2017年春季学期新版新人教版八年级数学下学期17.1、勾股定理教案38

合集下载

人教版数学八年级下册17.1《勾股定理》教学设计

人教版数学八年级下册17.1《勾股定理》教学设计

人教版数学八年级下册17.1《勾股定理》教学设计一. 教材分析《勾股定理》是初中数学的重要内容,也是中学数学中最为基本的定理之一。

人教版数学八年级下册17.1节主要介绍了勾股定理的证明和应用。

通过本节课的学习,学生能够理解勾股定理的含义,学会运用勾股定理解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、三角函数等知识,具备了一定的逻辑思维能力和空间想象能力。

但部分学生对理论证明的过程可能感到困惑,对实际应用的掌握程度也有所不同。

三. 教学目标1.知识与技能:让学生掌握勾股定理的证明和应用,能够运用勾股定理解决实际问题。

2.过程与方法:通过观察、操作、探究、合作等方法,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.重难点:勾股定理的证明和应用。

2.难点:对勾股定理证明过程中的一些关键步骤的理解和运用。

五. 教学方法1.情境教学法:通过生活中的实例,激发学生的学习兴趣,引导学生主动探究。

2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:分组讨论,共同完成任务,培养学生的团队合作精神。

4.实践操作法:让学生动手操作,加深对知识的理解和记忆。

六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、直尺等。

2.学具:笔记本、文具、三角板、直尺等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的直角三角形,如篮球架、房屋建筑等,引导学生观察并思考这些三角形中是否存在某种特殊的关系。

2.呈现(15分钟)介绍勾股定理的定义和表述,展示勾股定理的证明过程,如Pythagorean theorem的证明。

引导学生理解并掌握勾股定理。

3.操练(15分钟)分组讨论,每组选取一个实际问题,运用勾股定理进行解答。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)针对学生的解答,进行讲解和点评,强调勾股定理在实际问题中的应用。

