9年级 数学北师大 版下册教 案第3章《 确定圆的条件》
北师大版九年级数学下册:3.5《确定圆的条件》说课稿2

北师大版九年级数学下册:3.5《确定圆的条件》说课稿2一. 教材分析《确定圆的条件》是北师大版九年级数学下册第3章第5节的内容。
本节课主要学习圆的确定条件,即圆心和半径。
通过学习,学生能够理解圆心决定圆的位置,半径决定圆的大小,并能够运用这些条件解决实际问题。
教材通过引入圆的定义和性质,引导学生探索圆的确定条件,培养学生的观察、思考和解决问题的能力。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和判定有一定的了解。
但是,对于圆的确定条件的理解和运用还需要进一步的引导和培养。
学生的学习兴趣和积极性较高,可以通过问题驱动和实例分析的方式激发学生的学习兴趣。
三. 说教学目标1.知识与技能目标:学生能够理解圆的确定条件,即圆心和半径,并能够运用这些条件解决实际问题。
2.过程与方法目标:通过观察、实验和证明等方法,学生能够探索圆的确定条件,培养学生的观察、思考和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与学习活动,增强对数学的兴趣和自信心,培养合作和交流的能力。
四. 说教学重难点1.教学重点:圆的确定条件,即圆心和半径。
2.教学难点:如何引导学生探索和理解圆的确定条件,并能够运用到实际问题中。
五. 说教学方法与手段1.教学方法:采用问题驱动、实例分析和小组合作等教学方法,引导学生观察、思考和解决问题。
2.教学手段:利用多媒体课件和实物模型等教学手段,帮助学生直观地理解圆的确定条件。
六. 说教学过程1.导入:通过展示实际问题,引发学生对圆的确定条件的思考,激发学生的学习兴趣。
2.探索圆的确定条件:引导学生通过观察、实验和证明等方法,探索圆的确定条件,理解圆心和半径的作用。
3.实例分析:通过实际问题,让学生运用圆的确定条件解决问题,巩固所学知识。
4.小组合作:学生分组讨论和合作,共同解决问题,培养学生的合作和交流能力。
5.总结与拓展:对本节课的内容进行总结,并提出相关的拓展问题,激发学生的进一步学习兴趣。
说课稿北师大版初中数学九年级下册《直线和圆的位置关系》

说课稿北师大版初中数学九年级下册《直线和圆的位置关系》一. 教材分析《直线和圆的位置关系》是北师大版初中数学九年级下册的一节课。
本节课主要介绍了直线和圆的位置关系,包括相离、相切和相交三种情况。
通过本节课的学习,学生能够理解直线和圆的位置关系的概念,掌握判断直线和圆位置关系的方法,并能运用到实际问题中。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,对图形的理解和操作能力也有一定的基础。
但是,对于直线和圆的位置关系的理解和运用还需要进一步的引导和培养。
因此,在教学过程中,需要结合学生的实际情况,通过适当的例子和练习,帮助学生理解和掌握直线和圆的位置关系。
三. 说教学目标1.知识与技能目标:学生能够理解直线和圆的位置关系的概念,掌握判断直线和圆位置关系的方法。
2.过程与方法目标:学生能够通过观察和操作,探索直线和圆的位置关系,培养学生的观察能力和操作能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,培养学生的合作意识和探究精神。
四. 说教学重难点1.教学重点:直线和圆的位置关系的概念,判断直线和圆位置关系的方法。
2.教学难点:直线和圆的位置关系的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究学习法,引导学生主动参与课堂活动,培养学生的探究能力和合作意识。
2.教学手段:利用多媒体课件和实物模型,帮助学生直观地理解直线和圆的位置关系。
六. 说教学过程1.导入:通过展示一些生活中的实例,如圆形的桌面、地球仪等,引导学生观察直线和圆的位置关系,激发学生的学习兴趣。
2.新课导入:介绍直线和圆的位置关系的概念,引导学生理解直线和圆的位置关系。
3.探究活动:学生分组进行探究,通过观察和操作,探索直线和圆的位置关系,总结判断直线和圆位置关系的方法。
4.讲解与示范:教师对学生的探究结果进行讲解和示范,帮助学生理解和掌握直线和圆的位置关系。
5.练习与巩固:学生进行相关的练习,巩固对直线和圆的位置关系的理解和掌握。
《确定圆的条件》圆PPT教学课件-北师大版九年级数学下册

作图: 三角形三条边的垂直平分线的交点.
