南京工业大学概率论与数理统计试题及答案
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
《概率论与数理统计》考试题(含答案)

《概率论与数理统计》考试题一、填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则a )、若B A ,互斥,则=)B -A (p 0.5 ;b )若B A ,独立,则=)B A (p 0.65 ;c )、若2.0)(=⋅B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 .4、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。
5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比}85{≥X P 为 0.0228 。
其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a _0.1_,X的数学期望=)(X E ___0.4___,Y X 与的相关系数=xy ρ___-0.25______。
7、设161,...,X X 及81,...,Y Y 分别是总体)16,8(N 的容量为16,8的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差。
则:~X N(8,1) ,~Y X - N(0,1.5) ,{}5.12>-Y X p = 0.0456 ,~161521S )15(2χ,~2221S S F(15,7) 。
概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。
8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。
9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。
但当增⼤置信⽔平时,则相应的置信区间长度总是。
⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。
设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。
三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
《概率论与数理统计》期末考试试题及解答.doc

《概率论与数理统计》期末考试试题及解答一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)?P(B)?0.5,则A,B至少有一个不发生的概率为__________.答案:0.3解:P(A?B)?0.3即0.3?P(A)?P(B)?P(A)?P(AB)?P(B)?P(AB)?0.5?2P(AB)所以P(AB)?0.1P(?)?P(AB)?1?P(AB)?0.9.2.设随机变量X服从泊松分布,且P(X?1)?4P(X?2),则P(X?3)?______.答案:1?1e6解答:P(X?1)?P(X?0)?P(X?1)?e????e,??P(X?2)??22e??????2?? 由P(X?1)?4P(X?2) 知e??e?2?e2 即2????1?0 解得??1,故P(X?3)?1?1e 623.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y?X在区间(0,4)内的概率密度为fY(y)?_________.答案:0?y?4,fY(y)?FY?(y)?fX? 0,其它.?解答:设Y的分布函数为FY(y),X的分布函数为FX(x),密度为fX(x)则FY(y)?P(Y?y)?P(X?2y)?y?)yX)Xy? ?)y 因为X~U(0,2),所以FX(?0,即FY(y)?FX故10?y?4,fY(y)?FY?(y)?fX? 0,其它.?另解在(0,2)上函数y?x2严格单调,反函数为h(y)?所以0?y?4,fY(y)?fX? ?0,其它.?24.设随机变量X,Y相互独立,且均服从参数为?的指数分布,P(X?1)?e,则??_________,P{min(X,Y)?1}=_________.答案:??2,P{min(X,Y)?1}?1?e-4解答:P(X?1)?1?P(X?1)?e???e?2,故??2P{min(X,Y)?1}?1?P{min(X,Y)?1}?1?P(X?1)P(Y?1)?1?e?4.5.设总体X的概率密度为???(??1)x,0?x?1, f(x)?? ???1. ?其它?0,X1,X2,?,Xn是来自X的样本,则未知参数?的极大似然估计量为_________.答案:???11nlnxi?ni?1?1解答:似然函数为L(x1,?,xn;?)??(??1)xi??