人教版高中数学全套教案导学案111变化率问题

合集下载

变化率问题(1)课时教学设计-高中数学人教版选择性必修第二册

变化率问题(1)课时教学设计-高中数学人教版选择性必修第二册

5.1.1 变化率问题(1)(一)教学内容通过实例分析,经历由平均速度过渡到瞬时速度的过程,体会求瞬时速度的一般方法.(二)教学目标通过实例分析,理解平均速度与瞬时速度的概念及关系,经历由平均速度过渡到瞬时速度的过程,不断渗透"用运动变化的观点研究问题""逼近(极限)"等微积分的重要思想。

引导学生发现求瞬时速度的一般方法,发展学生的数学抽象核心素养.(三)教学重点及难点1.重点理解平均速度、瞬时速度的概念及算法.2.难点平均速度与瞬时速度.(四)教学过程问题1:学生阅读教材本章引言,简要回答本章的内容。

师生活动:(1)学生阅读课本,教师适时引导.(2)在教师的引导下,学生应明确以下内容:一是微积分是数学家的创造。

二是微积分的创立主要源自四个科学问题;三是导数是微积分的主要内容;四是导数主要是在定量的刻画函数局部的变化。

同时,学生还要注意在本章的学习过程中,还会接触到一个重要的数学思想和数学运算——极限。

设计意图:通过章引言的学习,让学生明晰下一阶段的学习目标,初步构建学习内容的思维框架.为发展学生数学抽象、数学运算、数学建模的核心素养埋下伏笔.问题2:请同学们回忆一下初中及高一学习过的函数的单调性的相关知识?师生活动:(1)大部分的学生应该都能够说出一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数的单调性。

(2)一部分学生能指出底数对指数函数、对数函数单调性的影响,需要类讨论。

教师应适时指出这种影响在一次函数、二次函数、反例函数中也是存在的。

同学们却有意无意只是在指数函数、对数函数中才意识到这个问题的存在。

(3)少数学生还能够强调指出反比例函数、正切函数的分段单调性。

(4)教师要密切关注,争取能在学生发现以下反馈:在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长”是越来越慢的,“指数爆炸”比“直线上升”快得多.(5)追问:在前面这些学习的基础上,能否进一步精确定量的刻画变化速度的快慢呢?设计意图:通过对函数学习的回顾,帮助学生发现和感受不同函数变化快慢的问题,同时引入新课.问题3:在一次高台跳水运动中,某运动员在运动过程中的重心相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系2() 4.9 4.811h t t t =-++.现在的问题是:如何描述运动员从起跳到入水的过程中运动的快慢程度呢?师生活动:(1)学生可能会从多个角度回答。

高中数学新人教版A版精品教案《1.1.1 变化率问题》

高中数学新人教版A版精品教案《1.1.1 变化率问题》

《变化率》教学设计教材版本:普通高中数学教材人教A版《选修2-2》“变化率”,一、教学内容分析导数是微积分的核心概念之一,是研究函数增减、变化快慢、最值问题的最一般、最有效的工具。

教材按照“平均变化率—瞬时变化率—导数的概念—导数的几何意义”的顺序安排,采用“逼近”的方法,从数形结合的角度定义导数,使导数概念的建立形象、直观而又容易理解,突出了导数概念的本质。

平均变化率是导数概念建立的核心,教材通过研究学生熟悉的“气球膨胀率”、“高台跳水”这两个生活实例,归纳出它们的共同特征,总结出一般函数平均变化率概念,使学生理解平均变化率刻画了函数在某一区间上的变化情况,并掌握平均变化率解法的一般步骤。

从知识形成的先后顺序来看,平均变化率是本章内容学习的核心概念,是研究瞬时变化率及其导数概念的基础,在整个导数学习中占有极其重要的地位。

在概念的形成过程中,将进一步渗透从特殊到一般的化归思想,数形结合思想。

基于上述分析,我将本节课的教学重点确定为:理解平均变化率的概念,掌握平均变化率解法的一般步骤,了解平均变化率的几何意义。

在平均变化率的基础上去探求瞬时变化率,深刻理解瞬时变化率的内涵二、学生情况分析(一)、学生已有的认知基础1、学生具备了一定的函数知识,可以通过表格、图像、关系式三种不同的函数表现形式,求解函数在某一区间内“因变量的增量与自变量的增量的比值。

并能从图像中看出函数变化的快与慢。

2、学生已在物理中学习了平均速度、瞬时速度、加速度等概念,比较容易理解可以用“平均速度”刻画物体在一段时间内的速度。

(二)可能存在的认知困难1、“吹气球”与“高台跳水”是学生非常熟悉的生活实例,如何从具体实例中抽象出共同的数学本质,能够用“平均变化率”对生活中的变化快慢现象进行合理的数学解释是本节课教学的关键,也是难点所在。

