实验四 信号题目

合集下载

信号与系统实验题目及答案

信号与系统实验题目及答案

第一个信号实验得题目1实现下列常用信号(1);(2);(3);(4);(5)2连续信号得基本运算与波形变换已知信号,试画出下列各函数对时间t得波形:(1)(2)(3)(4)(5)3连续信号得卷积运算实现,其中、从第2个题目中任选3对组合。

4连续系统得时域分析(1)描述某连续系统得微分方程为,求当输入信号为时,该系统得零状态响应。

(2)已知描述某连续系统得微分方程为,试用MATLAB绘出该系统得冲激响应与阶跃响应得波形。

实验一答案:(1)在MATLAB软件得输入程序及显示波形如下:(2)在MATLAB软件得输入程序及显示波形如下:(3)在MA TLAB软件得输入程序及显示波形如下:(4)在MA TLAB软件得输入程序及显示波形如下:(5)在MATLAB软件得输入程序及显示波形如下:(1)得输入程序及波形如下:(2)得输入程序及波形如下:(3)得输入程序及波形如下:(2)系统得冲激响应与阶跃响应如下:(4)得输入程序及波形如下:(5)得输入程序及波形如下:(1)与(2)组合得卷积运算如下:(2)与(3)组合得卷积运算如下:(1)与(3)组合得卷积运算如下:(1)系统得零状态响应如下:第二个信号实验题目1(1)用数值法求门函数得傅里叶变换,并给出门函数得幅频特性曲线与相频特性曲线.(2)用符号法给出函数得傅里叶变换。

(3)已知系统函数为,画出该系统得零极点图。

2(1)用数值法给出函数幅频特性曲线与相频特性曲线.(2)对函数进行采样,采样间隔为0、01。

(3)已知输入信号为,载波频率为1000Hz,采样频率为5000Hz,试产生输入信号得调幅信号。

3(1)用符号法实现函数得傅里叶变换,并给出门函数得幅频特性曲线与相频特性曲线。

(2)已知系统函数为,输入信号为,求该系统得稳态响应。

(3)已知输入信号为,载波频率为100Hz,采样频率为400Hz,试产生输入信号得调频信号.4(1)已知系统函数为,画出该系统得零极点图.(2)已知函数用数值法给出函数得幅频特性曲线与相频特性曲线。

数字信号处理米特拉第四版实验四答案

数字信号处理米特拉第四版实验四答案
Name: SOLUTION (Havlicek) Section:
Laboratory Exercise 4
LINEAR, TIME-INVARIANT DISCRETE-TIME SYSTEMS: FREQUENCY-DOMAIN REPRESENTATIONS
4.1 TRANSFER FUNCTION AND FREQUENCY RESPONSE
M=3
Magnitude Spectrum |H(ej)| 1
0.5
0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 / Phase Spectrum arg[H(ej)]
4 2 0 -2 -4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 /
I shall choose the filter of Question Q4._36__ for the following reason - It can be both causal and BIBO stable, whereas the filter of Q4.37 cannot be both because the two poles are both outside of the unit circle.
Q4.5
The plots of the first 100 samples of the impulse responses of the two filters of Questions 4.2
2
Amplitude
Phase in radians
Amplitude
Phase in radians
M=10
Magnitude Spectrum |H(ej)| 1

测试信号习题及答案

测试信号习题及答案

第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。

这些物理量就是 ,其中目前应用最广泛的是电信号。

2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。

3、 周期信号的频谱具有三个特点: , , 。

4、 非周期信号包括 信号和 信号。

5、 描述随机信号的时域特征参数有 、 、 。

6、 对信号的双边谱而言,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。

(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。

( )2、 信号的时域描述与频域描述包含相同的信息量。

( )3、 非周期信号的频谱一定是连续的。

( )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。

( )5、 随机信号的频域描述为功率谱。

( )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。

2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。

3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。

4、 求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。

5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。

参考答案第一章 信号及其描述(一)1、信号;2、时间(t ),频率(f );3、离散性,谐波性,收敛性;4、准周期,瞬态非周期;5、均值x μ,均方值2x ψ,方差2x σ;6、偶,奇;(二)1、√;2、√;3、╳;4、╳;5、√; (三)1、π02x ,20x ;2、0,220x ,)cos(10ϕωπ+t x ;3、f j a A π2+;4、()()T f c T T f c T )2(sin )2(sin 00ωπωπ-++; 5、faj f a πωπω44202220+--;第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(tt x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。

数字信号处理实验4答案.docx

数字信号处理实验4答案.docx

一、实验目的深刻理解离散时间系统的系统函数在分析离散系统的时域特性、频域特性以及稳定性中的重要作用及意义,熟练掌握利用MATLAB分析离散系统的时域响应、频响特性和零极点的方法。