八年级数学下册17勾股定理教案(新版)新人教版

八年级数学下册17勾股定理教案(新版)新人教版

第十七章 勾股定理17.1 勾股定理 第 1 课时 勾股定理 (1)重点 勾股定理的内容和证明及简单应用. 难点 勾股定理的证明.了解勾股定理的发现过程, 应用勾股定理进行简单的计算. 理解并掌握勾股定理的内容, 会用面积法证明勾股定理, 能一、创设情境,引入新课让学生画一个直角边分别为 3 cm和4 cm的直角△ ABC用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ ABC用刻度尺量出斜边的长.2 2 2 2 2 2 2 2 2 2 2 2 你是否发现了3 + 4与5的关系,5 + 12与13的关系,即3 +4 =5 , 5 + 12 = 13 , 那么就有勾2+股2=弦:对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1. 多媒体课件演示教材第22〜23页图17.1 —2和图17.1 —3,引导学生观察思考.2. 组织学生小组合作学习. 问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论. 生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和. 师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1) 猜想:命题1:如果直角三角形的两直角边长分别为a, b,斜边长为c,那么a2+b2= c2.(2) 是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明. 到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.①用多媒体课件演示.②小组合作探究:a.以直角三角形ABC的两条直角边a, b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?C.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法•想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.⑴在Rt△ ABC中,/ C= 90°, a= 8, b = 15,则c= _______________ ;(2) 在Rt△ ABC中,/ B= 90°, a= 3, b = 4,贝U c = ____________ ;(3) 在Rt△ ABC中,/ C= 90°, c= 10, a : b = 3 : 4,贝U a = ___________ , b = __________ ;(4) 一个直角三角形的三边为三个连续偶数,则它的三边长分别为__________________ ;(5) 已知等边三角形的边长为2 cm则它的高为______________ cm面积为 ___________ cn^【答案】(1)17 (2) ,7 (3)6 8 (4)6 , 8, 10 (5) .3 . 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt A ABC中,/ C= 90° .⑴如果a= 7, c = 25,贝U b= __________ ;⑵如果/ A= 30°, a = 4,贝U b= ___________ ;⑶如果/ A= 45°, a = 3,贝U c= ______________ ;⑷如果c = 10, a—b= 2,贝U b= _________ ;⑸如果a, b, c是连续整数,则a + b + c = ___________⑹如果b= 8, a : c = 3 : 5,贝U c= _________ .【答案】(1)24 (2)4 3 (3)3 2 (4)6 (5)12(6) 10四、课堂小结1. 本节课学到了什么数学知识?2. 你了解了勾股定理的发现和验证方法了吗?3. 你还有什么困惑?本节课的设计关注学生是否积极参与探索勾股定理的活动, 思考、能够探索出解决问题的方法,能否进行积极的联想表达活动过程和所获得的结论等. 关注学生的拼图过程,验证勾股定理.关注学生能否在活动中积极(数形结合)以及学生能否有条理地鼓励学生结合自己所拼得的正方形第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12 米高的建筑物,为安全需要,需使梯子底端离建筑物 5 米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则心12 m BC= 5 m AB是梯子的长度,所以在Rt△ ABC中,AB2= A C+B C= 122+ 52= 132,贝U AB= 13 m所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a, b,就可以求出斜边c的长•由勾股定理可得a2= c2—b2或b2= c2—a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2 :一个门框的尺寸如图所示,一块长 3 m宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1 :从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2 :在长方形ABCC中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ ABC中,根据勾股定理AC= A B"+B C= 12+ 22= 5.因此AC= , 5 2.236.因为AC沐板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是 4 3米,则这两棵树之间的垂直距离是________ 米,水平距离是____________ 米.分析:由/ CAB= 30°易知垂直距离为2@米,水平距离是6米.【答案】2 3 6【例2】教材第25页例2三、巩固练习1. 如图,欲测量松花江的宽度,沿江岸取B, C两点,在江对岸取一点A,使AC垂直江岸,测得BO 50米,/ B= 60°,则江面的宽度为__________________ .【答案】50 3米2. 某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1•谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2. 本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力.第3 课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2, 3, 5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ ABC和Rt△ A B' C'中,/ C=Z C'= 90°, AB= A B', AC= A C'.求证:△ AB3A A B' C'.证明:在Rt△ ABC和Rt△ A' B' C'中,/ C=Z C = 90°,根据勾股定理,得BC= AB"- A C, B' C'= A B' 2—A C' 2.又AB= A B', AC= A C',「. BC= B' C',「.△ABC^A A B' C(SSS .师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出.13所对应的点吗?教师可指导学生寻找像长度为,2, •. 3, 5,「这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2, 3, 5,…,所以只需画出长为2, 3, 5,…的线段即可,我们不妨先来画出长为.2 , , 3, i 5,…的线段.生:长为眾的线段是直角边都为i的直角三角形的斜边,而长为{5的线段是直角边为1和2的直角三角形的斜边.师:长为,13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c = ;' 13,两直角边长分别为a, b,根据勾股定理a + b = c[即a + b = 13.若a, b为正整数,则13必须分解为两个平方数的和,即13 = 4 + 9, a2= 4, b2= 9,则a = 2, b= 3,所以长为,13的线段是直角边长分别为2, 3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示,13的点.生:步骤如下:1 .在数轴上找到点A,使OA= 3.2. 作直线I垂直于OA在I上取一点B,使AB= 2.3. 以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C, B点是两个时刻飞机的位置,/ C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ ABC中,/ C= 90°, AB= 5000米,AC= 4800米.