性质: 三角形的外心到三角形三个顶点的距离相等.
判一判:
下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( √ ) (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × )
√
(4)三角形的外心到三角形各顶点的距离相等( )
第三章 圆
确定圆的条件
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点)
导入新课
情境引入
假如旋转木马真如短片所说, 是中国发明的, 你能将旋转木马破碎的圆 形底座还原, 以帮助考古学家画进行深入的研究吗?
7.如图, 在平面直角坐标系xOy中, △ABC外接 圆的圆心坐标(是5,___2_)_____, 半径2 是5 ______.
8.已知正△ABC的边长为6, 那么能够完全覆盖这
个正△ABC的最小圆的半径是_2__3_____.
解析:如图, 能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接
过一点可以作无数个圆 过两点可以作无数个圆
注意:同一直线 上的三个点不能 作圆
不在同一直线上的三个点确定一个圆
概念 外心
经过三角形的三个顶点的圆叫做三 角形的外接圆
解:(1)∵∠ADO=∠ABO=60°, ∠DOA=90°, ∴∠DAO=30°;
(2)求点A的坐标和△AOB外接圆的面积. (2)∵点D的坐标是(0, 3), ∴OD=3. 在直角△AOD中, OA=OD·tan∠ADO=3 3, AD=2OD=6, ∴点A的坐标是(3 3 , 0). ∵∠AOD=90°, ∴AD是圆的直径, ∴△AOB外接圆的面积是9π. 方法总结:图形中求三角形外接圆的面积时, 圆的直径(或半径)长度.
北师大版数学九年级下册3.5《确定圆的条件》教案

北师大版数学九年级下册3.5《确定圆的条件》教案一. 教材分析《确定圆的条件》这一节主要让学生掌握确定一个圆的条件,包括圆心坐标和半径,以及如何根据这些条件来确定一个圆。
同时,通过实例让学生理解圆的方程的意义和应用。
二. 学情分析学生在学习这一节之前,已经学习了坐标系和方程的基础知识,对几何图形也有一定的认识。
但是,对于圆的方程的理解可能还需要进一步的引导和培养。
三. 教学目标1.让学生掌握确定一个圆的条件,包括圆心坐标和半径。
2.让学生理解圆的方程的意义和应用。
3.培养学生的空间想象能力和问题解决能力。
四. 教学重难点1.圆的方程的意义的理解和应用。
2.如何引导学生从实际问题中抽象出圆的方程。
五. 教学方法采用问题驱动的教学方法,通过实例引导学生理解圆的方程的意义和应用,然后通过练习让学生进一步巩固所学知识。
六. 教学准备1.准备相关的实例和练习题。
2.准备课件和黑板。
七. 教学过程1.导入(5分钟)通过一个实际问题引导学生思考如何确定一个圆。
例如,给出一个圆的三个点,让学生思考如何确定这个圆。
2.呈现(15分钟)通过课件或者板书,呈现圆的方程。
解释圆的方程的意义,包括圆心坐标和半径。
让学生理解圆的方程是如何表示一个圆的。
3.操练(15分钟)让学生通过练习题来巩固对圆的方程的理解。
可以给出一些具体的圆的方程,让学生求解圆心坐标和半径,或者给出圆心坐标和半径,让学生写出对应的圆的方程。
4.巩固(10分钟)通过一些实际问题,让学生应用圆的方程来解决问题。
例如,给出一个圆的方程,让学生求解圆与直线的交点,或者求解圆的面积。
5.拓展(10分钟)可以让学生思考一些拓展问题,例如,如何确定一个圆的位置和大小,如何求解两个圆的交点等。
6.小结(5分钟)通过小结,让学生回顾所学知识,加深对圆的方程的理解。
7.家庭作业(5分钟)布置一些相关的练习题,让学生在家里完成。
