2019-2020学年高中数学课时分层作业1命题
高中数学同步练习 课时分层作业1 归纳推理

课时分层作业(一)(建议用时:60分钟)[基础达标练]一、选择题1.观察下列各式:72=49,73=343,74=2 401,75=16 807,76=117 649,…,则72 019的末两位数字为( )A .01B .43C .07D .49B [由运算规律知末两位数字以4为周期重复出现,故72 019的末两位数字为43.]2.已知数列{a n }的前n 项和S n =n 2·a n (n≥2),且a 1=1,通过计算a 2,a 3,a 4,猜想a n =( ) A.2(n +1)2 B.2n (n +1)C.22n-1D.22n -1B [可以通过S n =n 2·a n (n≥2)分别代入n =2,3,4,求得a 2=13,a 3=16,a 4=110,猜想a n =2n (n +1).]3.给出下面的等式: 1×9+2=11, 12×9+3=111, 123×9+4=1 111, 1 234×9+5=11 111, 12 345×9+6=111 111, ……猜测123 456×9+7等于( ) A .1 111 110 B .1 111 111 C .1 111 112D .1 111 113B [观察几组数据可知,等号左边变化的数字依次为1和2,12和3,123和4,1 234和5,12 345和6,等号右边依次为2个1,3个1,4个1,5个1,6个1,因此猜测当等号左边为123 456和7时,对应等号右边应为7个1.]4.我们把1,4,9,16,25,…这些数称做正方形数,这是因为个数等于这些数目的点可以分别排成一个正方形(如图).则第n 个正方形数是( )A.n(n-1) B.n(n+1)C.n2D.(n+1)2C[观察前5个正方形数,恰好是序号的平方,所以第n个正方形数应为n2.]5.如图所示,着色的三角形的个数依次构成数列{a n}的前4项,则这个数列的一个通项公式为( )A.a n=3n-1B.a n=3nC.a n=3n-2n D.a n=3n-1+2n-3A[∵a1=1,a2=3,a3=9,a4=27,猜想a n=3n-1.]二、填空题6.设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,……根据以上事实,当n∈N+时,由归纳推理可得:f n(1)=________.12n+1-1[归纳推理可得f n(x)=x(2n-1)x+2n(n∈N+),解得f n(1)=12n+1-1.]7.观察下列等式:1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为________.5+6+7+8+9+10+11+12+13=81 [由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81.]8.如图所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有n(n>1,n∈N +)个点,每个图形总的点数记为a n ,则a 6=____________,a n =____________.15 3n -3(n≥2,n∈N +) [依据图形特点可知当n =6时,三角形各边上各有6个点,因此a 6=3×6-3=15.由n =2,3,4,5,6时各图形的特点归纳得a n =3n -3(n≥2,n∈N +).] 三、解答题9.已知数列{a n }的前n 项和为S n ,a 1=1,且S n -1+1S n +2=0(n≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.[解] 当n =1时,S 1=a 1=1; 当n =2时,1S 2=-2-S 1=-3,∴S 2=-13;当n =3时,1S 3=-2-S 2=-53,∴S 3=-35;当n =4时,1S 4=-2-S 3=-75,∴S 4=-57.猜想:S n =-2n -32n -1(n∈N +).10.已知f(x)=13x +3,分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3)的值,然后归纳猜想一般性结论,并证明你的结论.[解] 由f(x)=13x +3,得f(0)+f(1)=130+3+131+3=33,f(-1)+f(2)=13-1+3+132+3=33,f(-2)+f(3)=13-2+3+133+3=33.归纳猜想一般性结论为f(-x)+f(x +1)=33. 证明如下:f(-x)+f(x +1)=13-x +3+13x +1+3=3x1+3·3x +13x +1+3=3·3x3+3x +1+13x +1+3 =3·3x+13+3x +1=3·3x+13(1+3·3x)=33. [能力提升练]1.平面内有n 条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为( ) A .n +1 B .2n C.n 2+n +22D .n 2+n +1C [1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n)=1+n (n +1)2=n 2+n +22个区域,选C.] 2.已知整数对的序列为(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第57个数对是( )A .(2,10)B .(10,2)C .(3,5)D .(5,3)A [由题意,发现所给数对有如下规律: (1,1)的和为2,共1个; (1,2),(2,1)的和为3,共2个; (1,3),(2,2),(3,1)的和为4,共3个; (1,4),(2,3),(3,2),(4,1)的和为5,共4个; (1,5),(2,4),(3,3),(4,2),(5,1)的和为6,共5个.由此可知,当数对中两个数字之和为n 时,有n -1个数对.易知第57个数对中两数之和为12,且是两数之和为12的数对中的第2个数对,故为(2,10).]3.如下图所示是由火柴杆拼成的一列图形,第n 个图形由n 个正方形组成:通过观察可以发现:第4个图形中,火柴杆有________根;第n 个图形中,火柴杆有________根.13 3n +1 [n =1,2,3,4时,火柴杆数分别为4根,7根,10根,13根,由此可归纳火柴杆数是一个以4为首项,以3为公差的等差数列,故第n 个图形中,火柴杆有3n +1根.]4.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向三角形外作正三角形,并擦去中间一段,得图②,如此继续下去,得图③,……,试用n 表示出第n 个图形的边数a n =________.① ② ③3×4n -1(n∈N +) [观察图形可知,a 1=3,a 2=12,a 3=48,…,故{a n }是首项为3,公比为4的等比数列,故a n =3×4n -1(n∈N +).]5.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解] (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =sin 2α+(cos 30°cos α+sin 30°sin α)2- sin α(cos 30° cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.。