由勾股定理,得A B"=A C +B C,即卩50002= B C+ 48002,所以BC= 1400 米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400X 6X 60= 504000(米)= 504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD= 3分米,CB= 6分米,AD= AB BC丄AD,所以在Rt△ ACB中,A B= AC? + BC2,即(AC+ 3)2= AC+ 62, AC+ 6AC+ 9= AC+ 36,「. 6AC= 27 , AC= 4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示.17的点.解:以,17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为.17,另外两条直角边为整数的直角三角形.三、课堂小结1 •进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2•你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力.17.2 勾股定理的逆定理第1课时勾股定理的逆定理(1)1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.重点探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点归纳猜想出命题2 的结论.一、复习导入活动探究(1) 总结直角三角形有哪些性质;(2) 一个三角形满足什么条件时才能是直角三角形?生:直角三角形有如下性质:(1) 有一个角是直角;(2) 两个锐角互余;(3) 两直角边的平方和等于斜边的平方;(4) 在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.师:那么一个三角形满足什么条件时,才能是直角三角形呢?生1 :如果三角形有一个内角是90°,那么这个三角形就为直角三角形.生2 :如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a, b与斜边c具有一定的数量关系即a2+ b2= c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13 个结,然后以3 个结、4个结、5 个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边长分别为3, 4, 5,有下面的关系:32+42 =52,那么围成的三角形是直角三角形.22 画画看,如果三角形的三边长分别为 2.5 cm 6 cm 6.5 cm有下面的关系:2.5 + 6=6.5 2,画出的三角形是直角三角形吗?换成三边分别为 4 cm, 7.5 cm 8.5 cm,再试一试.生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AO 3;同理BC= 4, AB= 5.因为32+ 42= 52,所以我们围成的三角形是直角三角形.生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm. 我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且 2.5 2+ 62= 6.5 2.再换成三边长分别为4 cm 7.5 cm 8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+ 7.5 2= 8.5 2.师:很好!我们通过实际操作,猜想结论.命题2如果三角形的三边长a, b, c满足a2+ b2= c2,那么这个三角形是直角三角形. 再看下面的命题:命题1如果直角三角形的两直角边长分别为a, b,斜边长为c,那么a2+ b2= c2.它们的题设和结论各有何关系?师:我们可以看到命题2 与命题1 的题设、结论正好相反, 我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2 是命题1 的逆命题.二、例题讲解【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1) 同旁内角互补,两条直线平行;(2) 如果两个实数的平方相等,那么这两个实数相等;(3) 线段垂直平分线上的点到线段两端点的距离相等;(4) 直角三角形中30°角所对的直角边等于斜边的一半.分析: (1) 每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2) 理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、巩固练习教材第33 页练习第2 题.四、课堂小结师:通过这节课的学习,你对本节内容有哪些认识?学生发言,教师点评.本节课的教学设计中,将教学内容精简化,实行分层教学.根据学生原有的认知结构, 让学生更好地体会分割的思想. 设计的题型前后呼应, 使知识有序推进, 有助于学生理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.将目标分层后,满足不同层次学生的做题要求,达到巩固课堂知识的目的.第2 课时勾股定理的逆定理(2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的概念.重点勾股定理的逆定理的证明及互逆定理的概念. 难点理解互逆定理的概念.一、复习导入师:我们学过的勾股定理的内容是什么?生:如果直角三角形的两条直角边长分别为 a , b ,斜边长为c ,那么a 2+ b 2= c 2.师:根据上节课学过的内容, 我们得到了勾股定理逆命题的内容: 如果三角形的三边长 a , b , c 满足a 2+ b 2= c 2,那么这个三角形是直角三角形.师:命题 2 是命题 1 的逆命题, 命题 1 我们已证明过它的正确性, 命题 2 正确吗?如何 证明呢? 师生行为:让学生试着寻找解题思路,教师可引导学生理清证明的思路.师:△ ABC 的三边长a , b , c 满足a 2 + b 2= c 2.如果△ ABC 是直角三角形,它应与直角边 是 a ,b 的直角三角形全等,实际情况是这样吗?我们画一个直角三角形 A B' C',使B' C'= a , AC'= b ,/ C'= 90° (如图),把画好的厶A B' C'剪下,放在△ ABC 上,它们重合吗? 生:我们所画的 Rt △ A ' B' C', (A ' B') 2= a 2+ b 2,又因为 c 2 = a 2+ b 2,所以(A ' B'):2 =c ,即 A B'= c.△ ABC 和厶A B' C'三边对应相等,所以两个三角形全等,/ C =Z C'= 90°,所以△ ABC为直角三角形.即命题2 是正确的.师:很好!我们证明了命题2是正确的, 那么命题2 就成为一个定理. 由于命题1 证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2 是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:但是不是原命题成立,逆命题一定成立呢?生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.师:你还能举出类似的例子吗?生:例如原命题:如果两个实数相等,那么它们的绝对值也相等.逆命题:如果两个数的绝对值相等,那么这两个实数相等.显然原命题成立,而逆命题不一定成立.二、新课教授【例1】教材第32 页例1【例2】教材第33 页例2【例3】一个零件的形状如图所示,按规定这个零件中/A 和/DBC都应为直角.工人师傅量出了这个零件各边的尺寸,那么这个零件符合要求吗?分析:这是一个利用直角三角形的判定条件解决实际问题的例子.解:在△ ABD中,AB2+ AD = 9+ 16 = 25= BD,所以△ ABD是直角三角形,/ A是直角.在厶BCD 中,BD + BC= 25 + 144= 169= 132= CD,所以△ BCD是直角三角形,/ DBC是直角.因此这个零件符合要求.三、巩固练习1.小强在操场上向东走80 m后,又走了60 m再走100 m回到原地.小强在操场上向东走了80 m 后,又走60 m的方向是__________________________ .【答案】向正南或正北2•如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A, B两个基地前去拦截,6分钟后同时到达C地将其拦截•已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,求甲巡逻艇的航向.1 12 2 2【答案】解:由题意可知:AC= 120X 6X = 12 , BC= 50X 6X = 5, 12 + 13 .又60 60AB= 13,「. AC+ BC= A氏•••△ ABC是直角三角形,且/ ACB= 90°,二/ CAB= 40°,航向为北偏东50° .四、课堂小结1.同学们对本节的内容有哪些认识?2 •勾股定理的逆定理及其应用,熟记几组勾股数.本节课我采用以学生为主体,引导发现、操作探究的教学设计,符合学生的认知规律和认知水平,最大限度地调动了学生学习的积极性,有利于培养学生动手、观察、分析、猜想、验证、推理的能力,切实使学生在获取知识的过程中得到能力的培养.。