8.板书(5分钟)在黑板上写出圆的方程,以及解题的关键步骤。
北师大版数学九年级下册3.1《圆》教学设计

北师大版数学九年级下册3.1《圆》教学设计一. 教材分析北师大版数学九年级下册3.1《圆》是本册教材中的重要内容,主要介绍了圆的定义、圆的性质、圆的方程等基础知识。
本节课的内容是学生对圆的基本认识,为后续学习圆的运算、圆与圆的位置关系等知识打下基础。
教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征,从而培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基础数学知识,对图形的认识有了初步的了解。
但是,对于圆的概念和性质,部分学生可能还比较模糊。
因此,在教学过程中,教师需要关注学生的认知水平,针对学生的实际情况进行针对性的教学。
同时,由于圆的知识在实际生活中的应用非常广泛,学生对圆的兴趣和认知程度也会影响他们的学习效果。
三. 教学目标1.知识与技能:让学生掌握圆的定义、性质和方程,能够运用圆的知识解决实际问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:圆的定义、性质和方程。
2.难点:圆的性质的理解和应用。
五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征。
2.问题驱动法:教师提出问题,引导学生思考,培养学生解决问题的能力。
3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作精神。
六. 教学准备1.教具:圆的模型、图片、PPT等。
2.学具:学生分组准备,每组一份圆的模型、图纸等。
七. 教学过程1.导入(5分钟)教师通过展示生活中的圆形物体,如硬币、轮子等,引导学生关注圆的特征。
然后提出问题:“你们对圆有什么认识?圆有哪些性质?”让学生回忆和思考圆的基本知识。
2.呈现(10分钟)教师通过PPT展示圆的定义和性质,引导学生观察和理解圆的特征。
北师大版九年级下册数学《确定圆的条件》圆培优说课教学复习课件

(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这些圆的圆心在线段AB的垂直平分线上。
(4)不在同一直线上的三个点确定一个圆。
(5)外接圆,外心的概念。
注 意
1、某一个城市在一块空地新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等。请问同学们这所中学建在哪个位置?你怎么确定这个位置呢?
探究新知
定义:经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆.
三角形外接圆的圆心叫做三角形的外心,
它是三角形三条边垂直平分线的交点..
画一画
分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.
●O
●O
●O
总结
锐角三角形的外心位于三角形内;直角三角形的外心位于直角三角形斜边的中点;钝角三角形的外心位于三角形外.
B
4.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.
70°
课堂练习
5.如图,△ABC的高AD、BE相交于点H,延长AD交△ABC的外接圆于点G,连接BG.求证:HD=GD.
证明:∵∠C=∠G,△ABC的高AD、BE,
∴∠C+∠DAC=90°,∠AHE+∠DAC=90°,
3.5 确定圆的条件
课件
复习旧知
线段垂直平分线上的点有怎样的性质?
线段垂直平分线上的点和线段的两个端点的距离相等
2.怎样用尺规作一条线段的垂直平分线?