2019-2020学年人教A版高中数学必修1 课时分层训练 :第三章 3.1 3.1.2 Word

姓名,年级:时间:第三章3。
1 3.1.2 用二分法求方程的近似解课时分层训练‖层级一‖|学业水平达标|1.下列函数中不能用二分法求零点的是()A.f(x)=2x+3 B.f(x)=ln x+2x-6C.f(x)=x2-2x+1 D.f(x)=2x-1解析:选C f(x)=x2-2x+1=(x-1)2≥0,零点是1,它的左、右两侧函数值同号.2.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( )A.x1B.x2C.x3D.x4解析:选C 观察图象知,x3附近两边的函数值都是负值,因此不能用二分法求.3.根据下表,用二分法求函数f(x)=x3-3x+1在区间(1,2)上的零点的近似值(精确度0。
1)是()f(1)=-1f(2)=3f(1。
5)=-0。
125f(1。
75)=1。
109375f(1。
625)=0.416 01562f(1。
562 5)=0。
127 19726A。
1.75C.1。
612 5 D.1。
56解析:选D ∵f(1。
5)·f(1。
562 5)<0,且|1。
562 5-1.5|=0。
062 5<0。
1,∴函数f(x)在(1,2)上零点可以是(1。
5,1。
562 5)上的任何一个值,故选D.4.设函数y=x2与y=错误!x-2的图象交点为(x0,y0),则x0所在区间是( ) A.(0,1)B.(1,2)C.(2,3) D.(3,4)解析:选B 令f(x)=x2-错误!x-2,则f(0)=-4<0,f(1)=-1<0,f(2)=3>0,∴f(x)的零点在区间(1,2)内,即函数y=x2与y=错误!x-2的图象交点的横坐标x0∈(1,2).5.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)〉0,f(1.25)<0,则方程的根落在区间( )A.(1,1。
2019_2020学年高中数学课时分层作业1任意角(含解析)苏教版必修4

课时分层作业(一) 任意角(建议用时:60分钟)[合格基础练]一、选择题1.下列命题正确的是( )A .三角形的内角必是第一、二象限角B .始边相同而终边不同的角一定不相等C .第四象限角一定是负角D .钝角比第三象限角小B [只有B 正确.对于A ,如90°角不在任何象限;对于C ,如330°角在第四象限但不是负角;对于D ,钝角不一定比第三象限角小.]2.下面各组角中,终边相同的角是( )A .390°,690°B .-330°,750°C .480°,-420°D .3 000°,-840°B [-330°=-360°+30°,750°=2×360°+30°,均与30°角终边相同.]3.下列说法中不正确的是( )A .-75°是第四象限的角B .225°是第三象限的角C .415°是第二象限的角D .-315°是第一象限的角C [先把角写成k ·360°+α(0°≤α<360°)的形式,再由α判断角所在的象限.]4.若α是第四象限角,则180°-α所在象限是( )A .第四象限B .第三象限C .第二象限D .第一象限B [如图所示,∵α是第四象限角,则-α是第一象限角,∴180°-α是第三象限角.]5.若角α的终边与240°角的终边相同,则α2的终边所在象限是( ) A .第二或第四象限B .第二或第三象限C .第一或第四象限D .第三或第四象限A [角α满足的集合为{α|α=k ·360°+240°,k ∈Z },故有⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α2⎪⎪⎪ α2=k ·180°+120°,k ∈Z ,∴α2终边落在第二象限或第四象限.]二、填空题6.已知角α的终边与-100°角的终边关于y轴对称,则α的取值集合为________.{α|α=k·360°-80°,k∈Z} [如图,-80°角与-100°角的终边关于y轴对称,因此α的取值集合为{α|α=k·360°-80°,k∈Z}.] 7.已知角α=-3 000°,则与角α终边相同的最小正角是________.240°[与角α终边相同的角的集合为{θ|θ=k·360°-3 000°,k∈Z},与角θ终边相同的最小正角是当k=9时,θ=9×360°-3 000°=240°,所以与角α终边相同的最小正角为240°.]8.已知α是第二象限角,且7α与2α的终边相同,则α=________.k·360°+144°(k∈Z) [7α=k·360°+2α(k∈Z),∴α=k·72°,又α为第二象限角,∴在0°~360°内符合条件的角为144°,故α=k·360°+144°(k∈Z).]三、解答题9.写出终边在如图所示直线上的角的集合.[解] (1)在0°~360°范围内,终边在x轴上的角有两个,即0°和180°,因此所有与0°角的终边相同的角构成集合S1={β|β=0°+k·360°,k∈Z},而所有与180°角的终边相同的角构成集合S2={β|β=180°+k·360°,k∈Z}.于是,终边落在x轴上的角的集合S=S1∪S2={β|β=k·180°,k∈Z}.(2)在0°~360°范围内,终边在直线y=-x上的角有两个,即135°和315°.因此,终边在直线y=-x上的角的集合S={β|β=135°+k·360°,k∈Z}∪{β|β=315°+k·360°,k∈Z}={β|β=135°+k·180°,k∈Z}.(3)终边在直线y=x上的角的集合为{β|β=45°+k·180°,k∈Z},于是所求角的集合S={β|β=45°+k·180°,k∈Z}∪{β|β=135°+k·180°,k∈Z}={β|β=45°+2k·90°,k∈Z}∪{β|β=45°+(2k+1)·90°,k∈Z}={β|β=45°+k·90°,k∈Z}.10.已知角x的终边落在如图阴影部分区域(包括边界),写出角x组成的集合.[解] (1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°,或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|n·180°+30°≤x≤n·180°+60°,n∈Z}.