2、利用变化率的有关知识解释生活的中一些现象,需要学生具有一定抽象概括能力和应用数学数学语言表达问题的能力。

高二数学 3.1.1变化率问题与导数概念导学案 新人教A版选修1-1

高二数学     3.1.1变化率问题与导数概念导学案 新人教A版选修1-1

高中数学 3.1.1变化率问题与导数概念导学案知识梳理1.在高台跳水运动中,运动员在t 1≤t ≤t 2这段时间里的位置为s 1≤s ≤s 2,则他的平均速度为 .2.已知函数y =f(x),令Δx = ,Δy = ,则当Δx ≠0时,比值 =ΔfΔx ,称作函数f(x)从x 1到x 2的平均变化率. 3.物体在某一时刻的速度称为 .4.一般地,如果物体的运动规律是s =s (t ),那么物体在时刻t 的瞬时速度v ,就是物体在t 到t +Δt 这段时间内,当Δt →0时平均速度的极限,即v =lim Δt →0 ΔsΔt= 5.一般地,函数y =f (x )在x =x 0处的瞬时变化率是 =lim Δx →0 ΔfΔx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)= . 学习过程1.平均变化率[例1] 求函数y =x 3在x 0到x 0+Δx 之间的平均变化率,并计算当x 0=1,Δx =12时平均变化率的值.[分析] 直接利用概念求平均变化率,先求出表达式,再直接代入数据就可以得出相应的平均变化率.应用变式1某质点沿曲线运动的方程为f(x)=-2x2+1(x 表示时间,f(x)表示位移),则该质点从x =1到x =2时的平均速度为 ( )A .-4B .-8C .6D .-6 2.瞬时变化率[例2] 以初速度v 0(v 0>0)垂直上抛的物体,t 秒时的高度为s (t )=v 0t -12gt 2,求物体在时刻t 0处的瞬时速度.应用变式2一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t2,求此物体在t =2时的瞬时速度.3.利用定义求函数某点处的导数[例3] 根据导数定义求函数y =x 2+1x+5在x =2处的导数.应用变式3求y =f(x)=123++x x 在x =1处的导数.[例4] 设f (x )在x 0处可导,求lim Δx →0 f (x 0-Δx )-f (x )Δx的值.课堂巩固训练 一、选择题1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx等于( )A .4B .4xC .4+2ΔxD .4+2(Δx)22.如果质点A 按规律s =2t3运动,则在t =3秒时的瞬时速度为 ( )A .6B .18C .54D .813.当自变0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数 ( ) A .在区间[0x ,1x ]上的平均变化率 B .在0x 处的变化率 C .在1x 处的导数 D .在区间[0x ,1x ]上的导数4.已知f(x)=x x 32-,则f ′(0)= ( )A .Δx -3B .(Δx)2-3ΔxC .-3D .0 二、填空题5.已知函数f(x)=ax +4,若f ′(1)=2,则a 等于______.6.球的半径从1增加到2时,球的体积平均膨胀率为____________. 三、解答题7.枪弹在枪筒中的运动可以看作匀加速直线运动,如果它的加速度是a =5×105m/s2,枪弹从枪口射出所用的时间为1.6×10-3s.求枪弹射出枪口时的瞬时速度.课后强化作业 一、选择题1.在函数变化率的定义中,自变量的增量Δx 满足( )A .Δx <0B .Δx >0C .Δx =0D .Δx ≠0 2.函数在某一点的导数是( )A .在该点的函数的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率3.在x =1附近,取Δx =0.3,在四个函数①y =x ②y =x 2③y =x 3④y =1x中,平均变化率最大的是( )A .④B .③C .②D .①4.质点M 的运动规律为s =4t +4t 2,则质点M 在t =t 0时的速度为( )A .4+4t 0B .0C .8t 0+4D .4t 0+4t 25.函数y =x +1x在x =1处的导数是( )A .2B.52C .1D .0 6.函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,Δy =( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)7.一个物体的运动方程是s =3+t 2,则物体在t =2时的瞬时速度为( )A .3B .4C .5D .78.f (x )在x =x 0处可导,则lim Δx →0 f (x 0+Δx )-f (x 0)Δx( ) A .与x 0,Δx 有关 B .仅与x 0有关,而与Δx 无关 C .仅与Δx 有关,而与x 0无关 D .与x 0,Δx 均无关9.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A .f ′(x )=aB .f ′(x )=bC .f ′(x 0)=aD .f ′(x 0)=b10.f (x )在x =a 处可导,则lim h →0 f (a +3h )-f (a -h )2h等于( ) A .f ′(a ) B.12f ′(a ) C .4f ′(a ) D .2f ′(a )二、填空题11.f (x 0)=0,f ′(x 0)=4,则lim Δx →0 f (x 0+2Δx )-f (x 0)Δx=________. 12.某物体做匀速运动,其运动方程是s =vt +b ,则该物体在运动过程中其平均速度与任何时刻的瞬时速度关系是________.13.设x 0∈(a ,b ),y =f (x )在x 0处可导是y =f (x )在(a ,b )内可导的________条件.14.一球沿斜面自由滚下,其运动方程是S =t 2(S 的单位:m ,t 的单位:s),则小球在 t =5时的瞬时速度为______. 三、解答题15.一物体作自由落体运动,已知s =s (t )=12gt 2.(1)计算t 从3秒到3.1秒、3.01秒,两段内的平均速度;2)求t =3秒时的瞬时速度.16.若f ′(x )=A ,求lim h →0f (x +h )-f (x -2h )h.17.求函数y =x 在x =1处的导数.18.路灯距地面8m ,一个身高1.6m 的人以84m/min 的速度在地面上从路灯在地面上的射影C 沿某直线离开路灯,(1)求身影的长度y 与人距路灯的距离x 之间的关系式;(2)求人离开路灯第10秒时身影的瞬时变化率.3.1.2导数的几何意义 学习目标1.知识与技能:了解导函数的概念,理解导数的几何意义.2.过程与方法:会求导函数,根据导数的几何意义,会求曲线上某点处的切线方程.学习重、难点重点:导数的几何意义.难点:对导数几何意义的理解. 知识梳理1.导数的几何意义 ①割线斜率与切线斜率设函数y =f (x )的图象如图所示,AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx ))的一条割线,此割线的斜率是ΔyΔx= 当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的极限位置为直线AD ,这条直线AD 叫做此曲线在点A 处的 .于是,当Δx →0时,割线AB 的斜率无限趋近于过点A 的切线AD 的斜率k ,即k = = ②导数的几何意义函数y =f(x)在点x 0处的导数的几何意义是曲线y =f(x)在点P(x 0,f(x 0))处的切线的 .也就是说,曲线y =f(x)在点P(x 0,f(x 0))处的切线的斜率是 .相应地,切线方程为 . 2.函数的导数 学习过程1.求割线的斜率[例1] 过曲线y =f(x)=3x 上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx =0.1时割线的斜率.2.用定义求切线方程[例2] 已知曲线C :y =13x 3+43.(1)求曲线C 上的横坐标为2的点处的切线方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点?应用变式1 已知曲线y =23x 上一点A(1,2),则点A 处的切线斜率等于 ( ) A .2 B .4 C .6+6Δx2D .63.求切点坐标[例3] 抛物线y =2x 在点P 处的切线与直线2x -y +4=0平行,求P 点的坐标及切线方程.应用变式2 若抛物线y =2x 与直线2x -y +m =0相切,求m.4.导数几何意义的应用[例4] 若抛物线y =42x 上的点P 到直线y =4x -5的距离最短,求点P 的坐标.应用变式3 求抛物线y =42x 上的点到直线y =4x -5的距离的最小值.[例5] 曲线y =3x 在x 0=0处的切线是否存在,若存在,求出切线的斜率和切线方程;若不存在,请说明理由.应用变式4已知曲线y =4x在点(1,4)处的切线与直线l 平行且距离等于17,则直线l 的方程为( )A .4x -y +9=0或4x -y +25=0B .4x -y +1=0C .4x +y +9=0或4x +y -25=0D .以上都不对 [例6] 试求过点M(1,1)且与曲线y =3x +1相切的直线方程.课堂巩固训练 一、选择题1.曲线y =-22x +1在点(0,1)处的切线的斜率是( )A .-4B .0C .4D .不存在2.曲线y =12x 2-2在点(1,-32)处切线的倾斜角为( )A .1 B.π4 C.5π4 D .-π43.若曲线y =h(x)在点P(a ,h(a))处的切线方程为2x +y +1=0,那么 ( ) A .h ′(a)=0 B .h ′(a)<0 C .h ′(a)>0 D .h ′(a)不确定 4.曲线y =3x 在点P 处的切线斜率为3,则点P 的坐标为( )A .(-2,-8)B .(1,1),(-1,-1)C .(2,8)D .(-12,-18)二、填空题5.已知曲线y =1x -1上两点A (2,-12),B (2+Δx ,-12+Δy ),当Δx =1时,割线AB 的斜率为________.6.P 是抛物线y =x 2上一点,若过点P 的切线与直线y =-12x +1垂直,则过点P 的切线方程为________.三、解答题7.求曲线y =1x -x 上一点P (4,-74)处的切线方程.课后强化训练 一、选择题1.曲线y =x 3-3x 在点(2,2)的切线斜率是( )A .9B .6C .-3D .-12.