《信号与系统》实验四
信号与系统实验(MATLAB 西电版)实验4 离散时间信号的时域基本运算_OK

图 4.5 序列及其平移
2021/7/3
16
实验4 离散时间信号的时域基本运算
2.
已知序列f(k)={2,3,1,2,3,4,3,1},对应的k值为 -3≤k≤4 f1(k)=f(k-2),f2(k)=f(-k),f3(k)=f(k-1)ε(k), f4(k)=f(-k+2),f5(k)=f(k+1), f6(k)=f(k-2)ε(k),f7(k)=f(k+2)ε(k)
5) MATLAB x1=-2:2; %序列1 k1=-2:2; k0=2; k=k1+k0; f=x1; stem(k,f,′filled′); axis([min(k)-1,max(k)+1,min(f)-0.5,max(f)+0.5]); 序列及其平移如图4.5
2021/7/3
15
实验4 离散时间信号的时域基本运算
2021/7/3
17
实验4 离散时间信号的时域基本运算
(1) 在计算机中输入程序,验证并记录实验结果,经过 (2) 对于设计性实验,应自行编制完整的实验程序,重复 验证性实验的过程,并在实验报告中给出完整的自编程序。
2021/7/3
18
axis([min(k)-1,max(k)+1,min(f)-0.5,max(f)+0.5]);
序列及其翻转如图4.3所示。
2021/7/3
11
实验4 离散时间信号的时域基本运算
图 4.3 序列及其翻转
2021/7/3
12
实验4 离散时间信号的时域基本运算
4)
MATLAB
x1=-2:2;
%序列1
两个序列的乘法如图4.2
2021/7/3
信号与系统实验报告总结

信号与系统实验实验一常用信号的观察方波:正弦波:三角波:在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。
实验四非正弦周期信号的分解与合成方波DC信号:DC信号几乎没有,与理论相符合,原信号没有添加偏移。
方波基波信号:基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。
方波二次谐波信号:二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。
方波三次谐波信号:三次谐波信号频率为150Hz为原方波信号的三倍。
幅值较一二次谐波大为减少。
方波四次谐波信号:四次谐波信号的频率为200Hz为原方波信号的四倍。
幅值较三次谐波再次减小。
方波五次谐波信号:五次谐波频率为250Hz为原方波信号的五倍。
幅值减少到0.3以内,几乎可以忽略。
综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。
分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。
二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。
可知,方波信号可分解为多个谐波。
方波基波加三次谐波信号:基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。
方波基波加三次谐波信号加五次谐波信号:基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。
综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。
信号与系统实验四实验报告

实验四 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率sam f 大于等于2倍的信号最高频率m f ,即m sam f f 2≥。
时域抽样是把连续信号x (t )变成适于数字系统处理的离散信号x [k ] ;信号重建是将离散信号x [k ]转换为连续时间信号x (t )。
非周期离散信号的频谱是连续的周期谱。
计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。
三.实验内容1. 为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。
)102cos()(1t t x ⨯=π答: 函数代码为: t0 = 0:0.001:0.1;x0 =cos(2*pi*10*t0);plot(t0,x0,'r')hold onFs =50;t=0:1/Fs:0.1;x=cos(2*pi*10*t); stem(t,x); hold offtitle('连续信号及其抽样信号')函数图像为:)502cos()(2t t x ⨯=π同理,函数图像为:)0102cos()(3t t x ⨯=π同理,函数图像为:由以上的三图可知,第一个图的离散序列,基本可以显示出原来信号,可以通过低通滤波恢复,因为信号的频率为20HZ,而采样频率为50>2*20,故可以恢复,但是第二个和第三个信号的评论分别为50和100HZ,因此理论上是不能够恢复的,需要增大采样频率,解决的方案为,第二个信号的采样频率改为400HZ,而第三个的采样频率改为1000HZ,这样可以很好的采样,如下图所示:2. 产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘制波形。
西工大信号和系统_实验

西北工业大学
《信号与系统》实验报告
西北工业大学
.
上图分别是0<n<2N-1,M=4,5,7,10时,Xm[n]的图像。
由上图可看出,当M=4时,基波周期T=3;M=5时,基波周期T=12 M=10时,基波周期T=6;所以当M=4时,得到的最小整数周期为
Xm(n)=sin(2πMn/N)的频率w=2πM/N,由公式得周期T=2k k=1,2,...)。
当N/M为正整数时,最小周期T=N/M;当N/M为有理数时,都有最小周期T=N;当N/M为无理数时,该序列不是周期序列
b.
以上是代码,下图是运行结果
可得出结论:如果2*pi/w0不是有理数,则该信号不是周期的 1.3离散时间信号时间变量的变换
b. 代码如下:x=zeros(1,11); x(4)=2;
x(6)=1;
x(7)=-1;
x(8)=3;
n=-3:7;
n1=n-2;
n2=n+1;
n3=-n;
n4=-n+1;
y1=x;
X超前2得到y1,;x延时1得到y2;x倒置再延时1得到y3;x倒置再延时2得到y4.
发现了课本中的一个错误
和书上的图1.2是一致的。
b:正余弦函数分别定义如下:
T=4
a:。
《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
《信号与系统》离散信号的频域分析实验报告