[等级过关练]1.下列说法中正确的是( )A.120°角与420°角的终边相同B.若α是锐角,则2α是第二象限的角C.-240°角与480°角都是第三象限的角D.60°角与-420°角的终边关于x轴对称D[对于A,420°=360°+60°,所以60°角与420°角终边相同,所以A不正确;对于B,α=30°角是锐角,而2α=60°角也是锐角,所以B不正确;对于C,480°=360°+120°,所以480°角是第二象限角,所以C不正确;对于D,-420°=-360°-60°,又60°角与-60°角终边关于x轴对称,故D正确.]2.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中,角α所表示的范围(下图阴影部分)正确的是( )C[令k=0得,45°≤α≤90°,排除B、D,令k=-1得,-135°≤α≤-90°,排除A.故选C.]3.已知集合M={第一象限角},N={锐角},P={小于90°的角},则以下关系式你认为正确的是________(填序号).①M P;②M∩P=N;③N∪P⊆P.③[对于①:390°是第一象限角,但390°>90°.对于②:-330°是第一象限角且-330°<90°,但-330°不是锐角.对于③:锐角一定小于90°,所以N P,故N ∪P ⊆P .]4.钟表经过4小时,时针转过的度数为________,分针转过的度数为________.-120° -1 440° [分针和时针均按顺时针方向旋转,其中分针连续转过4周,时针转过13周.] 5.若α是第一象限角,问-α,2α,α3是第几象限角? [解] ∵α是第一象限角,∴k ·360°<α<k ·360°+90°(k ∈Z ).(1)-k ·360°-90°<-α<-k ·360°(k ∈Z ),∴-α所在区域与(-90°,0°)范围相同,故-α是第四象限角.(2)2k ·360°<2α<2k ·360°+180°(k ∈Z ),∴2α所在区域与(0°,180°)范围相同,故2α是第一、二象限角或终边在y 轴的非负半轴上.(3)k ·120°<α3<k ·120°+30°(k ∈Z ). 法一:(分类讨论)当k =3n (n ∈Z )时,n ·360°<α3<n ·360°+30°(n ∈Z ),∴α3是第一象限角; 当k =3n +1(n ∈Z )时,n ·360°+120°<α3<n ·360°+150°(n ∈Z ), ∴α3是第二象限角; 当k =3n +2(n ∈Z )时,n ·360°+240°<α3<n ·360°+270°(n ∈Z ),∴α3是第三象限角.综上可知:α3是第一、二或第三象限角.法二:(几何法)如图,先将各象限分成3等份,再从x 轴的非负半轴的上方起,依次将各区域标上1,2,3,4,则标有1的区域即为α3终边所在的区域,故α3为第一、二或第三象限角.。
2019版高考数学一轮复习课时分层作业: 一 1.1集合 Word版含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时分层作业一集合一、选择题(每小题5分,共35分)1.已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B= ( )A.{1}B.{4}C.{1,3}D.{1,4}【解析】选D.因为集合B中,x∈A,所以当x=1时,y=3-2=1;当x=2时,y=3×2-2=4;当x=3时,y=3×3-2=7;当x=4时,y=3×4-2=10.即B={1,4,7,10}.又因为A={1,2,3,4},所以A∩B={1,4}.2.(2017·北京高考)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A ∩B= ( )A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1}D.{x|1<x<3}【解析】选A.画出数轴如图所示,则A∩B={x|-2<x<-1}.3.设集合A={y|y=sinx,x∈R},B={y|y=3x,x∈A},则A∩B= ( )A. B.[1,3]C. D.[0,1]【解析】选 A.A={y|y=sin x,x∈R}={y|-1≤y≤1}.B={y|y=3x,x∈A}=,所以A∩B={y|-1≤y≤1}∩=.4.(2018·日照模拟)集合A={x|y=},B={y|y=log2x,x>0},则A∩B等于( )A.RB.∅C.[0,+∞)D.(0,+∞)【解析】选 C.A={x|y=}={x|x≥0},B={y|y=log2x,x>0}=R.故A∩B={x|x≥0}.5.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩U B= ( )A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}【解析】选B.因为A={2,3,5},U B={2,5},所以A∩U B={2,5}.【变式备选】设集合A={x|x2≤4,x∈R},B={y|y=-x2,-1≤x≤2},则R(A ∩B)等于 ( )A.RB.(-∞,-2)∪(0,+∞)C.(-∞,-1)∪(2,+∞)D.∅【解析】选B.由x2≤4得-2≤x≤2,所以集合A={x|-2≤x≤2};由-1≤x≤2得-4≤-x2≤0,所以集合B={y|-4≤y≤0},所以A∩B={x|-2≤x ≤0},故R(A∩B)=(-∞,-2)∪(0,+∞).6.(2018·南昌模拟)已知集合M={x|x2-4x<0},N={x|m<x<5},若M∩N={x|3<x<n},则m+n等于( )A.9B.8C.7D.6【解析】选 C.由x2-4x<0得0<x<4,所以M={x|0<x<4}.又因为N={x|m<x<5},M∩N={x|3<x<n},所以m=3,n=4,m+n=7.7.(2018·西安模拟)设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是( )A.0B.1C.2D.3【解析】选C.由题中集合可知,集合A表示直线x+y=1上的点,集合B表示直线x-y=3上的点,联立可得A∩B={(2,-1)},M为A∩B的子集,可知M可能为{(2,-1)},∅,所以满足M⊆(A∩B)的集合M 的个数是2.二、填空题(每小题5分,共15分)8.设集合A={3,m},B={3m,3},且A=B,则实数m的值是________. 【解析】由集合A={3,m}=B={3m,3},得3m=m,则m=0.答案:0【变式备选】已知集合A={3,a2},B={0,b,1-a},且A∩B={1},则A∪B=________.