(??1)n(x1,?,xn)?i?1nlnL?nln(??1)??n?lnxi?1ni解似然方程得?的极大似然估计为dlnLn???lnxi?0 d???1i?12?? ?11n?lnxini?1?1.二、单项选择题(每小题3分,共15分)1.设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(A)若P(C)?1,则AC与BC也独立.(B)若P(C)?1,则A?C与B也独立.(C)若P(C)?0,则A?C与B也独立.(D)若C?B,则A与C也独立. ()答案:(D).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D).事实上由图可见A与C不独立.2.设随机变量X~N(0,1),X的分布函数为?(x),则P(|X|?2)的值为(A)2[1??(2)]. (B)2?(2)?1.(C)2??(2). (D)1?2?(2). ()答案:(A)解答:X~N(0,1)所以P(|X|?2)?1?P(|X|?2)?1?P(?2?X?2)(2)??(?2)?1?[2?(2?) ?1??1]?2?[1 ? 应选(A).3.设随机变量X和Y不相关,则下列结论中正确的是(A)X与Y独立. (B)D(X?Y)?DX?DY.(C)D(X?Y)?DX?DY. (D)D(XY)?DXDY. () 3答案:(B)解答:由不相关的等价条件知,?xy?0?cov(x,y)?0 D(X?Y)?DX?DY+2cov (x,y)应选(B).4.设离散型随机变量X和Y的联合概率分布为(X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3) P111169183??若X,Y独立,则?,?的值为(A)??29,??19. (A)??129,??9.(C)??16,??16 (D)??518,??118.4 )(答案:(A)解答:若X,Y独立则有??P(X?2,Y?2)?P(X?2)P(Y?2) 1121 ?(????)(??)?(??) 393921 ???,??99 故应选(A).5.设总体X的数学期望为?,X1,X2,?,Xn为来自X的样本,则下列结论中正确的是(A)X1是?的无偏估计量. (B)X1是?的极大似然估计量.(C)X1是?的相合(一致)估计量. (D)X1不是?的估计量. ()答案:(A)解答:EX1??,所以X1是?的无偏估计,应选(A).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A?‘任取一产品,经检验认为是合格品’B?‘任取一产品确是合格品’则(1)P(A)?P(B)P(A|B)?P()P(A|)?0.9?0.95?0.1?0.02?0.857.(2)P(B|A)?四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.5 P(AB)0.9?0.95??0.9977. P(A)0.857解:X的概率分布为P(X?k)?C3()()k25k353?kk?0,1,2,3.X即X的分布函数为P02712515412523612538 125x?0,?0,?27?,0?x?1,?125??81,1?x?2, F(x)???125?117 2?x?3,?125,?x?3.?1,?26EX?3??,552318DX?3???.5525五、(10分)设二维随机变量(X,Y)在区域D?{(x,y)|x?0,y?0,x?y?1} 上服从均匀分布. 求(1)(X,Y)关于X的边缘概率密度;(2)Z?X?Y的分布函数与概率密度.(1)(X,Y)的概率密度为?2,(x,y)?Df(x,y)??0,其它.?fX(x)?(2)利用公式fZ(z)? 其中f(x,z?x)????????????2?2x,0?x?1f(x,y)dy??0,其它??f(x,z?x)dx?2,0?x?1,0?z?x?1?x?2,0?x?1,x?z?1.??0,其它??0,其它.当z?0或z?1时fZ(z)?0 0?z?1时fZ(z)?2?z0dx?2x0?2zz6故Z的概率密度为??2z,0?z?1,fZ(z)????0,其它.Z的分布函数为fZ(z)??z??z?0?0,?0,z?0,?z??fZ(y)dy???2ydy,0?z?1??z2,0?z?1, 0??1,z?1.?z?1??1,或利用分布函数法?z?0,?0,?FZ(z)?P(Z?z z1,)?P(X?Y?)z,y0??????2dxd?D1?1,z?1.??0,?2, ??z?1,?z?0,0?z?1, z?1.?2z,?0,0?z?1,其它.fZ(z)?FZ?(z)??六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,2)分布. 求(1)命中环形区域D?{(x,y)|1?x?y?2}的概率;(2)命中点到目标中心距离Z?1)P{X,Y)?D}?222.??f(x,y)dxdyD???2??4D?x2?y28dxdy? 18?r282??2?21e?r28rdrd??