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( )A .30°B .45°C .135°D .60°3.函数y =-1x 在点(12,-2)处的切线方程是( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x +4 4.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在 5.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线6.设f (x )为可导函数且满足lim x →0 f (1)-f (1-2x )2x =-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-27.在曲线y =x 2上的点________处的倾斜角为π4( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)8.若函数f (x )的导数为f ′(x )=-sin x ,则函数图像在点(4,f (4))处的切线的倾斜角为( ) A .90° B .0° C .锐角 D .钝角9.曲线y =x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标是( )A .(0,1)B .(-1,-5)C .(1,0)或(-1,-4)D .(0,1)或(4,1)10.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12 C .-12D .-1二、填空题11.已知函数f (x )=x 3+2,则f ′(2)=________.12.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________.13.曲线y =x 3在点(1,1)处的切线与x 轴,x =2所围成的三角形的面积为________.14.曲线y =x 3+x +1在点(1,3)处的切线是________. 三、解答题15.求曲线y =x 2+3x +1在点(1,5)处的切线的方程.16.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切.(1)求a 的值;(2)求切点的坐标.17.求过点(2,0)且与曲线y =1x相切的直线方程.18.曲线y =x 2-3x 上的点P 处的切线平行于x 轴,求点P 的坐标.3.2导数的计算3.2.1几个常用函数的导数及基本初等函数的导数公式 学习目标1.知识与技能:了解常数函数和幂函数的求导方法和规律,会求任意y =x α(α∈Q)的导数.2.过程与方法:掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 学习重、难点重点:常数函数、幂函数的导数难点:由常见幂函数的求导公式发现规律,得到幂函数的求导公式. 知识梳理1.若f(x)=c ,则f ′(x)= .若f(x)=nx (n ∈N*),则f ′(x)= .2.若f(x)=sinx ,则f ′(x)= .若f(x)=cosx ,则f ′(x)= . 3.若f(x)=xa ,则f ′(x)=.若f(x)=xe ,则f ′(x)= .4. 若f (x )=log a x ,则f ′(x )= .若f (x )=ln x ,则f ′(x )= . 学习过程1.导数公式的直接应用[例1] 求下列函数的导数.(1)y =2a (a 为常数). (2)y =12x . (3)y =cosx.应用变式1求下列函数的导数(1)y =1x2 (2)y =3x (3)y =2x(4)y =log 2x2.求某一点处的导数 [例2] 求函数f (x )=1x在x =1处的导数.应用变式2 已知f (x )=n x1,且f ′(1)=-13,求n .3.利用导数求切线的斜率及方程 [例3] 求过曲线y =cos x 上点P ⎥⎦⎤⎢⎣⎡21,3π且与在这点的切线垂直的直线方程.应用变式3 求曲线y =32x 的斜率等于12的切线方程.课堂巩固训练 一、选择题1.函数f(x )=0的导数是 ( )A .0B .1C .不存在D .不确定2.抛物线y =14x 2在点(2,1)处的切线方程是( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=03.已知函数f (x )=1x,则f ′(-2)=( )A .4B.14 C .-4 D .-144.下列结论中不正确的是 ( )A .若y =3,则y ′=0B .若y =1x,则y ′=-12xC .若y =-x ,则y ′=-12xD .若y =3x ,则y ′|x =1=3二、填空题5.曲线y =xn 在x =2处的导数为12,则n 等于________. 6.若函数y =sint ,则y ′|t =6π=________. 三、解答题7.求抛物线y =2x 上的点到直线x -y -2=0的最短距离.课后强化训练 一、选择题1.lim Δx →0 (1+Δx )2-1Δx表示( ) A .曲线y =x 2的斜率 B .曲线y =x 2在点(1,1)处的斜率C .曲线y =-x 2的斜率D .曲线y =-x 2在(1,-1)处的斜率2.若y =cos 2π3,则y ′=( )A .-32B .-12C .0D.123.下列命题中正确的是( )①若f ′(x )=cos x ,则f (x )=sin x ②若f ′(x )=0,则f (x )=1 ③若f (x )=sin x ,则f ′(x )=cos xA .①B .②C .③D .①②③ 4.若y =ln x ,则其图象在x =2处的切线斜率是( )A .1B .0C .2D.125.已知直线y =kx 是y =ln x 的切线,则k 的值为( )6.已知函数f (x )=21x ,则'⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛21f =( )7.y =1x在点A (1,1)处的切线方程是( )A .x +y -2=0B .x -y +2=0C .x +y +2=0D .x -y -2=08.下列结论中正确的个数为( )①y =ln2,则y ′=12 ②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2xln2 ④y =log 2x ,则y ′=1x ln2A .0B .1C .2D .3 9.下列结论中不正确的是( )A .若y =0,则y ′=0B .若y =33x ,则y ′=-1x 3xC .若y =-x ,则y ′=-12xD .若y =3x 3,则y ′=3x 210.若y =sin x ,则y ′|x =π3=( )A.12 B .-12 C.32D .-32二、填空题11.曲线y =ln x 与x 轴交点处的切线方程是 .12.质点沿直线运动的路程与时间的关系是s =5t ,则质点在t =32时的速度等于 .13.在曲线y =4x2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为 .14.y =10x在(1,10)处切线的斜率为 . 三、解答题 15.已知曲线C :y =x 3(1)求曲线C 上点(1,1)处的切线方程(2)在(1)中的切线与曲线C 是否还有其它公共点?16.求下列函数的导数(1)y =ln x (2)y =1x4 (3)y =55x17.已知点P (-1,1),点Q (2,4)是曲线y =x 2上两点,求与直线PQ 平行的曲线y =x 2的切线方程.18.求过曲线y =sin x 上的点P ⎥⎦⎤⎢⎣⎡22,4π且与在这点处的切线垂直的直线方程.3.2.2 导数的运算法则 学习目标能利用给出的基本初等函数的导数公式表和导数的四则运算法则求简单函数的导数 学习重、难点重点:导数的四则运算及其运用. 难点:导数的四则运算法则的推导. 知识梳理1.设函数f(x)、g(x)是可导函数,(f(x)±g(x))′= ;(f(x)·g(x))′= . 2.设函数f (x )、g (x )是可导函数,且g (x )≠0,()()'⎥⎦⎤⎢⎣⎡x g x f = 学习过程1.导数公式法则的直接应用 [例1] 求下列函数的导数:(1)y =()()112-+x x ;(2)y =x x sin 2;(3)y =1x +2x 2+3x 3;(4)y =x tan x -2cos x .应用变式1求下列函数的导数:(1)y =2x -2+3x -3 (2)y =(2x 2+3)(3x -2) (3)y =x -sin x 2·cos x 22.求导法则的灵活运用[例2] 求函数y =sin 4x4+cos 4x4的导数.应用变式2求函数y =-sin x2(1-2sin 2x4)的导数.3.利用导数求有关参数[例3] 偶函数f(x)=e dx cx bx ax ++++234的图象过点P(0,1),且在x =1处的切线方程为y =x -2,求y =f(x)的解析式.应用变式3已知抛物线y =72-+bx ax 通过点(1,1),过点(1,1)的切线方程为4x -y -3=0,求a 、b 的值.[例4] 给出下列结论:①若y =1x 3,则y ′=-3x 4;②若y =3x ,则y ′=133x ;③若y =1x2,则y ′=-2x -3;④若f (x )=3x ,则f ′(1)=3,其中正确的个数是 ( )A .1B .2C .3D .4 课堂巩固训练 一、选择题1.函数y =2sinxcosx 的导数为 ( )A .y ′=cosxB .y ′=2cos2xC .y ′=2(sin2x -cos2x)D .y ′=-sin2x2.函数f (x )=1x 3+2x +1的导数是( )A.1(x 3+2x +1)2B.3x 2+2(x 3+2x +1)2C.-3x 2-2(x 3+2x +1)2D.-3x2(x 3+2x +1)2 3.函数y =(x -a)(x -b)在x =a 处的导数为 ( )A .abB .-a(a -b)C .0D .a -b 4.函数y =x ·lnx 的导数是 ( )A .x B.1xC .ln x +1D .ln x +x二、填空题5.函数y =143223-+-x x x 的导数为 6.函数y =xsinx -cosx 的导数为__________________. 三、解答题7.函数f(x)=123+--x x x 的图象上有两点A(0,1)和B(1,0),在区间(0,1)内求实数a ,使得函数f(x)的图象在x =a 处的切线平行于直线AB.课后强化作业 一、选择题1.函数y =cos xx的导数是( )A .-sin x x 2B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 22.