【解析】因为A∩B={1},所以a2=1,又因为1-a≠0,所以a=-1,b=1,即A={3,1},B={0,1,2},所以A∪B={0,1,2,3}.答案:{0,1,2,3}9.已知集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],则a 的值是________.【解析】因为集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],所以a=5.答案:510.(2018·襄阳模拟)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是________.【解析】当B=∅时,满足B⊆A,此时有m+1≥2m-1,即m≤2,当B≠∅时,要使B⊆A,则有解得2<m≤4.综上可得m≤4.答案:(-∞,4]【母题变式】本题中,是否存在实数m,使A⊆B?若存在,求实数m的取值范围;若不存在,请说明理由.【解析】由A⊆B,得即不等式组无解,故不存在实数m,使A⊆B.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B所含元素的个数为( )A.3B.6C.8D.10【解析】选D.当x=1时,y不存在;当x=2时,y=1;当x=3时,y=1,2;当x=4时,y=1,2,3;当x=5时,y=1,2,3,4;共有十个元素.2.(5分)集合A={-1,0,1,3},集合B={x|x2-x-2≤0,x∈N},全集U={x|(x-1)2≤16,x∈Z},则A∩(U B)= ( )A.{3}B.{-1,3}C.{-1,0,3}D.{-1,1,3}【解题指南】解不等式求出集合B和全集U,结合集合的补集及交集运算的定义,可得答案.【解析】选B.因为集合A={-1,0,1,3},集合B={x|x2-x-2≤0,x∈N}={0,1,2},全集U={x|(x-1)2≤16,x∈Z}={-3,-2,-1,0,1,2,3,4,5},所以U B={-3,-2,-1,3,4,5},所以A∩(U B)={-1,3}.3.(5分)已知全集U=R,集合A={x|x+a≥0,x∈R},B={x|x2-2x-8≤0}.若(U A)∩B=[-2,4],则实数a的取值范围是________.【解析】由A中的不等式解得x≥-a,即A=[-a,+∞).因为全集U=R,所以U A=(-∞,-a).由B中的不等式解得-2≤x≤4,即B=[-2,4],因为(U A)∩B=[-2,4],所以-a>4,即a<-4.答案:a<-44.(12分)已知集合A={x|-1<x≤3},B={x|m≤x<1+3m}.(1)当m=1时,求A∪B.(2)若B⊆R A,求实数m的取值范围.【解析】 (1)因为m=1时,B={x|1≤x<4},所以A∪B={x|-1<x<4}.(2)R A={x|x≤-1或x>3}.当B=∅时,即m≥1+3m时得m≤-,满足B⊆R A,当B≠∅时,要使B⊆R A成立,则或解得m>3.综上可知,实数m的取值范围是m>3或m≤-.5.(13分)设集合A=,B={x|x2-3mx+2m2-m-1<0}.(1)当x∈Z时,求A的非空真子集的个数.(2)若A⊇B,求实数m的取值范围.【解析】化简得集合A={x|-2≤x≤5},集合B={x|(x-m+1)(x-2m-1)<0}.(1)因为x∈Z,所以A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,所以A的非空真子集个数为28-2=254.(2)①m=-2时,B=∅⊆A;②当m<-2时,(2m+1)-(m-1)=2+m<0,所以B=(2m+1,m-1),因此,要B⊆A,则只要⇒-≤m≤6,所以m的值不存在;③当m>-2时,B=(m-1,2m+1),因此,要B⊆A,则只要⇒-1≤m≤2.综上所述,知m的取值范围是{m|m=-2或-1≤m≤2}.关闭Word文档返回原板块。
2019-2020学年高中数学(人教A版必修一)学业分层测评:第1章 1.3.1 第2课时 函数的最大(小)值 Word版含

学业分层测评(十)(建议用时:45分钟)[学业达标]一、选择题1.函数f (x )在[-2,2]上的图象如图1-3-3所示,则此函数的最小值、最大值分别是( )图1-3-3A .f (-2),0B .0,2C .f (-2),2D .f (2),2 【解析】 由题图可知,此函数的最小值是f (-2),最大值是2.【答案】 C2.函数f (x )=1x在[1,+∞)上( ) A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值【解析】 结合函数f (x )=1x 在[1,+∞)上的图象可知函数有最大值无最小值.【答案】 A3.函数f (x )=|x +1|在[-2,2]上的最小值为( )A .5B .2C .1D .0【解析】 当-2≤x ≤-1时,f (x )=|x +1|=-x -1,函数单调递减;当-1≤x ≤2时,f (x )=|x +1|=x +1,函数单调递增,∴当x =-1时,函数f (x )取得最小值,∴f (x )min =f (-1)=|-1+1|=0,故选D.【答案】 D4.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( )A .9B .9(1-a )C .9-aD .9-a 2【解析】 f (x )=-ax 2+9开口向下,在[0,3]上单调递减,所以在[0,3]上的最大值为9.【答案】 A5.下列四个函数:①y =3-x ;②y =1x2+1;③y =x 2+2x -10;④y =-2x .其中值域为R 的函数个数有( )A .1个B .2个C .3个D .4个【解析】 y =3-x 是一次函数,值域为R ;x 2+1≥1,∴0<1x2+1≤1,∴函数y =1x2+1的值域不是R ;y =x 2+2x -10=(x +1)2-11≥-11,∴该函数的值域不是R ;对于y =-2x ,y ≠0,即该函数的值域不是R .∴值域为R 的函数有一个.【答案】 A二、填空题6.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为________.【解析】 函数f (x )=-x 2+4x +a =-(x -2)2+4+a ,x ∈[0,1],且函数有最小值-2. 故当x =0时,函数有最小值,当x =1时,函数有最大值.∵当x =0时,f (0)=a =-2,∴f (x )=-x 2+4x -2,∴当x =1时,f (x )m ax =f (1)=-12+4×1-2=1.【答案】 17.函数y =f (x )的定义域为[-4,6],若函数f (x )在区间[-4,-2]上单调递减,在区间(-2,6]上单调递增,且f (-4)<f (6),则函数f (x )的最小值是________,最大值是________.