复习旧知
A
B
北师大版九年级数学下第三章5 确定圆的条件(含答案)

北师大版九年级数学下第三章5 确定圆的条件(含答案)一、选择题1.下列四个命题中,正确的有()①经过三角形顶点的圆是三角形的外接圆;②任何一个三角形一定有一个外接圆,并且只有一个外接圆;③任何一个圆一定有一个内接三角形,并且只有一个内接三角形;④三角形的外心是三角形三条边的垂直平分线的交点.A.1个B.2个C.3个D.4个2.下列关于三角形的外心的说法中,正确的是()A.到三角形三个顶点的距离相等B.到三角形三条边的距离相等C.是三角形三条角平分线的交点D.是三角形三条中线的交点3.如图1,点A,B,C在同一条直线上,点D在直线AB外,过这四个点中的任意三个点,能画圆的个数是()图1A.1 B.2C.3 D.44.如图2,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(2,1),点C的坐标为(2,-3),则经画图操作可知,△ABC的外心的坐标应是()图2A.(0,0) B.(1,0)C.(-2,-1) D.(2,0)5.如图3,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()图3A.△ABE B.△ACF C.△ABD D.△ADE6.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图4所示,利用三块碎片中的一块最有可能配到与原来一样大小的圆形镜子的碎片是()图4A.①B.②C.③D.均不可能7.若点O是△ABC的外心,且∠BOC=70°,则∠BAC的度数为()A.35°B.110°C.35°或145°D.35°或140°二、填空题8.如图5,将△ABC放在每个小正方形的边长均为1的网格中,点A,B,C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是________.图59.如图6,△ABC是⊙O的内接三角形,且AB是⊙O的直径,P为⊙O上的动点,且∠BPC=60°,⊙O 的半径为6,则点P到AC的距离的最大值是________.图610.若点O 是等腰三角形ABC 的外心,且∠BOC =60°,底边BC =2,则△ABC 的面积为________________________________________________.三、解答题11.如图7,已知圆弧上有三点A ,B ,C.(1)用尺规作图法,找出BAC ︵所在圆的圆心O(保留作图痕迹,不写作法);链接听P34例1归纳总结 (2)若△ABC 为等腰三角形,底边BC =16 cm ,腰AB =10 cm ,求圆片的半径R.图712.如图8,O 为平面直角坐标系的原点,点A 的坐标为(6,8),点B 的坐标为(12,0). (1)求证:AO =AB ;(2)用直尺和圆规作出△AOB 的外心P ; (3)求点P 的坐标.图813.如图9①,在△ABC中,BA=BC,D是平面内不与点A,B,C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图②,当点D是△ABC的外接圆圆心时,请判断四边形BECD的形状,并证明你的结论.图9附加题我们知道:过任意一个三角形的三个顶点都能作一个圆,那么我们来探究过四边形的四个顶点作圆的条件.(1)分别测量图10①②③中四边形的内角,如果过某个四边形的四个顶点能作一个圆,那么其相对的两个角之间有什么关系?图10(2)如果过某个四边形的四个顶点不能作一个圆,那么其相对的两个角之间有上面的关系吗?试写出图④⑤中∠B+∠D与180°之间的关系;(3)由上面的探究,试归纳出判定过四边形的四个顶点能作一个圆的条件.。
北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案

北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案一. 教材分析北师大版九年级数学下册第三章《圆》是整个初中数学的重要内容,而本节课《圆的对称性》则是这一章节的重点和难点。
教材从圆的轴对称性入手,引导学生探究圆的对称性质,进而推导出圆的直径所在的直线即为圆的对称轴。
本节课通过丰富的实例和生动的活动,让学生深刻理解圆的对称性,并为后续学习圆的性质打下基础。
二. 学情分析九年级的学生已经掌握了八年级数学的大部分内容,对轴对称图形有了一定的认识,能够理解并运用轴对称的性质。
但他们对圆的对称性的理解还不够深入,需要通过本节课的学习,进一步加强对圆对称性质的认识。
同时,学生对圆的相关知识掌握程度不一,需要在教学过程中关注不同学生的学习需求。
三. 教学目标1.理解圆的对称性,掌握圆的对称轴的定义及性质。
2.能够运用圆的对称性解决实际问题。
3.培养学生的观察能力、动手操作能力和推理能力。
四. 教学重难点1.圆的对称性的理解。
2.圆的对称轴的定义及性质的掌握。
五. 教学方法采用问题驱动法、合作探究法和实例分析法,引导学生从实际问题中发现圆的对称性,通过自主探究和合作交流,深入理解圆的对称性质。
六. 教学准备1.准备相关的实例和图片,用于引导学生发现圆的对称性。
2.准备圆规、直尺等学具,让学生动手操作,加深对圆对称性质的理解。
3.准备一些实际问题,用于巩固学生对圆对称性的运用。
七. 教学过程1. 导入(5分钟)通过展示一些具有对称性的图片,如剪纸、建筑等,引导学生对对称性产生兴趣。
然后提出问题:“你们认为什么样的图形才能称为对称图形?”让学生回顾轴对称图形的概念。
2. 呈现(10分钟)呈现圆的轴对称性实例,如圆形的剪纸、钟表等,引导学生观察并描述圆的对称性质。
同时提出问题:“圆有对称轴吗?如果有,在哪里?”让学生思考并讨论。
3. 操练(10分钟)让学生分组,每组用圆规和直尺画出一个圆形,并用折纸的方法找出圆的对称轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
确定圆的条件
教学目标
一、基本目标
1.理解并掌握“不在同一直线上的三点确定一个圆”,并能作出这个圆.2.理解三角形的外接圆、三角形的外心等概念.