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.1033.曲线运动方程为s =1-t t2+2t 2,则t =2时的速度为( )A .4B .8C .10D .124.函数y =(2+x 3)2的导数为( )A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x 5.下列函数在点x =0处没有切线的是( )A .y =3x 2+cos x B .y =x sin x C .y =1x +2x D .y =1cos x6.函数y =sin ⎪⎭⎫⎝⎛-x 4π的导数为( ) A .-cos ⎪⎭⎫ ⎝⎛+x 4π B .cos ⎪⎭⎫ ⎝⎛-x 4π C .-sin ⎪⎭⎫ ⎝⎛-x 4π D .-sin ⎪⎭⎫⎝⎛+x 4π7.已知函数f (x )在x =x 0处可导,函数g (x )在x =x 0处不可导,则F (x )=f (x )±g (x )在x=x 0处( )A .可导B .不可导C .不一定可导D .不能确定 8.(x -5)′=( )A .-15x -6 B.15x -4 C .-5x -6 D .-5x 49.函数y =3x (x 2+2)的导数是( )A .3x 2+6B .6x 2C .9x 2+6D .6x 2+6 10.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为( )A .f (x )=(x -1)2+3(x -1)B .f (x )=2(x -1)C .f (x )=2(x -1)2D .f (x )=x -1 二、填空题11.若函数f (x )=1-sin xx,则f ′(π)= .12.曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形面积是 .13.设f (x )=(ax +b )sin x +(cx +d )cos x ,若已知f ′(x )=x cos x ,则f (x )= .14.设f (x )=ln a 2x(a >0且a ≠1),则f ′(1)= . 三、解答题15.求下列函数的导数.(1)f (x )=(x 3+1)(2x 2+8x -5);(2)1+x 1-x +1-x 1+x;(3)f (x )=ln x +2xx 2.16.已知f (x )=x 2+ax +b ,g (x )=x 2+cx +d ,又f (2x +1)=4g (x ),且f ′(x )=g ′(x ),f (5)=30,求g (4).17.设函数f (x )=13x 3-a 2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1.求b ,c 的值.18.已知函数f (x )=2x 3+ax 与g (x )=bx 2+c 的图象都过点 P (2,0),且在点P 处有公共切线,求f (x )、g (x )的表达式.3.3导数在研究函数中的应用 3.3.1函数的单调性与导数知识梳理1.设函数y =f(x)在区间(a ,b)内可导,(1)如果在区间(a ,b)内,f ′(x)≥0,则f(x)在此区间是 的;(2)如果在区间(a ,b)内,f ′(x)≤0,则f(x)在此区间内是 的.2.如果函数y =f(x)在x 的某个开区间内,总有f ′(x)>0,则f(x)在这个区间上严格增加,这时该函数在这个区间为 ;如果函数当自变量x 在某区间上,总有f ′(x)<0,则f(x)在这个区间为 . 学习过程1.用导数求函数的单调区间 [例1] 求下列函数的单调区间(1)f(x)=133+-x x (2)f (x )=x +b x(b >0)应用变式1求下列函数的单调区间:(1)f(x)=x x x 9323-+ (2)f(x)=sinx -x ,x ∈(0,π)2.利用导数证明不等式[例2] 已知x >1,求证x >lnx.应用变式2已知:x >0,求证:x >sinx.3.已知函数的单调性,确定参数的取值范围[例3] 若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)内单调递减,在(6,+∞)上单调递增,试求a 的范围. 应用变式3已知f (x )=13x 3+12ax 2+ax -2(a ∈R ).若函数f (x )在(-∞,+∞)上为单调递增函数,求a 的取值范围.[例4] 已知函数f(x)=32x a x-,x ∈(0,1],a>0,若f(x)在(0,1]上单调递增,求a 的取值范围.课堂巩固训练 一、选择题1.函数f(x)=2x -sinx 在(-∞,+∞)上 ( ) A .是增函数 B .是减函数C .在(0,+∞)上增,在(-∞,0)上增D .在(0,+∞)上减,在(-∞,0)上增 2.函数y =xlnx 在区间(0,1)上是 ( )A .单调增函数B .单调减函数C .在(0,1e )上是减函数,在(1e,1)上是增函数D .在(0,1e )上是增函数,在(1e,1)上是减函数3.若在区间(a ,b)内有f ′(x)>0,且f(a) ≥0,则在(a ,b)内有 ( )A .f(x)>0B .f(x)<0C .f(x)=0D .不能确定 4.在下列函数中,在(0,+∞)内为增函数的是( ) A .sin2xB .x xeC .3x x -3D .-x +ln(1+x)二、填空题5.函数f(x)=x x -3的增区间是 和 ,减区间是 . 6.已知函数y =322++x ax 在(-1,+∞)上是减函数,则a 的取值范围是 . 三、解答题7.已知函数f(x)=83++ax x 的单调递减区间为(-5,5),求函数f(x)的递增区间.课后强化作业 一、选择题1.设f (x )=ax 3+bx 2+cx +d (a >0),则f (x )为增函数的一个充分条件是( )A .b 2-4ac >0B .b >0,c >0内部C .b =0,c >0D .b 2-3ac >02.函数f (x )=2x 2-ln x 的单调递增区间是( )A .(0,12)B .(0,24)C .(12,+∞)D .(-12,0)及(0,12)3.(2009·广东文,8)函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞) 4.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( ) A.⎪⎭⎫⎝⎛--2,ππ和⎪⎭⎫ ⎝⎛2,0π B.⎪⎭⎫ ⎝⎛-0,2π和⎪⎭⎫ ⎝⎛2,0πC.⎪⎭⎫⎝⎛--2,ππ和⎪⎭⎫ ⎝⎛ππ,2 D.⎪⎭⎫ ⎝⎛-0,2π和⎪⎭⎫ ⎝⎛ππ,2 5.函数f (x )=ax 3-x 在R 上为减函数,则( )A .a ≤0B .a <1C .a <2D .a ≤136.已知a >0,函数f (x )=-x 3+ax 在[1,+∞)上是单调减函数,则a 的最大值为( )A .1B .2C .3D .4 7.设f (x )在(a ,b )内可导,则f ′(x )<0是f (x )在(a ,b )上单调递减的( )A .充分不必要条件你B .必要不充分条件C .充要条件D .既不充分也不必要条件8.若函数y =x 2-2bx +6在(2,8)内是增函数,则( )A .b ≤2B .b <2C .b ≥2D .b >2 9.(2009·湖南文,7)若函数y =f (x )的导函数...在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )10.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能为( )二、填空题11.函数y =x 3-x 2-x 的单调递增区间为 .12.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是 .13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是 .14.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围 .三、解答题 15.讨论函数f (x )=bxx 2-1(-1<x <1,b ≠0)的单调性.16.已知曲线y =x 3+3x 2+6x -10,点P (x ,y )在该曲线上移动,在P 点处的切线设为l . (1)求证:此函数在R 上单调递增;(2)求l 的斜率的范围.17.已知向量a =(x 2,x +1),b =(1-x ,t ),若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.18.设函数f (x )=(ax 2-bx )e x(e 为自然对数的底数)的图象与直线ex +y =0相切于点A ,且点A 的横坐标为1.(1)求a ,b 的值;(2)求函数f (x )的单调区间,并指出在每个区间上的增减性.3.3.2函数的极值与导数,函数的最大(小)值与导数知识梳理1.已知函数y =f(x)及其定义域内一点x.对于包含x0在内的开区间内的所有点x ,如果都有,则称函数f(x)在点0x 处取得,并把0x 称为函数f(x)的一个;如果都有,则称函数f(x)在点0x 处取得 ,并把0x 称为函数f(x)的一个 .极大值与极小值统称为 ,极大值点与极小值点统称为 .2.假设函数y =f(x)在闭区间[a ,b]上的图象是一条 ,该函数在[a ,b]上一定能够取得 与 ,该函数在(a ,b)内是 ,该函数的最值必在 取得. 3.当函数f(x)在点0x 处连续时,判断f(0x )是否存在极大(小)值的方法是: (1)如果在0x 附近的左侧,右侧,那么f(0x )是极值;(2)如果在0x 附近的左侧 ,右侧 ,那么f(0x )是极 值; (3)如果f ′(x)在点0x 的左右两侧符号不变,则f(0x ) 函数f(x)的极值. 学习过程1.利用导数求函数的极值[例1] 求函数y =133+-x x 的极值.应用变式1函数y =x x x 9323--(-2<x <2)有( )A .极大值为5,极小值为-27B .极大值为5,极小值为-11C .极大值为5,无极小值D .极大值为-27,无极小值 2.利用导数求函数的最大值与最小值[例2] 求函数f(x)=1223+-x x 在区间[-1,2]上的最大值与最小值.应用变式2求函数f(x)=2824+-x x 在[-1,3]上的最大值与最小值.3.求函数极值的逆向问题[例3] 已知f(x)=cx bx ax ++23(a ≠0)在x =±1时取得极值,且f(1)=-1, (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由.