【解析】 作出符合条件的函数的简图(图略),可知f (x )min =f (-2),f (x )m ax =f (6).【答案】 f (-2) f (6)8.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是________.【解析】 令f (x )=-x 2+2x ,则f (x )=-x 2+2x =-(x -1)2+1.又∵x ∈[0,2],∴f (x )min =f (0)=f (2)=0.∴a <0.【答案】 a <0三、解答题9.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值.【解】 f (x )=-(x -a )2+a 2-a +1,当a ≥1时,f (x )m ax =f (1)=a ;当0<a <1时,f (x )m ax =f (a )=a 2-a +1;当a ≤0时,f (x )m ax =f (0)=1-a .根据已知条件得,⎩⎨⎧ a≥1,a =2或⎩⎨⎧ 0<a<1,a2-a +1=2或⎩⎨⎧a≤0,1-a =2,解得a =2或a =-1.10.有一长为24米的篱笆,一面利用墙(墙最大长度是10米)围成一个矩形花圃,设该花圃宽AB 为x 米,面积是y 平方米,(1)求出y 关于x 的函数解析式,并指出x 的取值范围;(2)当花圃一边AB 为多少米时,花圃面积最大?并求出这个最大面积?【解】 (1)如图所示:∵0<24-2x ≤10,∴7≤x <12,∴y =x (24-2x )=-2x 2+24x ,(7≤x <12).(2)由(1)得,y =-2x 2+24x =-2(x -6)2+72,∴AB =6 m 时,y 最大为72 m 2.[能力提升]1.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( ) A .(0,4]B.⎣⎢⎡⎦⎥⎤32,4C.⎣⎢⎡⎦⎥⎤32,3D.⎣⎢⎡⎭⎪⎫32,+∞【解析】 ∵f (x )=x 2-3x -4=-254,∴f ⎝ ⎛⎭⎪⎫32=-254,又f (0)=-4, 故由二次函数图象可知:m 的值最小为32;最大为3.故m 的取值范围是⎣⎢⎡⎦⎥⎤32,3,故选C.【答案】 C2.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x (其中销售量单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元【解析】 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-+30+1924, ∴当x =9或10时,L 最大为120万元.【答案】 C3.函数g(x )=2x -x +1的值域为________.【解析】 设x +1=t ,(t ≥0),则x +1=t 2,即x =t 2-1,∴y =2t 2-t -2=-178,t ≥0, ∴当t =14时,y min =-178,∴函数g (x )的值域为⎣⎢⎡⎭⎪⎫-178,+∞.【答案】 ⎣⎢⎡⎭⎪⎫-178,+∞ 4.已知函数f (x )=-x 2+2x -3.(1)求f (x )在区间[2a -1,2]上的最小值g(a );(2)求g(a )的最大值.【解】 (1)f (x )=-(x -1)2-2,f (2)=-3,f (0)=-3,∴当2a -1≤0,即a ≤12时,f (x )min =f (2a -1)=-4a 2+8a -6;当0<2a -1<2,即12<a <32时,f (x )min =f (2)=-3.所以g (a )=⎩⎪⎨⎪⎧ -4a2+8a -6,a≤12,-3,12<a<32,(2)当a ≤12时,g (a )=-4a 2+8a -6单调递增,∴g (a )≤g ⎝ ⎛⎭⎪⎫12=-3; 又当12<a <32时,g (a )=-3,∴g (a )的最大值为-3.。
2019-2020学年度新人教A版必修第二册6.4.3、余弦定理课时分层作业

课时分层作业(十一) 余弦定理(建议用时:60分钟)[合格基础练]一、选择题1.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( )A .30°B .60°C .120°D .150°B [由题意知,(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°.]2.在△ABC 中,若a =8,b =7,cos C =1314,则最大角的余弦值是( )A .-15B .-16C .-17D .-18C [由余弦定理,得c 2=a 2+b 2-2ab cos C =82+72-2×8×7×1314=9,所以c =3,故a 最大,所以最大角的余弦值为cos A =b 2+c 2-a 22bc =72+32-822×7×3=-17.] 3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形C [由c 2-a 2-b 22ab>0得-cos C >0,所以cos C <0,从而C 为钝角,因此△ABC 一定是钝角三角形.]4.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1 D.23A [由 (a +b )2-c 2=4,得a 2+b 2-c 2+2ab =4,由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos 60°=ab ,则ab +2ab =4,∴ab =43.]5.锐角△ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1<a <5 C.3<a < 5 D .不确定C [若a 为最大边,则b 2+c 2-a 2>0,即a 2<5,∴a <5,若c 为最大边,则a 2+b 2>c 2,即a 2>3,∴a >3,故3<a < 5.]二、填空题6.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. 0 [∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120°=a 2+c 2+ac , ∴a 2+c 2+ac -b 2=0.]7.在△ABC 中,若b =1,c =3,C =2π3,则a =________.1 [∵c 2=a 2+b 2-2ab cos C ,∴(3)2=a 2+12-2a ×1×cos 2π3,∴a 2+a -2=0,即(a +2)(a -1)=0,∴a =1或a =-2(舍去).∴a =1.]8.