(2)EZ?E? ?21e?r28d(?)??e 82??e?e;1?18?12 ?? ??r28 ????1e?04 ???1e8??x2?y28dxdy?18???2???0re?rdrd??r28r2dr7??rer2?8????0??0e?r28dr??????r28dr?.七、(11分)设某机器生产的零件长度(单位:cm)X~N(?,?2),今抽取容量为16的样本,测得样本均值?10,样本方差s2?0.16. (1)求?的置信度为0.95的置信区间;(2)检验假设H0:?2?0.1(显著性水平为0.05).(附注)t0.05(16)?1.746,t0.05(15)?1.753,t0.025(15)?2.132,解:(1)?的置信度为1??下的置信区间为(?t?/2(n?222?0.05(16)?26.296,?0.05(15)?24.996,?0.025(15)?27.488. ?t?/2(n??10,s?0.4,n?16,??0.05,t0.025(15)?2.132所以?的置信度为0.95的置信区间为(9.7868,10.2132)2 (2)H0:?2?0.1的拒绝域为?2???(n?1).15S22?15?1.6?24,?0.05 ??(15)?24.996 0.12 因为?2?24?24.996??0.05(15),所以接受H0.2《概率论与数理统计》期末考试试题(A)专业、班级:姓名:学号:一、单项选择题(每题3分共18分)891011121314151617《概率论与数理统计》课程期末考试试题(B)专业、班级:姓名:学号:181920212223242526272829共8页30。
概率论与数理统计期末试卷及答案(最新12)(推荐文档)

概率论与数理统计期末试卷及答案一、是非题(共7分,每题1分)1.设A ,B ,C 为随机事件,则A 与C B A ⋃⋃是互不相容的. ( ) 2.)(x F 是正态随机变量的分布函数,则)(1)(x F x F -≠-. ( ) 3.若随机变量X 与Y 独立,它们取1与1-的概率均为5.0,则Y X =. ( )4.等边三角形域上二维均匀分布的边缘分布仍是均匀分布. ( ) 5. 样本均值的平方2X 不是总体期望平方2μ的无偏估计. ( ) 6.在给定的置信度α-1下,被估参数的置信区间不一定惟一. ( ) 7.在参数的假设检验中,拒绝域的形式是根据备择假设1H 而确定的. ( )二、选择题(15分,每题3分)(1)设A B ⊂,则下面正确的等式是 。
(a))(1)(A P AB P -=; (b))()()(A P B P A B P -=-; (c))()|(B P A B P =; (d))()|(A P B A P =(2)离散型随机变量X 的概率分布为kA k X P λ==)(( ,2,1=k )的充要条件是 。
(a)1)1(-+=A λ且0>A ; (b)λ-=1A 且10<<λ; (c)11-=-λA 且1<λ; (d)0>A 且10<<λ.(3)设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D .(a)A ; (b)A 1.0; (c)A 2.0; (d)A 10.(4)设),,,(21n X X X 为总体)1,0(~N X 的一个样本,X 为样本均值,2S 为样本方差,则有 。
(a))1,0(~N X ; (b))1,0(~N X n ; (c))1(~/-n t S X ; (d))1,1(~/)1(2221--∑=n F XX n ni i.(5)设),,,(21n X X X 为总体),(2σμN (μ已知)的一个样本,X 为样本均值,则在总体方差2σ的下列估计量中,为无偏估计量的是 。
《概率论与数理统计》期末考试试题及答案-(最新版-已修订)

《概率论与数理统计》期末考试试题(A )专业、班级: 姓名: 学号: 题 号一二三四五六七八九十十一十二总成绩得 分一、单项选择题(每题3分 共18分)1.D 2.A 3.B 4.A 5.A 6.B(1).0)(,0)(;;0)(0)();(( ).,0)(=>===A B P A P (D)B A (C)B P A P (B)B A (A)AB P B A 则同时出现是不可能事件与或互不相容互斥与则以下说法正确的是适合、若事件(2)设随机变量X 其概率分布为 X -1 0 1 2P 0.2 0.3 0.1 0.4则( )。
=≤}5.1{X P (A)0.6 (B) 1 (C) 0 (D)21(3)设事件与同时发生必导致事件发生,则下列结论正确的是()1A 2A A (A ) (B ))()(21A A P A P =1)()()(21-+≥A P A P A P (C ) (D ))()(21A A P A P =1)()()(21-+≤A P A P A P (4)).54,0);46,0();3,0();5,0(~,72,),1,2(~),1,3(~(D)N (C)N (B)N (A)Z Y X Z Y X N Y N X 则令相互独与且设随机变量+-=-(N 立).((5)设为正态总体的一个简单随机样本,其中n X X X ,,2,1 ),(2σμN μσ,2=未知,则( )是一个统计量。