应用变式3设a >0,(1)证明f (x )=ax +b1+x2取得极大值和极小值的点各有1个;(2)当极大值为1,极小值为-1时,求a 和b 的值.[例4] 已知函数f(x)=c bx x ax -+44ln (x>0)在x =1处取得极值-3-c ,其中a 、b 、c 为常数.(1)试确定a ,b 的值;(2)若对任意x>0,不等式f(x)≥22c -恒成立,求c 的取值范围.[例5] 已知f(x)=2233a bx ax x +++在x =-1时有极值0,求常数a 、b 的值.课堂巩固训练 一、选择题1.若函数y =f(x)是定义在R 上的可导函数,则f ′(x)=0是x0为函数y =f(x)的极值点( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.函数f (x )=x 2-x +1在区间[-3,0]上的最值为 ( )A .最大值为13,最小值为34B .最大值为1,最小值为-17C .最大值为3,最小值为-17D .最大值为9,最小值为-19 3.函数y =3x +1 的极大值是( )A .1B .0C .2D .不存在4.y =f(x)=a x x +-2332的极大值是6,那么a 等于 ( ) A .6 B .0 C .5D .1二、填空题5.(2009·辽宁文,15)若函数f (x )=x 2+ax +1在x =1处取极值,则a = .6.函数y =x ·ex 的最小值为________. 三、解答题7.设y =f (x )为三次函数,且图象关于原点对称,当x =12时,f (x )的极小值为-1,求出函数f (x )的解析式.课后强化作业 一、选择题1.设x 0为f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=0B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为0 2.对于可导函数,有一点两侧的导数值异号是这一点为极值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数y =2-x 2-x 3的极值情况是( )A .有极大值,没有极小值B .有极小值,没有极大值C .既无极大值也无极小值D .既有极大值也有极小值4.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个5.下列命题:①一个函数的极大值总比极小值大;②可导函数导数为0的点不一定是极值点;③一个函数的极大值可以比最大值大;④一个函数的极值点可在其不可导点处达到,其中正确命题的序号是( )A .①④B .②④C .①②D .③④ 6.函数y =|x -1|,下列结论中正确的是( )A .y 有极小值0,且0也是最小值B .y 有最小值0,但0不是极小值C .y 有极小值0,但不是最小值D .因为y 在x =1处不可导,所以0既非最小值也非极值7.函数f (x )=x (1-x 2)在[0,1]上的最大值为( )A.239B.229C.329D.388.已知函数f (x )=x 3-px 2-qx 的图像与x 轴切于(1,0)点,则函数f (x )的极值是( )A .极大值为427,极小值为0B .极大值为0,极小值为427C .极大值为0,极小值为-427D .极大值为-427,极小值为09.已知函数y =|x 2-3x +2|,则( )A .y 有极小值,但无极大值B .y 有极小值0,但无极大值C .y 有极小值0,极大值14D .y 有极大值14,但无极大值10.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c ) 二、填空题11.函数y =2xx 2+1的极大值为____________,极小值为____________.12.函数y =x 3-6x +a 的极大值为____________,极小值为____________.13.函数y =x -x 3(x ∈[0,2])的最小值是________.14.已知函数f (x )=x (x -c )2在x =2处取极大值,则常数c 的值为________. 三、解答题15.已知函数f (x )=x 3-3x 2-9x +11.(1)写出函数的递减区间;(2)讨论函数的极大值或极小值,如有试写出极值.16.求下列函数的最值(1)f (x )=3x -x 3(-3≤x ≤3); (2)f (x )=sin2x -x ⎪⎭⎫ ⎝⎛≤≤-22ππx .17.已知a ∈R ,讨论函数f (x )=e x (x 2+ax +a +1)的极值点的个数.18.(2010·江西理,19)设函数f (x )=ln x +ln(2-x )-ax (a >0).(提示:[ln(2-x )]′=-12-x)(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.3.4生活中的优化问题举例学习过程1.面积、容积最大问题[例1] 在边长为60cm 的正方形铁片的四角上切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?应用变式1已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,求这个矩形面积最大时的长和宽.2.利用导数解决几何中的问题[例2]将一段长为100cm的铁丝截成两段,一段弯成正方形,一段弯成圆,问如何截法使正方形与圆面积之和最小?应用变式2已知圆柱的表面积为定值S,求当圆柱的容积V最大时圆柱的高h的值.3.获利最大[例3]某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆,本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.应用变式3某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p与日产量x的函数关系是:p=3x4x+32(x∈N+).[例4] 甲、乙两地相距s 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b ;固定部分为a 元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?课堂巩固训练一、选择题1.三次函数当x =1时,有极大值4;当x =3时,有极小值0,且函数过原点,则此函数是( )A .y =x x x 9623++B .y =x x x 9623+-C .y =x x x 9623--D .y =x x x 9623-+2.函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( )A .0<b <1B .b <1C .b >0D .b <123.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80000 (x >400),则总利润最大时,每年生产的产品是 ( ) A .100 B .150 C .200 D .300 4.设底为正三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为 ( ) A.3V B.32V C.34VD .23V二、填空题5.面积为S 的一切矩形中,其周长最小的是________.6.函数f(x)=)2(2x x -的单调递减区间是________.三、解答题7.用边长为120cm 的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱.问:水箱底边的长取多少时,水箱容积最大?最大容积是多少?课后强化作业一、选择题1.将8分解为两个非负数之和,使其立方之和为最小,则分法为( )A .2和6B .4和4C .3和5D .以上都不对2.某箱子的容积与底面边长的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的容积最大时,箱子底面边长为( )A .30B .40C .50D .以上都不正确3.用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为( ) A .6 B .8 C .10 D .124.内接于半径为R 的球且体积最大的圆锥的高为( )A .RB .2R C.43R D.34R 5.要做一个圆锥形的漏斗,其母线长为20cm ,要使其体积为最大,则高为( )A.33cmB.1033cmC.1633cmD.2033cm 6.圆柱形金属饮料罐的容积一定时,为了使所用材料最省,它的高与底半径应为( )A .h =2RB .h =RC .h =2RD .h =2R7.以长为10的线段AB 为直径画半圆,则它的内接矩形面积的最大值为( )A .10B .15C .25D .508.设圆柱的体积为V ,那么其表面积最小时,底面半径为( )A.3V B.3V π C.34V D .23V 2π9.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是( )A .8 B.203C .-1D .-8 10.若一球的半径为r ,作内接于球的圆柱,则其圆柱侧面积最大为( )A .2πr 2B .πr 2C .4πr 2 D.12πr 2 二、填空题11.把长为60cm 的铁丝围成矩形,长为________,宽为________时,矩形的面积最大.12.将长为l 的铁丝剪成2段,各围成长与宽之比为21及32的矩形,则面积之和的最小值为________.13.做一个容积为256的方底无盖水箱,它的高为________时最省料.14.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最小,则圆柱的底面半径为___.三、解答题15.某公司规定:对于小于或等于150件的订购合同,每件售价为200元,对于多于150件的订购合同,每超过一件,则每件的售价比原来减少1元,试问订购多少件的合同将会使公司的收益最大?16.如图,水渠横断面为等腰梯形,水的横断面面积为S ,水面的高为h ,问侧面与地面成多大角度时,才能使横断面被水浸湿的长度最小?17.某厂生产某种产品的固定成本(固定投入)为2500元,已知每生产x件这样的产品需要再增加可变成本C(x)=200x+136x3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?18.用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为21,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?。