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.4 [因为b +c =7,所以c =7-b .由余弦定理得:b 2=a 2+c 2-2ac cos B ,即b 2=4+(7-b )2-2×2×(7-b )×⎝ ⎛⎭⎪⎫-14, 解得b =4.]三、解答题9.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b .[解] 在△ABC 中,∵A +C =2B ,A +B +C =180°,∴B =60°.由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos (A +B )=1.(1)求角C 的度数;(2)求AB 的长.[解] (1)∵cos C =cos [π-(A +B )]=-cos (A +B )=-12,且C ∈(0,π),∴C =2π3.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2,∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.[等级过关练]1.在△ABC 中,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( ) A.π6 B.π3 C.π6或5π6 D.π3或2π3D [∵(a 2+c 2-b 2)tan B =3ac ,∴a 2+c 2-b 22ac ·tan B =32, 即cos B ·tan B =sin B =32.∵0<B <π,∴角B 的值为π3或2π3.]2.在△ABC 中,a ,b ,c 为角A ,B ,C 的对边,且b 2=ac ,则B 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π3 B.⎣⎢⎡⎭⎪⎫π3,π C.⎝ ⎛⎦⎥⎤0,π6 D.⎣⎢⎡⎭⎪⎫π6,π A [cos B =a 2+c 2-b 22ac =(a -c )2+ac 2ac=(a -c )22ac +12≥12,∵0<B <π,∴B ∈⎝ ⎛⎦⎥⎤0,π3.故选A.] 3.在△ABC 中,已知CB =7,AC =8,AB =9,则AC 边上的中线长为________. 7 [由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23, 设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49,所以x =7. 所以AC 边上的中线长为7.]4.△ABC 为钝角三角形,a =3,b =4,c =x ,则x 的取值范围是________. (1,7)∪(5,7) [①若x >4,则x 所对的角为钝角,∴32+42-x 22×3×4<0且x <3+4=7,∴5<x <7. ②若x <4,则4对的角为钝角,∴32+x 2-422×3×x<0且3+x >4, ∴1<x <7.∴x 的取值范围是(1,7)∪(5,7).]5.在△ABC 中,已知a -b =4,a +c =2b ,且最大角为120°,求三边长.[解] 由⎩⎨⎧ a -b =4,a +c =2b , 得⎩⎨⎧a =b +4,c =b -4.∴a >b >c ,∴A =120°,∴a 2=b 2+c 2-2bc cos 120°,即(b +4)2=b 2+(b -4)2-2b (b -4)×⎝ ⎛⎭⎪⎫-12, 即b 2-10b =0,解得b =0(舍去)或b =10.当b =10时,a =14,c =6.。
2019_2020学年高中数学课时分层作业1独立性检验含解析新人教b版选修1_2

课时分层作业(一)(建议用时:40分钟)[基础达标练]一、选择题1.以下关于独立性检验的说法中,错误的是( ) A .独立性检验依赖小概率原理 B .独立性检验得到的结论一定正确 C .样本不同,独立性检验的结论可能有差异 D .独立性检验不是判定两事物是否相关的唯一方法[解析] 受样本选取的影响,独立性检验得到的结论不一定正确,选B. [答案] B2.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( )A .平均数与方差B .回归分析C .独立性检验D .概率[解析] 判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. [答案] C3.如果有95%的把握说事件A 和B 有关,那么具体算出的数据满足( ) A .χ2>3.841 B .χ2>6.635 C .χ2<3.841D .χ2<6.635[解析] 根据独立性检验的两个临界值及其与χ2大小关系的意义可知,如果有95%的把握说事件A 与B 有关时,统计量χ2>3.841,故选A.[答案] A4.一个学生通过一种英语能力测试的概率是12,他连续测试两次,那么其中恰有一次通过的概率是( )A.14B.13C.12D.34[解析] 设A 为第一次测试通过,B 为第二次测试通过,则所求概率为P (A B )+P (A B )=P (A )P (B )+P (A )·P (B )=12×12+12×12=12.[答案] C5.在事件A 和B 的2×2列联表中,n 11=10,n 12=21,n 2+=35,若有95%的把握认为A 与B 有关系,则n 21可能等于( )A .4B .5C .6D .7[解析] 由题意可知χ2=66×[10×(35-n 21)-21×n 21]231×35×(10+n 21)×(56-n 21)>3.841,把A ,B ,C ,D 中的数据分别代入验证可知选A.[答案] A 二、填空题6.甲、乙两人射击时命中目标的概率分别为12,13,现两人同时射击,则两人都命中目标的概率为________.[解析] 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,则A 与B 相互独立. 于是P (AB )=P (A )P (B )=12×13=16.[答案] 167.独立性检验中,两个分类变量“X 和Y 有关系”的可信程度是95%,则随机变量χ2的取值范围是________.[解析] 当χ2>3.841时,有95%的把握判断X 与Y 有关系, 当χ2>6.635时,有99%的把握判断X 与Y 有关系, ∴3.841<χ2≤6.635. [答案] (3.841,6.635]8.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射后14天的结果如下表所示:的致死作用________________________.(填“相同”或“不相同”)[解析] 统计假设是“小白鼠的死亡与使用电离辐射剂量无关”.由列联表可以算出χ2≈5.33>3.841,故有95%的把握认为小白鼠的死亡与使用的电离辐射剂量有关,所以两种电离辐射剂量对小白鼠的致死作用不相同.