信息科学与工程学院《信号与系统》实验报告四专业班级电信 09-班姓名学号实验时间 2011 年月日指导教师陈华丽成绩实验名称离散信号的频域分析实验目的1. 掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换,进一步理解这些变换之间的关系;2. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。
4. 学习用FFT对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。
实验内容1.对连续信号)()sin()(0tutAetx taΩα-=(128.444=A,πα250=,πΩ250=)进行理想采样,可得采样序列50)()sin()()(0≤≤==-nnunTAenTxnx nTaΩα。
图1给出了)(txa的幅频特性曲线,由此图可以确定对)(txa采用的采样频率。
分别取采样频率为1KHz、300Hz和200Hz,画出所得采样序列)(nx的幅频特性)(ωj eX。
并观察是否存在频谱混叠。
图1 连续信号)()sin()(0tutAetx taΩα-=2. 设)52.0cos()48.0cos()(nnnxππ+=(1)取)(nx(100≤≤n)时,求)(nx的FFT变换)(kX,并绘出其幅度曲线。
(2)将(1)中的)(nx以补零方式加长到200≤≤n,求)(kX并绘出其幅度曲线。
(3)取)(nx(1000≤≤n),求)(kX并绘出其幅度曲线。
(4)观察上述三种情况下,)(nx的幅度曲线是否一致?为什么?3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。
11,03()8,470,n nx n n nn+≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos4x n nπ=3()sin8x n nπ=4()cos8cos16cos20x t t t tπππ=++10.80.60.40.20100200300400500xa(jf)f /Hz(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。
信号与系统实验教程只有答案