高中数学变化率问题教案

高中数学变化率问题教案

高中数学变化率问题教案一、教学内容本节课主要介绍数学中的变化率问题,包括函数的导数和微分的概念,以及如何利用导数和微分解决实际问题中的变化率问题。

二、教学目标1. 了解导数和微分的定义和性质;2. 掌握求函数导数和微分的方法;3. 能够应用导数和微分解决实际问题中的变化率问题。

三、教学重点1. 函数导数和微分的计算方法;2. 如何应用导数和微分解决实际问题中的变化率问题。

四、教学难点1. 理解函数的导数和微分的物理意义;2. 能够灵活运用导数和微分解决实际问题中的变化率问题。

五、教学过程1. 导入:通过一个生活中的例子引入变化率的概念,让学生了解变化率的重要性;2. 讲解:介绍函数的导数和微分的定义和性质,以及其计算方法;3. 练习:给学生几个简单的函数求导数和微分的练习题,让他们掌握计算方法;4. 拓展:介绍如何应用导数和微分解决实际问题中的变化率问题,例如速度、加速度等;5. 实践:让学生做一些实际问题的应用练习,培养他们解决实际问题的能力;6. 总结:通过总结本节课的内容,让学生对函数的导数和微分有一个清晰的认识。

六、教学资源1. 课件:包括导数和微分的定义、性质和计算方法;2. 教材:提供相关的例题和练习题;3. 实例:准备一些生活中的例子,引发学生思考。

七、教学评估1. 课堂练习:通过课堂上的练习题检测学生对导数和微分的掌握情况;2. 作业:布置相关的作业,考察学生对实际问题的应用能力;3. 讨论:组织学生进行小组讨论,检查其解题思路和方法。

八、课后作业1. 完成教师布置的练习题;2. 尝试解决一些实际问题,应用导数和微分计算变化率。

注:以上内容仅为参考,具体教学过程和内容可根据实际情况进行调整。

高中数学《变化率问题》公开课优秀教学设计

高中数学《变化率问题》公开课优秀教学设计

《变化率问题》教学设计教材版本:普通高中数学教材人教A版《选修2-2》“1.1.1变化率问题”,一、教学内容分析导数是微积分的核心概念之一,是研究函数增减、变化快慢、最值问题的最一般、最有效的工具。

教材按照“平均变化率—瞬时变化率—导数的概念—导数的几何意义”的顺序安排,采用“逼近”的方法,从数形结合的角度定义导数,使导数概念的建立形象、直观而又容易理解,突出了导数概念的本质。

平均变化率是导数概念建立的核心,教材通过研究学生熟悉的“气球膨胀率”、“高台跳水”这两个生活实例,归纳出它们的共同特征,总结出一般函数平均变化率概念,使学生理解平均变化率刻画了函数在某一区间上的变化情况,并掌握平均变化率解法的一般步骤。

从知识形成的先后顺序来看,平均变化率是本章内容学习的核心概念,是研究瞬时变化率及其导数概念的基础,在整个导数学习中占有极其重要的地位。

在概念的形成过程中,将进一步渗透从特殊到一般的化归思想,数形结合思想。

基于上述分析,我将本节课的教学重点确定为:理解平均变化率的概念,掌握平均变化率解法的一般步骤,了解平均变化率的几何意义。

二、学生情况分析(一)、学生已有的认知基础1、学生具备了一定的函数知识,可以通过表格、图像、关系式三种不同的函数表现形式,求解函数在某一区间内“因变量的增量与自变量的增量的比值。

并能从图像中看出函数变化的快与慢。

2、学生已在物理中学习了平均速度、瞬时速度、加速度等概念,比较容易理解可以用“平均速度”刻画物体在一段时间内的速度。

(二)可能存在的认知困难1、“吹气球”与“高台跳水”是学生非常熟悉的生活实例,如何从具体实例中抽象出共同的数学本质,能够用“平均变化率”对生活中的变化快慢现象进行合理的数学解释是本节课教学的关键,也是难点所在。

2、利用变化率的有关知识解释生活的中一些现象,需要学生具有一定抽象概括能力和应用数学数学语言表达问题的能力。

对高中生而言,抽象概括能力和应用数学语言的能力还有待进一步的提高。

人教版高中数学教案-变化率问题(1)

人教版高中数学教案-变化率问题(1)

變化率問題 課前預習學案 一、預習目標瞭解平均變化率的定義。

二、預習內容[問題1] 在吹氣球問題中,當空氣容量V 從0增加到1L 時,氣球的平均膨脹率為__________ 當空氣容量V 從1L 增加到2L 時,氣球的平均膨脹率為__________________ 當空氣容量從V 1增加到V 2時,氣球的平均膨脹率為_______________ [問題2]在高臺跳水運動中,,運動員相對于水面的高度h (單位:m )與起跳後的時間t (單位:s )存在函數關係h (t )= -4.9t 2+6.5t +10. 如何用運動員在某些時間段內的平均速度v 粗略地描述其運動狀態?在5.00≤≤t 這段時間裡,v =_________________ 在21≤≤t 這段時間裡,v =_________________ 在21t t t ≤≤這段時間裡,v =_________________[問題3]對於公式,應注意:(1)平均變化率公式中,分子是區間兩端點間的函數值的差,分母是區間兩端點間的_______的差。

(2)平均變化率公式中,分子、分母中同為被減數的是右端點,減數是左端點,一定要同步。

[問題4] 平均變化率=∆∆x f 12)()(x x x f x f --表示什麼?htof (x 1)△y =f (x 2)-f (x 1)△x = x 2-x 1f (x 2x 1 x 2AB三、提出疑惑同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中 疑惑點 疑惑內容課內探究學案 一、學習目標知道平均變化率的定義。