掌握利用DTFT和DFT 确定系统特性的原理和方法。

二、实验原理MATLAB提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。

1.离散系统的时域响应2.离散系统的系统函数零极点分析3.离散系统的频率响应4.利用DTFT和DFT确定离散系统的特性三、实验内容1.已知某LTI系统的差分方程为:尹[妇-1. 143尹顷一1] + 0. 412尹- 2]=0. 0675x[妇 + 0. 1349x[A - 1] + 0. 0675x[A - 2]1.初始状态y[-1] = 1, y[-2] = 2,输入= 〃伏]计算系统的完全响应.程序:a=[l,-1.143,0.412];b=[O.O675,0.1349,0.0675];n=40;x=ones(l,n);yi=[l,2];zi=filtic(b,a,yi);y=filter(b,a,x,zi);stem(y)(2)当以下三个信号分别通过系统时,分别计算离散系统的零状态响应:X』妇=cos (—; xS_k\ = cos (—= cos (—10 5 10程序n=100;k=0:n-1;a=[l,-1.143,0.412];b=[0.0675,0.1349,0.0675];xl=cos(pi*k/10);x2 = cos (pi*k/5);x3=cos(7*pi*k/10);yl=filter(b,a,xl);y2=filter(b,a,x2);y3=filter(b,a,x3);subplot(3,1,1);stem(k, yl) subplot(3,1,2); stem(k,y2)subplot(3,1,3); stem(k,y3)10 20 30 40 50 60 70 80 90 1002. 已知某因果LTI 系统的系统函数为:m 、0. 03571 + 0. 1428/T + 0. 2143z~2 + 0. 1428z~3 + 0.0357lz~4 H(z) = -------- - ------- § ----------------------- ------------------------------- 7 -------- 1 - 1. 035/T + 0. 8264/2 — Q. 2605/3 + o. 04033z~4 (1) 计算系统的单位脉冲响应。

实验四 利用DFT分析离散信号频谱

实验四 利用DFT分析离散信号频谱

数字信号处理及实验实验报告实验题目利用DFT分析离散信号频谱姓名组别班级光电14 学号144320200206 【实验目的】应用离散傅里叶变换(DFT),分析离散信号的频谱。

深刻理解DFT分析离散信号频谱信号频谱的原理,掌握改善分析过程中产生的误差的方法。

【实验原理】根据信号傅里叶变化建立的时域与频域之间的对应关系,可以得到有限序列的离散傅里叶变换(DFT)与4种确定信号傅里叶变换之间的关系,实现由DFT分析其频谱。

【实验结果与数据处理】1、利用FFT分析信号x[k] = cos(3πk/8),k = 0,1,2……,31的频谱:(1)确定DFT计算的参数。

(2)进行理论值与计算值比较,讨论信号频谱分析过程中产生误差的原因及改善方法。

分析:信号的周期T = 16,角频率w=2π/N=π/8。

clc,clear,close allN = 16; k = 0 : N-1;x = cos(3*pi*k/8);X = fft(x,N);subplot(2,1,1);stem(k - N/2,abs(fftshift(X)));ylabel('幅度','fontsize',15);xlabel('频率(rad)','fontsize',15);subplot(2,1,2);stem(k - N/2,angle(fftshift(X)));ylabel('相位','fontsize',15);xlabel('频率(rad)','fontsize',15);2、有限长脉冲序列x[k]= [2,3,3,1,0,5;k = 0,1,2,3,4,5],利用FFT分析其频谱,并绘出其幅度谱与相位谱。

clc,clear,close allN = 6; k = 0 : N-1; w = k-3;x=[2,3,3,1,0,5];X=fft(x,N);subplot(2,1,1);stem(w,abs(fftshift(X)));ylabel('幅度','fontsize',15);xlabel('频率(rad)','fontsize',15);subplot(2,1,2);stem(w,angle(fftshift(X)));ylabel('相位','fontsize',15);xlabel('频率(rad)','fontsize',15);3、某周期序列由3个频率组成:x[k] = cos(7πk/16) + cos(9πk/16) + cos(πk/2),利用FFT分析其频谱。

信号与系统实验教程只有答案

信号与系统实验教程只有答案

信号与系统实验教程(只有答案))(实验报告目录实验一信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三连续时间LTI系统的频域分析 (35)三、实验内容及步骤 (35)实验四通信系统仿真 (42)三、实验内容及步骤 (42)实验五连续时间LTI系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。