八年级数学下册17_1勾股定理教案新版新人教版

八年级数学下册17_1勾股定理教案新版新人教版

17.1 勾股定理一、教学目标:一、知识与技术:(1)把握勾股定理的一些大体证明方式;(2)了解有关勾股定理的历史. 二、进程与方式:(1)在定理的证明中培育学生的拼图能力;(2)经历明白得勾股定理的证明进程,感悟并把握勾股定理的证明猜想.3、情感态度与价值观:(1)通过有关勾股定理的历史讲解,对学生进行德育教育;(2)通过数学思维活动,进展学生探讨意识和合作交流思想.二、教学重点:明白得并熟练勾股定理的证明进程三、教学难点:对勾股定理证明思想的领会 四、 教学用具:直尺,四个全等的直角三角形纸片,赵爽弦图,2002年国际数学大会图片五、教学方式:以学生为主体的讨论探讨法六、教学进程:一、创设情境→激发爱好(1)预习勾股定理——直角三角形的三边关系勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

数学表达式:a 2 +b 2 =c 2(2)欣赏图片——引出课题通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成绩,激发学生民族自豪感.二、分析探讨→得出猜想通过对赵爽弦图图形组成的提问:即由四个全等的直角三角形组成的,让同窗们体验对数学图形的探讨进程,学习这种研究方式。