會用公式來計算函數在指定區間上的平均變化率。

二、學習過程 學習探究 探究任務一:問題1:氣球膨脹率,求平均膨脹率吹氣球時,隨著氣球內空氣容量的增加,氣球的半徑增加得越來越慢.從數學的角度如何描述這種現象?問題2:高臺跳水,求平均速度新知:平均變化率:2121()()f x f x fx x x-∆=-∆試試:設()y f x =,1x 是數軸上的一個定點,在數軸x 上另取一點2x ,1x 與2x 的差記為x ∆,即x ∆= 或者2x = ,x ∆就表示從1x 到2x 的變化量或增量,相應地,函數的變化量或增量記為y ∆,即y ∆= ;如果它們的比值yx∆∆,則上式就表示為 ,此比值就稱為平均變化率.反思:所謂平均變化率也就是 的增量與 的增量的比值. 典型例題例1 過曲線3()y f x x ==上兩點(1,1)P 和(1,1)Q x y +∆+∆作曲線的割線,求出當0.1x ∆=時割線的斜率.例2 已知函數2()f x x =,分別計算()f x 在下列區間上的平均變化率:(1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]有效訓練練1. 某嬰兒從出生到第12個月的體重變化如圖所示,試分別計算從出生到第3個月與第6個月到第12個月該嬰兒體重的平均變化率.練2. 已知函數()21f x x =+,()2g x x =-,分別計算在區間[-3,-1],[0,5]上()f x 及()g x 的平均變化率. 反思總結1.函數()f x 的平均變化率是2.求函數()f x 的平均變化率的步驟:(1)求函數值的增量 (2)計算平均變化率 當堂檢測1. 21y x =+在(1,2)內的平均變化率為( ) A .3 B .2 C .1 D .02. 設函數()y f x =,當引數x 由0x 改變到0x x +∆時,函數的改變量y ∆為( )T(月)W(kg) 63912 11A .0()f x x +∆B .0()f x x +∆C .0()f x x ∆D .00()()f x x f x +∆-3. 質點運動動規律23s t =+,則在時間(3,3)t +∆中,相應的平均速度為( )A .6t +∆B .96t t+∆+∆C .3t +∆D .9t +∆4.已知212s gt =,從3s 到3.1s 的平均速度是_______5. 223y x x =-+在2x =附近的平均變化率是____6、已知函數12)(2-==x x f y 的圖像上一點(1,1)及鄰近一點(1+x ∆,+1(f x ∆)),求xy∆∆課後練習與提高1、 已知一次函數)(x f y =在區間[-2,6]上的平均變化率為2,且函數圖像過點(0,2),試求此一次函數的運算式。

高中数学人教版选修1-1 3.1.1变化率问题 教案1

高中数学人教版选修1-1 3.1.1变化率问题 教案1

3.1.1变化率问题教学目标知道平均变化率的定义。

会用公式来计算函数在指定区间上的平均变化率。

教学重点:平均变化率的含义教学难点:会用公式来计算函数在指定区间上的平均变化率。

教学过程:情景导入:展示目标: 知道平均变化率的定义。

会用公式来计算函数在指定区间上的平均变化率。

检查预习:见学案合作探究:探究任务一:问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?问题2;:在高台跳水运动中,,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度v粗略地描述其运动状态?交流展示:学生交流探究结果,并完成学案。

精讲精练:例1过曲线3==上两点(1,1)y f x x()+∆+∆作曲线的割线,求出当0.1P和(1,1)Q x y∆=时割x线的斜率.例2已知函数2=,分别计算()()f x xf x在下列区间上的平均变化率:(1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]有效训练练1. 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.练2. 已知函数()21f x x =+,()2g x x =-,分别计算在区间[-3,-1],[0,5]上()f x 及()g x 的平均变化率.反思总结1.函数()f x 的平均变化率是2.求函数()f x 的平均变化率的步骤:(1)求函数值的增量(2)计算平均变化率当堂检测1. 21y x =+在(1,2)内的平均变化率为( )A .3B .2C .1D .02. 设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( )A .0()f x x +∆B .0()f x x +∆C .0()f x x ∆D .00()()f x x f x +∆-3. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆ C .3t +∆ D .9t +∆4.已知212s gt =,从3s 到3.1s 的平均速度是_______5. 223y x x =-+在2x =附近的平均变化率是____6、已知函数12)(2-==x x f y 的图象上一点(1,1)及邻近一点(1+x ∆,+1(f x ∆)),求xy ∆∆ T(月)6 3 9 12【板书设计】:略【作业布置】:略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 1.1变化率问题课前预习学案。

知道平均变化率的定义。

,课本中的问题1,2预习目标:“变化率问题”预习内容:气球膨胀率问题1气球,,随着气球内空气容量的增加我们都吹过气球回忆一下吹气球的过程,可以发现 ,如何描述这种现象呢?的半径增加越来越慢.从数学角度43?r?r)V(dmVL r)气球的体积:(单位:之间的函数关系是)与半径(单位33V?)r(V V r,如果将半径那么表示为体积的函数3?4在吹气球问题中,当空气容量V从0增加到1L时,气球的平均膨胀率为__________当空气容量V从1L增加到2L时,气球的平均膨胀率为__________________当空气容量从V增加到V时,气球的平均膨胀率为_____________21问题2 高台跳水h与起跳后)单位:m在高台跳水运动中,,运动员相对于水面的高度h(2如何用运动+10. +6.5-4.9tt的时间t(单位:s)存在函数关系h(t)=v? 粗略地描述其运动状态员在某些时间段内的平均速度v5t.?00?=_________________ 这段时间里,在v2?t?1=_________________ 这段时间里,在ot问题3 平均变化率????xffxx到从已知函数,则变化率可用式子_____________,此式称之为函数1x?xx看做是相表示=___________,可把,即习惯上用___________.x??x?x122x?xx__________________,代替对于类似有的一个“增量”,可用,?x)?f(x?211_______________________于是,平均变化率可以表示为提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案1.学习目标理解平均变化率的概念;2.了解平均变化率的几何意义;.会求函数在某点处附近的平均变化率3.学习重点: .平均变化率的概念、函数在某点处附近的平均变化率学习难点: .平均变化率的概念学习过程一:问题提出率问题:1气球膨胀问题dmrVL__________. 之间的函数关系是)(气球的体积单位(单位::)与半径 ___________.,那么r表示为体积V的函数如果将半径___________. 气球半径增加了增加到1时,⑴当V从0___________.气球的平均膨胀率为___________. 气球半径增加了增加到2时,⑵当V从1___________.气球的平均膨胀率为可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.VV? 气球的平均膨胀率是多少时,思考:当空气容量从增加到h 21___________.问题2 高台跳水问题:)与起跳后的h(单位:m在高台跳水运动中,运动员相对于水面的高度(单位:s)存在怎样的函数关系?时间t mh与起跳后的时)在高台跳水运动中,运动员相对于水面的高度单位:(st___________.间)存在函数关系(单位:1.82,.5,1≤t≤)如何计算运动员的平均速度?并分别计算0≤t ≤0ot.≤2≤t2.2,时间段里的平均速度≤t≤2,v2?.51?t0?t?0的平均速度思考计算:和5.?00?t在__________.;这段时间里,_2t?1?___________. 这段时间里,在65?t0?:计算运动员在探究这段时间里的平均速度,并思考以下问题:49⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?65)0?hh(()2thtt+10+6.5,探究过程:如图是函数(的图像,结合图形可知,)= -4.94965??t0)/m0(s但实际情况是___________.所以虽然运动员在这段时间里的平均速度为,49运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. 1)计算和思考,展开讨论;(.)说出自己的发现,并初步修正到最终的结论上(2)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运3(②需要寻找一个量,能更精细地刻画运动员的运动状态;动状态.:二平均变化率概念)xf)?(xf(12xxxf的平均变化.1上述问题中的变化率可用式子)从到, 表示称为函数 (21x?x12.率?x?x?x?f?f(x)?f(x)?x x的一个“增量”可用 (.若设这里看作是对于, 211122?f??y?f(x)?f(x)x?xx) ,代替+同样2112?y?f??___________. 则平均变化率为3.?x?xfx)的图象( 思考:观察函数?f)f(xf(x)?12?? 表示什么平均变化率x?xx?12(1)一起讨论、分析,得出结果;(2)计算平均变化率的步骤:①求自变量的增量Δx=x-x;②求函数的增量Δf=f(x)-f(x);③求平1122f(x)?f(x)?f12?. 均变化率?xx?x12注意:①Δx是一个整体符,而不是Δ与x相乘;②x= x+Δx;12③Δf=Δy=y-y;12三.典例分析2xx??)?2?1,A(xf点)=近一及象的(图上的一点1例.已知函数临?y?)?y?x,?2?B(?1?. ,则?x解:2x?xx?y附近的平均变化率。