3.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.
二、重难点目标
【理解重点】
1.理解不在同一条直线上的三个点确定一个圆.
2.理解三角形的外接圆、三角形的外心等概念.
【教学难点】
不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.
教学过程
环节1自学提纲,生成问题
【5 min阅读】
阅读教材P85~P86的内容,完成下面练习.
【3 min反馈】
1.(1)作圆,使它经过已知点A.你能作出几个这样的圆?
解:无数个.
(2)作圆,使它经过已知点A、B,你是如何作的?你能做出几个这样的圆?其圆心的位置有什么特点?
解:无数个.圆心选取线段AB的垂直平分线上任意一点.半径取这一点与点A(B)的距离.
(3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一直线上),你是如何作的?
解:作法:①连结AB,作线段AB的垂直平分线EF;
②连结BC,作线段BC的垂直平分线MN;
③以EF和MN的交点O为圆心,以OA(或OB或OC)为半径作圆,则圆O 就是所求作的圆.
(4)过不在同一直线上的三点A、B、C能作多少个圆?
解:1个.
(5)过同一直线上的三点A、B、C能作一个圆吗?
解:不能.
2.过一点作圆,可以作无数个;过两点作圆,可以作无数个;过不在同一条直线上的三点作圆,可以作一个.
3.三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心.4.锐角三角形的外心在三角形内部;直角三角形的外心在三角形斜边的中点;钝角三角形的外心在三角形外部;任意三角形的外接圆只有一个,而一个圆的内接三角形有无数个.
5.下列说法:①经过三点一定可以作圆;②任意一个三角形有且只有一个外接圆;③三角形的外心是三角形三边中线的交点;④三角形的外心到三角形三个顶点的距离相等,其中正确的是②④.(填序号)
环节2合作探究,解决问题
活动1小组讨论(师生互学)
【例1】作出下列三角形的外接圆.(保留作图痕迹,不要求写作法)
略
【例2】如图是一块残缺的圆形木盖,现要重新制作一块与原来一样大小的圆形木盖,你是如何制作的?
【互动探索】(引发学生思考)确定一个圆的条件是什么?怎样作出一个与原来一样大小的圆?
【解答】(1)在残缺的圆形木盖上任意找三点A、B、C,并连结AB、BC;
(2)作线段AB、BC的垂直平分线EF、GH,两线交于点O;
(3)以点O为圆心,OA长为半径作⊙O,则以⊙O为原型制作的木盖就是与原来一样大小的圆形木盖.
如图所示:
【互动总结】(学生总结,老师点评)本题也可以取任意两条不平行的弦,作两条弦的中垂线,则两中垂心的交点就是圆心,进而作出所求的圆.
活动2巩固练习(学生独学)
1.九个相同的等边三角形如图所示,已知点O是一个三角形的外心,则这个三角形是(C)
A.△ABC B.△ABE
C.△ABD D.△ACE
2.小颖同学在手工制作中,把一个边长为12 cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则这个圆的半径长为(B)
A.2 3 cm B.4 3 cm
C.6 3 cm D.8 3 cm
3.如图,已知⊙O为△ABC的外接圆,且AB为⊙O的直径,若OC=5,
AC=6,则BC的长为(C)
A.10 B.9
C.8 D.无法确定
4.如图,点A、B、C均在6×6的正方形网格格点上,过A、B、C三点的外接圆除经过A、B、C三点外还能经过的格点数为5.
环节3课堂小结,当堂达标
(学生总结,老师点评)
1.不在同一条直线上的三个点确定一个圆.
2.三角形的外心在三角形内部←→三角形为锐角三角形;三角形的外心在三角形一边上←→三角形为直角三角形;三角形的外心在三角形外部←→三角形为钝角三角形.
练习设计
请完成本课时对应练习!。