[答案] 小白鼠的死亡与使用电离辐射剂量无关 5.33 不相同 三、解答题9.为了探究患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如下表所示:[解] 从题目的2×2列联表中可知:n 11=43,n 12=162,n 21=13,n 22=121,n 1+=205,n 2+=134,n +1=56,n +2=283,n =339, χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2=339×(43×121-162×13)2205×134×56×283≈7.469.因为7.469>6.635,所以我们有99%的把握认为50岁以上的人患慢性气管炎与吸烟有关系.10.下面是某班英语及数学成绩的分布表,已知该班有50名学生,成绩分1~5共5个档次.如:表中所示英语成绩为第4档,数学成绩为第2档的学生有5人,现设该班任意一名学生的英语成绩为第m 档,数学成绩为第n 档.(2)若m =2与n =4是相互独立的,求a ,b 的值.[解] (1)由表知英语成绩为第4档、数学成绩为第3档的学生有7人,而总学生数为50人,∴P =750.(2)由题意知,a +b =3.①又m =2与n =4相互独立,所以P (m =2)P (n =4)=P (m =2,n =4),即1+b+6+a50·3+1+b50=b50. ②由①②,解得a=2,b=1.[能力提升练]1.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算的χ2≈3.918,经查临界值表知P(χ2>3.841)≈0.05,则下列表述中正确的是( )A.有95%的把握认为“这种血清能起到预防感冒的作用”B.若有人未使用该血清,那么他一年中有95%的可能性得感冒C.这种血清预防感冒的有效率为95%D.这种血清预防感冒的有效率为5%[解析]因χ2≈3.918>3.841,故有95%的把握认为“这种血清能起到预防感冒的作用”.[答案] A2.假设有两个分类变量X和Y,它们的值域分别为{X1,X2}和{Y1,Y2},其2×2列联表为:A.a=5,b=4,c=3,d=2B.a=5,b=3,c=4,d=2C.a=2,b=3,c=4,d=5D.a=2,b=3,c=5,d=4[解析]对于同一样本,|ad-bc|越小,说明X与Y之间的关系越弱;|ad-bc|越大,说明X与Y之间的关系越强.[答案] D3.某班主任对全班50名学生作了一次调查,所得数据如表:由表中数据计算得到χ2的观测值5.059,于是______________(填“能”或“不能”)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.[解析] 查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,χ2≈5.059<6.635,所以不能在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.[答案] 不能4.为了研究色盲与性别的关系,调查了1 000人,调查结果如表所示:[解] 由已知条件可得下表:χ2=1 000×(956×44×480×520≈27.139.因为27.139>6.635,所以有99%的把握认为色盲与性别是有关的.。
2019-2020学年人教A版高中数学必修1 课时分层训练 :第一章 1.1 1.1.3 第二课时

姓名,年级:时间:第一章1.1 1.1。
3第二课时全集、补集及综合应用课时分层训练‖层级一‖|学业水平达标|1.已知全集U={1,2,3,4,5,6,7},A={x|x≥3,x∈N},则∁U A=( )A.{1,2}B.{3,4,5,6,7}C.{1,3,4,7} D.{1,4,7}解析:选A ∵U={1,2,3,4,5,6,7},A={x|x≥3,x∈N}={3,4,5,6,7},∴∁U A={1,2}.2.已知U=R,A={x|x>0},B={x|x≤-1},则[A∩(∁U B)]∪[B∩(∁U A)]等于()A.∅B.{x|x≤0}C.{x|x>-1} D.{x|x>0或x≤-1}解析:选D ∵∁U A={x|x≤0},∁U B={x|x〉-1},∴A∩(∁U B)={x|x>0},B∩(∁U A)={x|x≤-1},∴[A∩(∁U B)]∪[B∩(∁U A)]={x|x>0或x≤-1}.3.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是()A.{1,3,5}B.{1,2,3,4,5}C.{7,9} D.{2,4}解析:选D 图中阴影部分表示的集合是(∁U A)∩B={2,4}.4.已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a等于( )A.0或2 B.0C.1或2 D.2解析:选D 由题意,知错误!则a=2.5.如图所示的阴影部分表示的集合是()A.A∩(B∩C) B.(∁U A)∩(B∩C)C.C∩[∁U(A∪B)]D.C∩[∁U(A∩B)]解析:选C 由于阴影部分在C中,且不在A,B中,则阴影部分表示的集合是C 的子集,也是∁U(A∪B)的子集,即是C∩[∁U(A∪B)].6.已知全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层作业(一) 命题
(建议用时:60分钟)
[基础达标练]
一、选择题
1.下列语句是命题的是( )
A.2018是一个大数
B.若两直线平行,则这两条直线没有公共点
C.对数函数是增函数吗?
D.a≤15
B[B选项可以判断真假,是命题.]
2.以下说法错误的是( )
A.原命题为真,则它的逆命题可以为真,也可以为假
B.如果一个命题的否命题为假命题,那么它本身一定是真命题
C.原命题、逆命题、否命题、逆否命题中,真命题的个数一定为偶数
D.一个命题的逆命题、否命题、逆否命题可以同为假命题
B[A显然正确;B错误,原命题与否命题的真假可能相同,也可能相反;C、D为真命题.] 3.下列命题中,为真命题的是( )
A.命题“若x>y,则x>|y|”的逆命题
B.命题“若x>1,则x2>1”的否命题
C.命题“若x=1,则x2+x-2=0”的否命题
D.命题“若x2>0,则x>1”的逆否命题
A[B选项中,否命题为“若x≤1,则x2≤1”,为假命题;C选项中,否命题为“若x ≠1,则x2+x-2≠0”,为假命题;D选项中,逆否命题为“若x≤1,则x2≤0”,为假命题.] 4.若命题p的逆否命题是q,q的逆命题是r,则p与r是( )
A.互逆命题B.互否命题
C.互逆否命题D.不确定
B[因为p与q互为逆否命题,又因为q的逆命题是r,则p与r为互否命题.]