实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。

并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。

Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。

要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。

然后执行该程序,保存所的图形。

修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。

信号与系统实验最新知识点答案

信号与系统实验最新知识点答案

实验一离散时间信号的表示及可视化一、实验目的学会对离散时间信号进行标识和可视化处理。

二、实验源程序(1f(n=n=-5:1:5;f=dirac(n;plot(n,f,'.';xlabel('(n';ylabel('(f';axis([-5 5 -0.5 1.5](2f(n= (nf=Heaviside(nn=-5:1:5;f=heaviside(n;plot(n,f,'.';xlabel('(n';ylabel('(f';axis([-5 5 -0.5 1.5](3f(n=(分别取a>0及a<0a=1时n=-5:1:5;f=exp(n;plot(n,f,'.';a=-1时n=-5:1:5;f=exp(-n;plot(n,f,'.';(4 f(n=RN(n (分别取不同的N值N=10时n=0:1:9;f=1;plot(n,f,'.';N=15时n=0:1:14;f=1;plot(n,f,'.'(5 f(n=Sa(nww=0.1时n=-45:1:45;f=sinc(0.1*n;plot(n,f,'.';xlabel('n';ylabel('f';axis([-50 50 -1 1] w=0.2时n=-45:1:45;f=sinc(0.2*n;plot(n,f,'.';xlabel('n';ylabel('f';axis([-50 50 -1 1] (6f(n=Sin(nw (分别取不同的w值w=100时n=-15:1:15;f=sin(100*n;plot(n,f,'.';xlabel('n';ylabel('f';w=200时n=-15:1:15;f=sin(200*n;plot(n,f,'.';xlabel('n';ylabel('f';三、程序运行结果及波形图(1)-5-4-3-2-1012345(n)(f )(2)-5-4-3-2-1012345(n)(f )(3)-5-4-3-2-1012345(4)0123456789024********(5)-50-40-30-20-1001020304050-1-0.8-0.6-0.4-0.200.20.40.60.81nf-50-40-30-20-1001020304050-1-0.8-0.6-0.4-0.200.20.40.60.81nf(6)fn-15-10-5051015-1-0.8-0.6-0.4-0.200.20.40.60.81nf四、 实验调试体会实验二 连续时间信号的表示及可视化一、 实验目的熟练掌握连续时间信号的表示及可视化处理。

实验4(答案)

实验4(答案)

实验四 时域抽样一、实验学时:2学时二、实验类型:设计性三、开出要求:必修四、实验目的1.加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。

2.掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。

五、实验原理及内容时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率fsam 大于等于2倍的信号最高频率fm ,即 fsam ≥ 2fm 。

时域抽样是把连续信号x(t)变成适于数字系统处理的离散信号x[k];信号重建是将离散信号x[k]转换为连续时间信号x(t)。

信号的时域抽样对连续信号x(t)以间隔T 抽样,得到的离散序列x[k]=x(kT)|t=kT图一 连续信号抽样的离散序列用MATLAB 实现对信号 的抽样。

用MATLAB 编程如下:f=20;w=2*pi*f;t=0:0.0001:.1;x=cos(w*t);subplot(3,1,1);plot(t,x);f1=300;t = 0:.0001:.1;w1=2*pi*f1;y =square(w1*t, 50)+1;y=y/2;subplot(3,1,2); x (t )x [k ]t k 0T 2T 012)20π2cos()(t t x ⨯=plot(t,y); axis([0,0.1,-0.5,1.5]);xn=x.*y;subplot(3,1,3);plot(t,xn);六、思考问题:将语音信号转换为数字信号时,抽样频率一般应是多少?七、实验条件:Matlab软件。

八、实验成绩评定办法:主要评分点:实验原理是否清楚,实验结果是否正确,程序运行是否无误?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 基于窗函数的FIR DF 的设计
提示:
1. Matlab 中提供了很多常用的窗函数,其中一些窗函数的调用形式为:
矩形窗:w=boxcar(N)
三角形窗:w=bartlett(N)
汉宁窗:w=hanning(N)
哈明窗:w=hamming(N)
布莱克曼窗:w=blackman(N)
其中,输入参数N 表示窗口的长度,返回的变量w 是一个长度为N 的列向量,表示窗函数在这N 点的取值。

2. b=fir1(N,Wc,'ftype',Window)
fir1函数用来设计FIR 滤波器。

其中N 为滤波器的阶数;Wc 是截止频率,其取值在0~1之间,它是以π为基准频率的标称值,设计低通和高通滤波器时,Wc 是标量,设计带通和带阻滤波器时,Wc 是1×2的向量;设计低通和带通滤波器时,无需 'ftype',当ftype=high 时,设计高通滤波器,当ftype=stop 时,设计带阻滤波器;Window 表示设计滤波器所采用的窗函数类型,Window 的长度为N+1,若Window 缺省,则fir1默认使用哈明窗;b 对应设计好的滤波器的系数h(n),即单位冲激响应,h(n)的长度为N+1。

需注意)(n h 的长度与滤波器的阶数间的关系。

FIR 滤波器的系统函数可表示为:
∑-=-=1
0)()(N n n z n h z H
)(n h 的长度为N ,而滤波器的阶数为1-N 阶。

3. 求数字滤波器的频率响应
h=freqz(b,a,w)
其中,b 和a 分别为系统函数)(z H 的分子多项式和分母多项式的系数。

对于FIR 滤波器,此处的b 即为h(n),a 可看作1。

实验题目:
1. 分别用矩形窗和哈明窗设计FIR 低通滤波器,设窗宽11=N ,截止频率rad c πω
2.0=,要求绘出两种窗函数设计的滤波器幅频曲线,并进行比较。

2. 设计一个线性相位FIR 低通滤波器,通带截止频率为rad p πω2.0=,阻带截止频率为rad s πω4.0=,阻带最小衰减为dB s 50=α。

要求分别绘制理想冲激响应,窗函数的时域波形及幅频特性,实际冲激响应,FIR 滤波器的幅频特性和相频特性。

相关文档
最新文档