信号与系统实验教程(只有答案))(实验报告目录实验一信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三连续时间LTI系统的频域分析 (35)三、实验内容及步骤 (35)实验四通信系统仿真 (42)三、实验内容及步骤 (42)实验五连续时间LTI系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。
实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。
并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。
要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。
然后执行该程序,保存所的图形。
修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。
信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息科学与工程学院《信号与系统》实验报告四专业班级电信09-班姓名学号实验时间2011 年月日指导教师陈华丽成绩0≤n的幅频特性曲线,由此图可以确1.对连续信号)()sin()(0t u t Ae t x t a Ωα-=(128.444=A ,πα250=,πΩ2500=)进行理想采样,可得采样序列500)()sin()()(0≤≤==-n n u nT Ae nT x n x nT a Ωα。
图1给出了)(t x a 的幅频特性曲线,由此图可以确定对)(t x a 采用的采样频率。
分别取采样频率为 1KHz 、300Hz 和200Hz ,画出所得采样序列)(n x 的幅频特性)( j e X 。
并观察是否存在频谱混叠。
源程序: % 产生序列x(n) n=0:50; A=444.128; a=50*sqrt(2.0)*pi;T=1/1000; % T 分别取1/1000、1/300、1/200 w0=50*sqrt(2.0)*pi;x=A*exp(-a*n*T).*sin(w0*n*T); %函数f 的表达式 subplot(1,2,1),stem(n,x)title('理想采样序列 fs=1000Hz')% 绘制x(n)的幅度谱 k=-250:250; W=pi/125*k;X=x*(exp(-j*pi/125)).^(n'*k); % 由公式计算DTFT magX=abs(X);subplot(1,2,2),plot(W,magX) title('理想采样序列的幅度谱') 结果图fs=300HZfs=200HZ2. 设)52.0cos()48.0cos()(n n n x ππ+=(1)取)(n x (100≤≤n )时,求)(n x 的FFT 变换)(k X ,并绘出其幅度曲线。
(2)将(1)中的)(n x 以补零方式加长到200≤≤n ,求)(k X 并绘出其幅度曲线。
(3)取)(n x (1000≤≤n ),求)(k X 并绘出其幅度曲线。
(4)观察上述三种情况下,)(n x 的幅度曲线是否一致?为什么?源程序1: n=0:10; M=length(n);x1=cos(0.48*pi*n)+cos(0.52*pi*n); subplot(2,2,1) stem(n,x1) xlabel('n')title('x(n) 0<=n<=10'). k=0:250;N=length(k);w=2*pi/N*k;WN=exp(-j*2*pi/N);kn=n'*k;WNkn=WN.^kn;X=x1*WNkn;subplot(2,2,2)plot(w/pi,abs(X))xlabel('w/pi')title('x(n)傅里叶变换的近似幅度')k=0:10;N=length(k);X1=fft(x1,N);w=2*pi/N*k;subplot(2,2,3)plot(w/pi,abs(X1))hold onstem(w/pi,abs(X1),'r:')xlabel('w/pi')title('X(k)的幅度(变换区间长度N=11)')k=0:20;N=length(k);X2=fft(x1,N);w=2*pi/N*k;subplot(2,2,4)plot(w/pi,abs(X2))hold onstem(w/pi,abs(X2),'r:')xlabel('w/pi')title('X(k)的幅度(变换区间长度N=21)')结果图:源程序:2n=0:100;M=length(n);x3=cos(0.48*pi*n)+cos(0.52*pi*n); subplot(2,1,1) stem(n,x3) xlabel('n')title('x(n) 0<=n<=100') k=0:100; N=length(k); X3=fft(x3,N); w=2*pi/N*k; subplot(2,1,2) plot(w/pi,abs(X3)) xlabel('w/pi') title('X(k)的幅度') 结果图:可见,通过加长序列的有效数据,可以很清晰地看出信号的频谱成分(π48.0和π52.0),所以物理分辨率提高了。
3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。
11,03()8,470,n n x n n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos 4x n n π= 3()sin8x n n π=4()cos8cos16cos 20x t t t t πππ=++(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。
观察三次变换的结果是否一致?为什么?源程序1: function y=x1(n) n=0:3; y(n+1)=n+1; n=4:7; y(n+1)=8-n; n=0:7;x2=cos(pi.*n/4); x3=sin(pi.*n/8); k1=0:7; N=length(k1);.X1=fft(x1,N);X2=fft(x2,N);X3=fft(x3,N);w1=2*pi/N*k1;k2=0:15;N=length(k2);X11=fft(x1,N);X22=fft(x2,N);X33=fft(x3,N);w2=2*pi/N*k2;subplot(2,3,1)plot(w1/pi,abs(X1))hold onstem(w1/pi,abs(X1),'r:')xlabel('w1/pi')title('X1(k)的幅度(N=8)') %X1(k)的幅度(N=8)subplot(2,3,4)plot(w2/pi,abs(X11))hold onstem(w2/pi,abs(X11),'r:')xlabel('w2/pi')title('X1(k)的幅度(N=16)') %X1(k)的幅度(N=16). subplot(2,3,2)plot(w1/pi,abs(X2))hold onstem(w1/pi,abs(X2),'r:')xlabel('w2/pi')title('X2(k)的幅度(N=8)') % X2(k)的幅度(N=8)subplot(2,3,5)plot(w2/pi,abs(X22))hold onstem(w2/pi,abs(X22),'r:')xlabel('w1/pi')title('X2(k)的幅度(16)') %X2(k)的幅度(16)subplot(2,3,3)plot(w1/pi,abs(X3))hold onstem(w1/pi,abs(X3),'r:')xlabel('w1/pi')title('X3(k)的幅度(N=8)') %X3(k)的幅度(N=8)subplot(2,3,6)plot(w2/pi,abs(X33))hold onstem(w2/pi,abs(X33),'r:')xlabel('w2/pi').title('X3(k)的幅度(N=16)') %X3(k)的幅度(N=16)源程序2:clc;clf;clear;n=0:20;T=1/64;x4=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T);subplot(2,2,1),stem(n,x4)title('理想采样序列fs=64Hz')k1=0:15;N=length(k1);X4=fft(x4,N);w1=2*pi/N*k1;subplot(2,2,2)plot(w1/pi,abs(X4)). hold onstem(w1/pi,abs(X4),'r:')xlabel('w4/pi')title('X4(k)的幅度谱(N=16)')k2=0:31;N=length(k2);X4=fft(x4,N);w2=2*pi/N*k2;subplot(2,2,3)plot(w2/pi,abs(X4))hold onstem(w2/pi,abs(X4),'r:')xlabel('w4/pi')title('X4(k)的幅度谱(N=32)')k3=0:63;N=length(k3);X4=fft(x4,N);w3=2*pi/N*k3;subplot(2,2,4)plot(w3/pi,abs(X4))hold onstem(w3/pi,abs(X4),'r:')xlabel('w3/pi').title('X4(k)的幅度谱(N=64)')结果图:实验小结:通过本次实验1.掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶变换、快速傅里叶变换2. 掌握序列的傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。
以后要多参与类似的实验,信号与系统是一项需要把理论与实践结合其来的课程在掌握了基本知识以后,通过做实验,我们可以更加深入理解我们学过的知识。