同时提问:什么缘故会把那个图案设为大会的会徽?它有什么意义呢?继而教师总结:因为在1700连年前中国古代数学家赵爽用那个弦图证明了勾股定理(出示图片),咱们称它为“赵爽弦图”,它反映了中国古代数学家的伶俐才干,是咱们中国古代数学的自豪,此刻让咱们追思一下前人的足迹,用赵爽弦图证明勾股定理.3、拼图证明→得出定理证明方式一:(中国赵爽证法)证明: 大正方形的面积能够表示为 :C2 也能够表示为∵ C 2=a ab b ab 2222+-+∴ c b a 222=+c cb-a c b aAC B赵爽弦图比如将大正方形分“割”成几个部份→割的方式从而说明了勾股定理是正确的.证明方式二:(西方毕达哥拉斯证法)证明:大正方形的面积能够表示为:)(2b a +也能够表示为:C ab +2/42 ∵)(2b a +=c ab +2/42c ab ab b a 22222+=++ ∴ c b a 222=+ 毕达哥拉斯图比如将小正方形“补”成一个大的图形→补的方式从而也说明了勾股定理是正确的4、迁移应用→拓展提高如图,将长为5米的梯子AC 斜靠在墙上,梯子底端到墙的距离BC 长为3米,求梯子上端A 到墙的底边的垂直距5、回忆小结→整体感知(1)本节课咱们经历了如何的学习进程? 经历了从温习勾股定理,再到利用多种方式证明定理,最后学会应用定明白得决实际问题的进程。

八年级数学下册 17.1 勾股定理教案 (新版)新人教版

八年级数学下册 17.1 勾股定理教案 (新版)新人教版
17.1 勾股定理
课题:17.1 勾股定理




知识与能力:1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条件判断三角形是否是直角三角形。
过程与方法:1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
情感态度价值观:1.体验生活中的数学的应前准备
多媒体
教学
过程
教师活动
学生活动
设计意图
合作探究
1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
1:探究下面有三组数,分别是一个三角形的三边长,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:
1.这三组数都满足吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?
有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?
如果一个三角形的三边长,满足,那么这个三角形是直角三角形
满足的三个正整数,称为勾股数。
1.同学们还能找出哪些勾股数呢?
让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:
进一步让学生认识该定理与勾股定理之间的关系
板书设计
勾股定理5
一如果一个三角形的三边长,满足,那么这个三角形是直角三角形
满足的三个正整数,称为勾股数。
二例题
课后反思
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?

人教版八年级数学下册17.1勾股定理教学设计

人教版八年级数学下册17.1勾股定理教学设计

《17.1 勾股定理》教学设计——八年级数学新人教版教学目标1、了解勾股定理的发现过程,掌握勾股定理的内容,并能运用勾股定理解决简单的实际问题。

2、会用面积法证明勾股定理,知道从特殊到一般的探索方法,及借助于图形的面积来验证数学结论的数形结合思想。

3、了解我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,培养在实际生活中发现问题总结规律的意识和能力。

学情分析八年级学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过面积法(拼图法)证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用拼图等手段进行直观教学,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。

重点 勾股定理的演绎过程及证明。

难点问题:,花草!4米3米D B C设计意图:激发学生学习兴趣,引起学生思考“如何知道直角三角形的两条直角边求斜边”,进一步思考“直角三角形的三边有什么关系”,从而起到设置悬念、引人课题的作用。

二、合作探究,体验发现探究一 等腰直角三角形三边的关系4米3D C(1)拼图活动 请同学们用准备的几个全等的等腰直角三角形拼正方形,可以拼出几种不同的正方形?把你拼的正方形画在纸上。

(2)若每个等腰直角三角形的腰为a 斜边为c ,则你所拼的正方形的面积分别可以怎样表示? (3)正方形的面积之间有什么关系?由此可以得到什么结论?(结论:对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平)设计意图:从等腰直角三角形入手,体现从特殊到一般的数学思想。

本环节通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,培养学生动手、动脑、观察能力,让学生体验学习数学的乐趣。

2、思考对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方。

那么对于一般的直角三角形是否也有这样的性质呢?探究二 直角三角形三边的关系(1)拼图 用你准备的几个全等的直角三角形拼正方形,可以拼出几种不同的正方形?把你拼的正方形画在纸上。