(A) (B)212σ+∑=ni iX 21)(μ-∑=ni i X (C) (D)μ-X σμ-X (6)设样本来自总体未知。
统计假设n X X X ,,,21 22),,(~σσμN X 为 则所用统计量为( )。
:已知)(:01000μμμμμ≠=H H (A) (B) nX U σμ0-=nSX T 0μ-=(C) (D)222)1(σχS n -=∑=-=ni iX1222)(1μσχ二、填空题(每空3分 共15分)1. 2. , 3. 4. )(B P ⎩⎨⎧≤>=-00)(x x xe x f x23-e1-)9(t (1)如果,则 .)()(,0)(,0)(A P B A P B P A P =>>=)(A B P (2)设随机变量的分布函数为X ⎩⎨⎧>+-≤=-.0,)1(1,0,0)(x e x x x F x则的密度函数,.X =)(x f =>)2(X P (3).ˆ,________,ˆ3ˆ2ˆˆ,ˆ,ˆ,ˆ321321是的无偏估计量也时当的无偏估计量是总体分布中参数设θθθθθθθθθθ=+-=a a (4)设总体和相互独立,且都服从,是来自总体的X Y )1,0(N 921,,X X X X 样本,是来自总体的样本,则统计量 921,,Y Y Y Y 292191Y Y X X U ++++= 服从分布(要求给出自由度)。
南京工业大学概率论与数理统计试题及答案

南京工业大学 概率统计 试题(A )卷(闭)2004 -2005 学年第 二 学期 使用班级 江浦校区03级所在院(系) 班 级 学号 姓名 题号 一 二 三 四 五六七 八 九 总分 得分一.填空(18分)1.(4分)设P (A )=0.35, P (A ∪B )=0.80,那么(1)若A 与B 互不相容,则P (B )= ;(2)若A 与B 相互独立,则P (B )= 。
2. (3分)已知5.0)0(=Φ(其中)(x Φ是标准正态分布函数),ξ~N (1,4),且21}{=≥a P ξ,则a = 。
3.(4分)设随机变量ξ的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x f对ξ独立观察3次,记事件“ξ≤2”出现的次数为η,则=ηE ,=ηD 。
4.(3分)若随机变量ξ在(0,5)上服从均匀分布,则方程4t 2+4ξt +ξ+2=0有实根的概率是 。
5.(4分) 设总体),(~2σμN X ,X 是样本容量为n 的样本均值,则随机变量∑=⎪⎪⎭⎫ ⎝⎛-=ni i X X 12σξ服从 分布,=ξD 。
二.选择(每题3分,计9分)1.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 (A )A 与B 不相容 (B )A 与B 相容 (C )P (AB )=P (A )P (B ) (D )P (B A -)=P (A )2.设随机变量ξ与η均服从正态分布ξ~N (μ,42),η~N (μ,52),而 }5{},4{21+≥=-≤=μημξP p P p ,则( )。
(A )对任何实数μ,都有p 1=p 2 (B )对任何实数μ,都有p 1<p 2(C )只对μ的个别值,才有p 1=p 2 (D )对任何实数μ,都有p 1>p 2 3.对于任意两个随机变量ξ和η,若ηξξηE E E ⋅=)(,则( )。
(A )ηξξηD D D ⋅=)( (B )ηξηξD D D +=+)( (C )ξ和η独立 (D )ξ和η不独立三(12分)、在电源电压不超过200伏,在200~240伏和超过240伏三种情况下,某种电子元件损坏的概率分别为0.1,0.001和0.2。
概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京工业大学 概率统计 试题(A )卷(闭)2004 -2005 学年第 二 学期 使用班级 江浦校区03级所在院(系) 班 级 学号 姓名 题号 一 二 三 四 五六七 八 九 总分 得分一.填空(18分)1.(4分)设P (A )=0.35, P (A ∪B )=0.80,那么(1)若A 与B 互不相容,则P (B )= ;(2)若A 与B 相互独立,则P (B )= 。
2. (3分)已知5.0)0(=Φ(其中)(x Φ是标准正态分布函数),ξ~N (1,4),且21}{=≥a P ξ,则a = 。
3.(4分)设随机变量ξ的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x f对ξ独立观察3次,记事件“ξ≤2”出现的次数为η,则=ηE ,=ηD 。