5.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中的假命题是( ) A.若m⊥n,m⊥α,nα,则n∥α
B.若m⊥β,α⊥β,则m∥α或mα
C.若m∥α,α⊥β,则m⊥β
D.若m⊥n,m⊥α,n⊥β,则α⊥β
C[C是假命题,m∥α,α⊥β时,m与β的关系可以是m⊥β,可以是m∥β,可以mβ或m与β斜交.]
二、填空题
6.命题“无理数是无限不循环小数”中,条件是________,结论是________.
[解析]该命题可改写为“如果一个数是无理数,那么它是无限不循环小数”.条件是:一个数是无理数;结论是:它是无限不循环小数.
[答案]一个数是无理数它是无限不循环小数
7.已知原命题“两个无理数的积仍是无理数”,则有:
①逆命题是“乘积为无理数的两数都是无理数”;
②否命题是“两个不都是无理数的积也不是无理数”;
③逆否命题是“乘积不是无理数的两个数都不是无理数”.
其中改写正确的序号是________.
[解析]①②正确,③逆否命题应为:“乘积不是无理数的两个数不都是无理数”,故③错误.
[答案]①②
8.有下列四个命题:
①命题“若xy=1,则x,y互为倒数”的逆命题;
②命题“面积相等的三角形全等”的否命题;
③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;
④命题“若A∩B=B,则A⊆B”的逆否命题.
其中是真命题的是________(填序号).
[解析]④中由A∩B=B,应该得出B⊆A,原命题为假命题,所以逆否命题为假命题.[答案]①②③
三、解答题
9.判断下列命题的真假,并写出它们的逆命题、否命题、逆否命题,同时判断这些命题的真假.
(1)若a>b,则ac2>bc2;
(2)若在二次函数y=ax2+bx+c中,b2-4ac<0,则该二次函数图像与x轴有公共点.
[解](1)该命题为假.因为当c=0时,ac2=bc2.
逆命题:若ac2>bc2,则a>b,为真.
否命题:若a≤b,则ac2≤bc2,为真.
逆否命题:若ac2≤bc2,则a≤b,为假.
(2)该命题为假.∵当b2-4ac<0时,二次方程ax2+bx+c=0没有实数根,因此二次函数y=ax2+bx+c的图像与x轴无公共点.
逆命题:若二次函数y=ax2+bx+c的图像与x轴有公共点,则b2-4ac<0,为假.
否命题:若在二次函数y=ax2+bx+c中,b2-4ac≥0,则该二次函数图像与x轴没有公
共点,为假.
逆否命题:若二次函数y=ax2+bx+c的图像与x轴没有公共点,则b2-4ac≥0,为假.10.证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R.若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.
[证明]原命题的逆否命题为“已知函数f(x)在(-∞,+∞)上是增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b).
若a+b<0,则a<-b,b<-a,
又∵f(x)在(-∞,+∞)上是增函数,
∴f(a)<f(-b),f(b)<f(-a).
∴f(a)+f(b)<f(-a)+f(-b),
即逆否命题为真命题.∴原命题为真命题.
[能力提升练]
1.命题“若-1<x<1,则x2<1”的逆否命题是( )
A.若x≥1或x≤-1,则x2≥1
B.若x2<1,则-1<x<1
C.若x2>1,则x>1或x<-1
D.若x2≥1,则x≥1或x≤-1
D[“-1<x<1”的否定为“x≥1或x≤-1”;“x2<1”的否定为“x2≥1”,由逆否命题定义知,D正确.]
2.下列四个命题:
(1)“若x+y=0,则x,y互为相反数”的否命题;
(2)“若a>b,则a2>b2”的逆否命题;
(3)“若x≤-3,则x2-x-6>0”的否命题;
(4)“对顶角相等”的逆命题.
其中真命题的个数是( )
A.0 B.1 C.2 D.3
B[(1)否命题:若x+y≠0,则x,y不互为相反数,真命题.(2)逆否命题:若a2≤b2,则a≤b,假命题.(3)否命题:若x>-3,则x2-x-6≤0,假命题.(4)逆命题:相等的两个角是对顶角,假命题,故选B.]
3.命题“若x∈R,则x2+(a-1)x+1≥0恒成立”是真命题,则实数a的取值范围为
________.
[解析]由题意得:Δ≤0,即:(a-1)2-4×1×1≤0,解得:a∈[-1,3].
[答案][-1,3]
4.已知命题“若m-1<x<m+1,则1<x<2”的逆命题为真命题,则m的取值范围是
________.
[解析] 由已知得,若1<x <2成立,则m -1<x <m +1也成立.
∴⎩⎪⎨⎪⎧ m -1≤1,m +1≥2,∴1≤m ≤2.
[答案] [1,2]
5.已知命题p :lg(x 2-2x -2)≥0;命题q :1-x +x 24
<1,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.
[解] 由lg(x 2-2x -2)≥0,得x 2-2x -2≥1,
即x 2-2x -3≥0,解得x ≤-1或x ≥3.
由1-x +x 24
<1,得x 2-4x <0,解得0<x <4. 因为命题p 为真命题,命题q 为假命题,
所以⎩⎪⎨⎪⎧ x ≤-1或x ≥3,x ≤0或x ≥4,解得x ≤-1或x ≥4.
所以,满足条件的实数x 的取值范围为(-∞,-1]∪[4,+∞).。