人教版八年级数学下册17.1《勾股定理》教学设计

人教版八年级数学下册17.1《勾股定理》教学设计
3.遇到问题及时请教同学或老师,解决问题,提高自身能力。
4.作业完成后,进行自我检查,确保答案正确。
2.勾股数的判断和应用,使学生能够灵活运用勾股数解决相关问题。
3.学生在解决实际问题时,能够将勾股定理与其他数学知识相结合,形成综合解决问题的能力。
教学设想:
1.创设情境,引入新课:通过讲述古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,激发学生的学习兴趣,为新课的学习营造良好的氛围。
2.自主探究,合作交流:引导学生通过观察、分析、归纳等思维活动,发现勾股定理。在此基础上,组织学生进行小组讨论,分享各自的发现和证明方法,培养学生的合作意识和交流能力。
2.提问引导:请学生们思考直角三角形的特点,回顾已学的直角三角形相关知识,为新课的学习做好铺垫。
(二)讲授新知
1.勾股定理的概念及表述:
"勾股定理是关于直角三角形的一个基本定理,它描述了直角三角形三条边之间的关系。具体来说,直角三角形的两条直角边的平方和等于斜边的平方。"
2.勾股定理的证明:
a.利用具体的直角三角形进行演示,引导学生观察、思考、发现勾股定理。
8.融入数学文化,培养人文素养:在教学过程中,适时融入数学历史文化,让学生了解勾股定理在人类文明发展中的地位和作用,培养他们的人文素养。
四、教学内容与过程
(一)导入新课
1.情境引入:通过古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,引发学生对勾股定理的好奇心,激发学习兴趣。
"同学们,你们听说过古希腊数学家毕达哥拉斯吗?今天我们要学习的勾股定理,就是他在一次偶然的机会中发现的。让我们一起走进这个故事,探寻勾股定理的奥秘吧!"
"有兴趣的同学可以研究一下勾股数在三角形中的应用,以及它与三角形类型之间的关系,这将有助于你们更深入地理解勾股定理。"

春八年级数学下册第17章勾股定理17.1勾股定理教案新人教版(最新整理)

春八年级数学下册第17章勾股定理17.1勾股定理教案新人教版(最新整理)

17。

1 勾股定理第1课时勾股定理及其证明教学目标一、基本目标【知识与技能】1.了解勾股定理的发现过程.2.掌握勾股定理的内容.3.会用面积法证明勾股定理.【过程与方法】经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程;在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力.【情感态度与价值观】通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,体验解决问题的方法的多样性,培养学生的合作交流意识和探索精神.二、重难点目标【教学重点】勾股定理的探究及证明.【教学难点】掌握勾股定理,并运用它解决简单的计算题.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P22~P24的内容,完成下面练习.【3 min反馈】1.勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2。

2.(1)教材P23“探究”,如图,每个方格的面积均为1,请分别算出图中正方形A、B、C、A′、B′、C′的面积.解:A的面积=4;B的面积=9;C的面积=52-4×错误!×(2×3)=13;所以A+B=C。

A′=9;B′=25;C′=82-4×错误!×(5×3)=34;所以A′+B′=C′。

所以直角三角形的两直角边的平方和等于斜边的平方.(2)阅读、理解教材P23~P24“赵爽弦图"证明勾股定理.解:朱实=错误!ab;黄实=(a-b)2;正方形的面积=4朱实+黄实=(a-b)2+错误!ab×4=a2+b2-2ab+2ab=a2+b2。

又正方形的面积=c2,所以a2+b2=c2,即直角三角形两直角边的平方和等于第三边的平方.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再作三个边长分别为a、b、c的正方形,将它们像下图所示拼成两个正方形.证明:a2+b2=c2。