4.(3分)若随机变量ξ在(0,5)上服从均匀分布,则方程4t 2+4ξt +ξ+2=0有实根的概率是 。
5.(4分) 设总体),(~2σμN X ,X 是样本容量为n 的样本均值,则随机变量∑=⎪⎪⎭⎫ ⎝⎛-=ni i X X 12σξ服从 分布,=ξD 。
二.选择(每题3分,计9分)1.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 (A )A 与B 不相容 (B )A 与B 相容 (C )P (AB )=P (A )P (B ) (D )P (B A -)=P (A )2.设随机变量ξ与η均服从正态分布ξ~N (μ,42),η~N (μ,52),而 }5{},4{21+≥=-≤=μημξP p P p ,则( )。
(A )对任何实数μ,都有p 1=p 2 (B )对任何实数μ,都有p 1<p 2(C )只对μ的个别值,才有p 1=p 2 (D )对任何实数μ,都有p 1>p 2 3.对于任意两个随机变量ξ和η,若ηξξηE E E ⋅=)(,则( )。
(A )ηξξηD D D ⋅=)( (B )ηξηξD D D +=+)( (C )ξ和η独立 (D )ξ和η不独立三(12分)、在电源电压不超过200伏,在200~240伏和超过240伏三种情况下,某种电子元件损坏的概率分别为0.1,0.001和0.2。
假设电源电压ξ服从正态分布N (200, 252),试求(已知()788.08.0=Φ,其中)(x Φ是标准正态分布函数):(1)该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200~240伏的概率β。
四(15分)、设随机变量(ξ,η)的联合概率密度 ⎩⎨⎧<<=-其它,00,),(y x xe y x f y(1)求ξ、η的边际概率密度并考察ξ与η独立性。
(2)求ηξζ+=的概率密度函数;(3)求ξηρ。
五(8分)、已知随机变量ξ只取-1,0,1,2四个值,相应的概率依次为c21,c43,c85,c 167,确定常数c ,并计算}0|1{≠<ξξP 和ξE 。
六(8分)某单位设置一电话总机,共有200架电话分机。
设每个电话分机是否使用外线相互独立的,设每时刻每个分机有5%的概率要使用外线通话,问总机需要多少外线才能以不低于90%的概率保证每个分机要使用外线时可供使用?(已知()90.0)282.1(,8413.0)0.1(,788.08.0=Φ=Φ=Φ,其中)(x Φ是标准正态分布函数)七. (10分) 设总体X ~N (2,σμ),其中μ已知,而2σ未知,(x 1,x 2,…,x n )为来自总体的样本值。
试求2σ的矩估计量和极大似然估计量。
八(8分)、某门课程考试成绩),(~2σμN X 。
从其中任意抽出10份试卷的成绩为:74,95,81,43,62,52,86,78,74,67试求该课程平均成绩μ的置信区间。
取置信度为95.01=-α。
(已知2281.2)10(,2622.2)9(,8125.1)10(,8331.1)9(025.0025.005.005.0====t t t t )九(12分)、设某厂生产的灯泡寿命(单位:h )X 服从正态分布),(2σμN ,μ0=1000为μ 的标准值,2σ为未知参数,随机抽取其中16只,测得样本均值x =946,样本方差s 2=1202。
试在显著性水平α=0.05下,考察下列问题:(1)这批灯泡的寿命与1000是否有显著差异(即检验H 0:μ =1000,H 1:μ ≠1000)?(2)这批灯泡是否合格(即检验0H ':μ ≥1000,1H ':μ <1000)?南京工业大学 概率统计 试题(A )卷(闭)标准答案及评分标准2004 -2005 学年第 二 学期 使用班级 江浦校区03级一.填空(18分)1、0.45; ……………………………2分9/13。
……………………………4分 2. 1。
……………………………3分 3.189/64; ……………………………2分 189/4096。
……………………………4分 4.0.6。
……………………………3分 5.)1(2-n χ; ……………………………2分 )1(2-n 。
……………………………4分 二.选择(9分)1.(C )。
……………………………3分2.(A )。
……………………………3分 3.(D )。
……………………………3分 三(12分)、 解:引进事件:A 1={电压不超过200V },A 2={电压在200V ~240V },A 3={电压超过240V },B ={电子元件损坏}。
……………………………1分由于ξ~N (220, 252),因此⎭⎬⎫⎩⎨⎧-≤-=≤=2522020025220}200{)(1ξξP P A P212.0)8.0(1)8.0(=Φ-=-Φ= …………………………3分 )25220200()25220240(}240200{)(2-Φ--Φ=≤≤=ξP A P576.0)8.0()8.0(=-Φ-Φ= ………………………5分.212.0576.0212.01}240{)(3=--=>=ξP A P …………………………6分 由题设知 P (B |A 1)=0.1, P (B |A 2)=0.001, P (B |A 3)=0.2。
