58分(期中有1-2道必定是图形题)小学六年级数学六年级上册(约42—66课时)1、方程(以计算题为主)3—6课时2、长方体和正方体(以应用题为主)3—6课时2.1 表面积的变化3、分数(以计算题为主)3.1 分数乘法3.2 分数除法理解分数乘除法的意义和分数乘除法之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.4确定圆的条件
学习目标
1.经历不在同一直线上的三点确定一个圆的探索过程
2.不在同一直线上的三点确定一个圆,了解三角形的外接圆、三角形的外心、圆的外接三角形的概念3.会过不在同一直线上的三点作圆.
学习重点:确定圆的条件.
学习难点:不在同一直线上的三点确定一个圆的探索过程.
学习过程
一、自主学习
1、经过一点可以作多少条直线?经过两点可以作多少条直线?那么几点可以确定一条直线?
类似地,几点可以确定一个圆呢?
2、确定一个圆需要哪两个要素?
3、情境问题:已知一个破损的轮胎,要求在原轮胎的基础上补一个完整的轮胎。
二、探究学习
1.问题1:经过一点A是否可以作圆?· A
如果能作,可以作几个?(作出图形)
问题2:经过两个点A、B是否可以作圆?
如果能作,可以作几个?(根据分析作出图形) A ··B
问题3:经过三点,是否可以作圆,
如果能作,可以作几个? A ·
B··C
问题4:经过三点一定就能够作圆吗?若能作出,若不能,说明理由.
总结自己发现的结论;
例1.已知:,求作:⊙O,使它经过A、B、C三点。
A
观察这个圆与的顶点的关系
概念:经过三角形各项点的圆叫做三角形的,
叫做三角形的外心,
这个三角形叫做这个圆的。
三、练习
练习1:按图填空:
(1)是⊙O的_________三角形;
(2)⊙O是的_________圆,点O是的。
练习2:判断题:
(1)经过三点一定可以作圆;()
(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;()
(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;()
(4)三角形的外心是三角形三边中线的交点;()
(5)三角形的外心到三角形各项点距离相等.()
练习3.画一画
分别画锐角三角形、直角三角形、钝角三角形的外心,观察三角形的外心所在的位置,你有什么发现?
四、归纳总结
1.不在同一条直线上的三个点确定一个圆.
2.(l)三角形外接圆的圆心叫做三角形的外心;(2)三角形的外心是三角形三边垂直平分线的交点;
(3)三角形的外心到三角形的三个顶点的距离相等.
3.
四、达标检测
1、一个三角形能画个外接圆,一个圆中有个内接三角形。
2.三角形的外心是的交点。
外心具备的性质是
3.在Rt△ABC中,∠C=90°,若AC=6,BC=8.求Rt△ABC的外接圆的半径和面积。
4.已知AB=7cm,则过点A,B,且半径为3cm的圆有()
A 0个
B 1个
C 2个
D 无数个
5. 如下图,CD所在的直线垂直平分线段AB.怎样使用这样的工具找到圆形工件的圆心?。