八年级数学下册 第十七章 勾股定理 17.1 勾股定理教案 (新版)新人教版-(新版)新人教版初中八

八年级数学下册 第十七章 勾股定理 17.1 勾股定理教案 (新版)新人教版-(新版)新人教版初中八

勾股定理(1)知识与技能:掌握勾股定理和他的简单的应用,理解定理的一般探究方法。

过程与方法:在方格纸上通过计算面积的方法探索勾股定理的活动,让同学们经历观察、归纳、猜想和验证的数学发现过程,发展数与形结合的数学思想。

情感态度与价值观:在数学活动中发现探索意识和合作交流的良好学习习惯。

教学重点:经历探索和验证勾股定理的过程,会利用两边求直角三角形的另一边的长。

教学难点:拼图法验证勾股定理,会利用两边求直角形另一边的长。

教具准备:方格纸、4个全等的三角形,小黑板等。

教与学互动设计:一、创设情境导入新课引导学生观察课本第64页的地面图形,说说你发现了什么?提问:①图中有些什么形状?②三个正方形之间有什么关系?③通过②的结论你能有什么猜想?说说看。

二、实验操作探求新知1.数格子(1)要求学生在准备好的方格纸中作一个任意的等腰直角三角形,分别以三角形的边为边向三角形的外部作正方形。

观察三个正方形的面积之间有什么关系。

(2)要求学生在方格纸中作一个任意的直角三角形,分别以三角形的边为边向三角形的外部作正方形。

观察三个正方形的面积之间有什么关系。

(3)要求学生在方格纸中作一个任意的非直角三角形,分别以三角形的边为边向三角形的外部作正方形。

观察三个正方形的面积之间有什么关系。

讨论、得出结论:在一个直角三角形中,两直角边的平方和等于斜边的平方。

2.证明猜想。

10c20cm要求用四个全等到的直角三角形拼成一个以斜边为边长的正方形,推理得出 a 2+b 2=c 23.得出结论定理:经过证明被确认的命题叫做定理。

勾股定理:在一个直角三角形中,两直角边的平方和等于斜边的平方。

三、应用迁移例1.求下图中的字母A ,B 所代表的正方形的面积。

例2.一个文具盒的尺如图,一根长30cm 的细 木棒能否放进这个文具 盒,为什么?练习:填空(1)在Rt ∆ABC 中,∠C=90°,a=5,b=12,则c = (2)在Rt ∆ABC 中,∠B=90°,a=3,b=4,则c =(3)在等腰Rt ∆ABC 中,AC=BC ,∠C=90°,AC :BC :AB= (4)在Rt ∆ABC 中,∠C=90°,∠A=30°,BC :AC :AB= 探究2.如图,一个3 m 长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 的距离为,如果梯子的顶端A 沿墙下滑,那么梯子的底端B 也外移吗?练习:1.如图,阴影部分是一个正方形,求此正方形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.1 勾股定理(一)
一、教学目标
1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、重点、难点
1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

三、例题的意图分析
例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。

进一步让学生确信勾股定理的正确性。

四、课堂引入
目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132
,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗? 五、例习题分析
例1(补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 4×
2
1ab +(b -a )2=c 2
,化简可证。

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。

这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

A B
求证:a 2+b 2=c 2。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=4×2
1ab +c 2
右边S=(a+b )2
左边和右边面积相等,即 4×
2
1ab +c 2=(a+b )2
化简可证。

六、课堂练习 1.勾股
定理的具体内容
是: 。

2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示) ⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ;
⑶若∠B=30°,则∠B 的对边和斜边: ; ⑷三边之间的关系: 。

3.△ABC 的三边a 、b 、c ,若满足b 2= a 2+c 2,则 =90°; 若满足b 2>c 2+a 2

则∠B 是 角; 若满足b 2<c 2+a 2
,则∠B 是 角。

4.根据如图所示,利用面积法证明勾股定理。

课后反思:
课堂练习 1.略; 2.⑴∠A+∠B=90°;⑵CD=21AB ;⑶AC=2
1
AB ;⑷
AC 2
+BC 2
=A B 2。

3.∠B ,钝角,锐角;
4.提示:因为S 梯形ABCD = S △ABE + S △BCE + S △EDA ,又因为S 梯形ACDG =2
1(a+b )2
, S △BCE = S △EDA =21 ab ,S △ABE =21c 2, 21(a+b )2
=2×21 ab +2
1c 2。

b
b
b
b
a
a
A
B
b
E
B。

相关文档
最新文档