(1)由全概率公式)|()()(31ii iA B P A P B P ∑===α0642.02.0212.0001.0576.01.0212.0=⨯+⨯+⨯= ………………9分(2)由贝叶斯公式009.00642.0001.0576.0)()|()()|(222≈⨯===B P A B P A P B A P β ……………………12分四(15分)、解: (1)⎪⎩⎪⎨⎧≤>===-∞+-∞+∞-⎰⎰.0,00,),()(x x xe dy xe dy y x f x f x x y ξ⎪⎩⎪⎨⎧≤>===--∞+∞-⎰⎰.0,00,21),()(20y y e y dx xe dx y x f y f y y yη 由于)()(),(y f x f y x f ηξ⋅≠,故ξ与η不独立。
………4分(2)dx x z x f z f ),()(-=⎰+∞∞-ζ显然仅当x z x -<<0,即z x <<20时,上述积分不等于零,故⎪⎩⎪⎨⎧≤>-+==-=----∞+∞-⎰⎰.0,00,)12(),()(2/0)(z z e z e dx xe dx x z x f z f zz z x z ζ ……8分 (3)2)(0=⋅==⎰⎰+∞-+∞∞-dx xex dx x xf E xξξ;6)(0222=⋅==⎰⎰+∞-+∞∞-dx xex dx x f x E xξξ;2)(22=-=ξξξE E D 。
…………………10分 同理,3=ηE ,=ηD 3;8),()(0=⋅==⎰⎰⎰⎰+∞+∞-+∞∞-+∞∞-xydy xexy dx dxdy y x xyf E ξη。
故 2328)(),(=⋅-=⋅-=ηξξηηξE E E Cov 。
…………………14分 于是,32322),(=⨯=⋅=ηξηξρξηD D Cov …………………15分五(8分)、由于c21+c43+c85+c167=1,因此1637=c 。
………………………2分 32.0}0{}1{}0{}0,1{}0|1{=≠-==≠≠<=≠<ξξξξξξξP P P P P ……………………5分37113716167285143021)1(=⋅⎪⎭⎫ ⎝⎛⋅+⋅+⋅+⋅-=ξE ………………………8分 六(8分)、以ξ表示同时使用外线的分机数,则ξ~B (200,0.05。
………………1分 设总机需设x 根外线,则有{}%90≥≤x P ξ, 即 90.095.005.020005.020095.005.020005.0200≥⎭⎬⎫⎩⎨⎧⨯⨯⨯-≤⨯⨯⨯-x P ξ ……………………3分由中心极限定理,有90.05.910≥⎪⎪⎭⎫⎝⎛-Φx , 由题设所给数据得 282.15.910≥-x ……………………6分 解得 95.13≥x故总机需要14根外线才能以不低于90%的概率保证每个分机要使用外线时可供使用。
……………………8分 七(10分)、解 矩估计 由于 222)(EX EXDX -==σ,令 ∑===ni i X nA EX12221即22)(A EX DX =+,又已知 μ=EX 。
故 2σ的矩估计量为∑∑==∧-=-=-=ni ini iX nX nA 12122222)(11μμμσ。
………………………5分极大似然估计μ已知时,似然函数为:⎭⎬⎫⎩⎨⎧--⋅=∑=-n i i n x L 122222)(21exp )2()(μσπσσ,因此 ∑=---=ni ixn L 12222)(21)2ln(2)(ln μσπσσ,令0)(2112)(ln 124222=-+-=∑=ni ixn d L d μσσσσ。
解得2σ的极大似然估计为:∑=∧-=ni iXn122)(1μσ。
………………………10分八(8分)、解:由题设得到 x =2.71)679574(101=+++ ,51.245)(9121012=-=∑=i ix x s。
………………3分 又由置信度为1-α=1-0.05=0.95得临界值2622.2)9(025.0=t 。
………………5分 故置信区间为]41.82,99.59[]1051.2452622.22.71,1051.2452622.22.71[=+-。
……………8分九(12分)、解:(1)待验假设H 0:μ =1000,H 1:μ ≠1000 由于题设方差2σ未知,故检验用统计量为 )1(~/20--=n t nS X T μ ……………2分由α =0.0513.2)15(025.02/==⇒t t α又由946=x 、s 2=1202,可算得统计量观测值t 为8.116/1201000946/220-=-=-=ns x t μ ……………4分因13.2)15(8.1||025.0=<=t t ,故考虑接受H 0,从而认为这批灯泡的平均寿命与标准值的差异不显著。