.求在例20解:四.有效训练23??ts)t??(3,3.中相应的平均速度为1.质点运动规律为,则在时间2ststt.求在4)=3附近的平均变化率+的规律作直线运动+4,2.物体按照(3xQxyxyfxP时割=0.1,1+Δ))=上两点作曲线的割线,求出当(1,1)和 (1+3.过曲线Δ=(Δ.线的斜率 1、平均变化率的概念反思总结: 2、如何求函数在某点附近的平均变化率当堂检测????231,?xfx?1、函数在区间)上的平均变化率是(31 D、、A4 B、2 C、442x?1.5,x?1x2?y?函数的直线的斜率(B、、经过函数2图象上两点A_______;)为BA.2x2y?在区间[1,1.5]上的平均变化率为_________________2t?s?3______中相应的平均速度等于[2,2.1]3、如果质点M按规律运动,则在时间课后练习与提高??2xf1???xf(x)、已知函数在下列区间上的平均变化率,分别计算1 (1)[1,1.01] (2)[0.9,1]y?f(x)在区间[-2,6]上的平均变化率为2,且函数图象过点(0,2、已知一次函数2),试求此一次函数的表达式。

21??2xy?f(x)?1f(x??x,)的图象上一点(1,3、已知函数1及邻近一点(1+)),?y求x??R,则球的加径的若热球R径将4、半为的加,球半增体积增量4??32??______?R4V??()R(?)R?__________?3.1.1.1 变化率问题教学目标:; 理解平均变化率的概念1.; 了解平均变化率的几何意义2.. 会求函数在某点处附近的平均变化率3. 教学重点: .平均变化率的概念、函数在某点处附近的平均变化率教学难点: .平均变化率的概念教学过程:一、创设情景,随着对函数的研究为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,:微积分的创立以自然科学中四类问题的处理直接相关产生了微积分,; 求物体在任意时刻的速度与加速度等一、已知物体运动的路程作为时间的函数,;线的切线二、求曲; 三、求已知函数的最大值与最小值.四、求长度、面积、体积和重心等值等问题最一般、)导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小.最有效的工具.变化率问题:研究某个变量相对于另一个变量变化的快慢程度导数研究的问题即二、新课讲授问题提出(一) 问题1 气球膨胀率气球的,随着气球内空气容量的增加, 我们都吹过气球回忆一下吹气球的过程,可以发现?从数学角度,如何描述这种现象呢半径增加越来越慢.43?r?(r)VdmVL r )之间的函数关系是)与半径:(气球的体积单位(:单位33V?)(Vr V r的函数如果将半径,表示为体积那么3?43V?)(Vr:分析3?4r(1)?r(0)?0.62(dm)V01 ,(1)当从气球半径增加了增加到时r(1)?r(0)?0.62(dm/L)气球的平均膨胀率为1?0r(2)?r(1)?0.16(dm)V21 ,气球半径增加了(2)当从增加到时r(2)?r(1)?0.16(dm/L)气球的平均膨胀率为2?1.它的平均膨胀率逐渐变小了,随着气球体积逐渐增大,可以看出)(VV)?rr(12VV时,思考: 当空气容量从? 增加到气球的平均膨胀率是多少21VV?12高台跳水问题2hm h与起跳(单位:在高台跳水运动中,运动员相对于水面的高度)2t10.5t??4.9t?6h(t)?s如何用(单位:后的时间.)存在函数关系v? 运动员在某些时间段内的平均速度粗略地描述其运动状态v2t?t?0.51?0?思考计算: 和的平均速度)(0)?hh(0.5?v/s)?4.05(m5.0?t?0,这段时间里在05?0.)(1h(2)?h)m8.2(/sv???2?1t?o这段时间里,在t12?65??t0:并思考以下问题探究: 计算运动员在这段时间里的平均速度,49运动员在这段时间内使静止的吗?(1) 你认为用平均速度描述运动员的运动状态有什么问题吗?(2)210t?t?6.5(ht)??4.9, 的图像探究过程: 如图是函数65)0h(()?h6549)ms/?0(v?))?h(h(0 ,结合图形可知,所以65490?4965)/m0(s?t0?, 虽然运动员在这段时间里的平均速度为49,,并非静止但实际情况是运动员仍然运动.可以说明用平均速度不能精确描述运动员的运动状态 )平均变化率概念(二)(xx)?ff(12表示,1.上述问题中的变化率可用式子x?x12xx)f(x.从的平均变化率称为函数到12x)f(x?f(x)?x??x?x?f x?的一个“增量”可用看作是对于, 2.若设(这里12121)xf(f(x)??x?x?f??y?x),同样代替1212)(xx)?f(x)f(x??)f(x?ffy??1121???则平均变化率为xx??xxx??12)xf(思考: 观察函数的图象f?)f(x)f(x?12??平均变化率表示什么x?xx?12三、典例分析2x??(fx)?x)?1(A?,2 1 例的图象上的一点已知函数及y?)?,??1?(Bx?2?y? . 临近一点则x?2?2??y??(?1??x)?(?1??x) : 解2?(?1??x1??x))?2?y?(???3??x∴?x?x2y?xx?x附近的平均变化率例2 求在.022x??x)?y?(x?解: 0022222x)?(x??xx??x??x2x?xy?00000x?????2x所以0xx??x?2x?2x?x?xxy?在所以附近的平均变化率为00四、课堂练习23t?s?)?t,3?(3 . 1.质点运动规律为,则在时间中相应的平均速度为24?t?(t)?3ts s4. 附近的平均变化率的规律作直线运动2.物体按照,求在3x??f(x)y)??y1Q(??x,1)(P1,1, 和上两点作曲线的割线3.过曲线1.0?x?. 时割线的斜率求出当五、回顾总结.平均变化率的概念1. 2.函数在某点处附近的平均变化率. 六、布置作业12xy?,2,31x?x?,哪一点附近的平均变化率附近的平均变化率,取都为求函数在3最大?。

相关文档
最新文档