(完整word版)充电电路的工作原理
充电电路原理

充电电路原理
充电电路的工作原理主要是根据蓄电池和逆变器对直流电源的不同要求进行设计的。
蓄电池要求直流电源提供的电压能随着蓄电池的充电过程而变化,而逆变器则要求直流电源提供稳定电压。
为了满足这些不同的要求,充电电路通常分为恒压充电、恒流充电和分级充电等类型。
在充电电路中,通常会有加电电路的设计。
这种电路可以在不加交流输入电压时,使外加蓄电池电压与UPS内部蓄电池形成并联结构。
当市电电压加到输入端时,电路会通过一系列的触点切换和限流电阻等环节,逐渐将电源引入并稳定供电。
此外,对于锂电池的充电,其工作原理主要涉及锂离子的运动。
在充电时,锂离子从正极向负极运动并嵌入石墨层中;放电时,锂离子则从负极表面脱离移向正极。
这种电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。
以上内容仅供参考,如需更全面准确的信息,可以查阅电路和电子相关书籍或咨询专业技术人员。
手机充电器原理图分析

手机充电器原理图分析
手机充电器是用来给手机充电的设备,其原理图可以分为输入部分和输出部分。
输入部分主要包括电源插头、电源线和电源适配器。
电源插头将交流电源接入充电器,电源线将电源信号传输到电源适配器。
电源适配器将交流电转换为直流电,并对电压进行调整。
输出部分主要包括输出线和USB插头。
输出线将调整后的直
流电传输到USB插头,供手机充电使用。
在电源适配器中,常见的电力转换器是开关电源。
开关电源包括变压器、整流器、滤波器和稳压器。
变压器将输入的交流电源通过变压比转换为较低或较高的交流电压。
整流器将交流电压转换为脉冲形式的直流电压。
滤波器通过滤除脉冲中的高频噪声,使输出电压变得更加平滑。
稳压器将滤波后的直流电压调整为所需的稳定电压,用于供给手机充电。
通过手机充电器原理图分析,我们可以看到其主要包括输入部分和输出部分。
输入部分包括电源插头、电源线和电源适配器,用于将交流电转换为直流电,并对电压进行调整。
输出部分包括输出线和USB插头,用于将调整后的直流电传输到手机进
行充电。
充电器的反馈电路工作原理

充电器的反馈电路工作原理充电器是我们日常生活中必不可少的电子设备之一,它能够为手机、平板电脑、笔记本电脑等设备充电。
而充电器的反馈电路则是决定充电器性能的关键部分之一。
本文将从充电器的反馈电路工作原理进行详细介绍。
反馈电路是充电器中的一个重要部分,主要用于控制充电过程中的电流和电压,保证充电器的稳定性和安全性。
充电器的反馈电路主要包括电流反馈和电压反馈两个方面。
我们来看电流反馈。
在充电器中,通过电流反馈可以实现对充电电流的控制。
充电器的输出电流与输入电流之间存在一个比例关系。
当充电器输出电流不足时,反馈电路会自动增大输出电流,以保证充电器能够提供足够的电流给充电设备。
当充电器输出电流过大时,反馈电路会自动减小输出电流,以避免充电器过载,从而保护充电设备的安全。
接下来,我们来看电压反馈。
在充电器中,通过电压反馈可以实现对充电电压的控制。
充电器的输出电压与输入电压之间也存在一个比例关系。
当充电器输出电压过高时,反馈电路会自动降低输出电压,以避免充电设备受到过高的电压而损坏。
当充电器输出电压过低时,反馈电路会自动增加输出电压,以保证充电设备能够正常充电。
充电器的反馈电路实际上是一个闭环控制系统,通过不断监测充电电流和电压的变化,对充电器进行调节,以实现稳定的充电效果。
充电器的反馈电路通常由一个控制芯片和一些外部元件组成。
控制芯片是充电器反馈电路的核心部分,它负责监测充电电流和电压,并根据设定的电流和电压值,控制充电器的输出。
控制芯片通常具有多种保护功能,如过流保护、过压保护、过温保护等,以确保充电器和充电设备的安全运行。
除了控制芯片,充电器的反馈电路还包括一些外部元件,如电阻、电容、二极管等。
这些外部元件与控制芯片配合工作,起到稳定和调节电流和电压的作用。
总结起来,充电器的反馈电路是控制充电器输出电流和电压的重要部分,通过对充电电流和电压进行反馈监测和调节,保证充电器的稳定性和安全性。
充电器的反馈电路由控制芯片和外部元件组成,控制芯片负责监测和控制充电电流和电压,而外部元件起到稳定和调节电流和电压的作用。
(完整word版)电子制作课程项目手机电池简易万能充电器

手机电池简易万能充电器的原理与制作目前市场上面充斥着形形色色、各式各样的手机电池万能充电器,这里暂且不讨论这些万能充电器的充电效果如何,以及是否有损电池寿命等问题,因为事实上,有相当一部分人在使用这类万能充电器为手机电池充电.这些充电器虽然电路简单、成本低廉,但其内部大都采用了一个小型的开关电源电路,对于初学者而言,若能亲自动手组装一个手机万能充,并绘制其电路、剖析其原理,不失为入门学习开关电源原理的一个好途径。
这里介绍两款廉价、简易的手机电池万能充电器,该类充电器在市面上随处可见,价钱从4元到10几元不等,可以联系相关小厂购买电路散件套件,价格也仅为4—6元,如图1所示。
一. 跑马灯指示型万能充图2为该款跑马灯指示型万能充电路原理图,本电路完全根据实物绘制整理。
图2 跑马灯指示型万能充(一) 电路组成 从原理图中可知,该万能充实质就是一个小型开关电源电路,整个电路大致可分图1 廉价的手机万能充电器为以下几个部分:输入整流滤波电路、开关振荡电路、过压保护电路、次级整流滤波电路、稳压输出电路、自动识别极性及充电电路、跑马灯充电指示电路等。
(二)电路基本工作原理当充电器插到交流电源上后,220V交流电压经D1半波整流、C1滤波,得到约300V左右的直流电压。
由 Q1、T1、R1、R3、R4、R5、C2等元件组成的开关振荡电路将直流转换为高频交流,振荡过程如下:通电瞬间,+300V电压通过启动电阻R1为开关管Q1提供从无到有增大的基极电流I B,Q1集电极也随之产生从无到有增大的集电极电流I C,该电流流经开关变压器T1的1—2绕组,产生上正下负的自感应电动势,同时在T1的正反馈绕组3-4中也感应出上正下负的互感电动势,该电动势经R3、C2等反馈到Q1的基极,使I B进一步增大,这是一个强烈的正反馈过程:I I B↑在这个正反馈的作用下,Q1迅速进入饱和状态,变压器T1储存磁场能量。
此后正反馈绕组不断的对电容C2充电,极性为上负下正,从而使Q1基极电压不断下降,最后使Q1退出饱和状态,T1 1—2绕组的电流呈减小趋势,T1各绕组的感应电动势全部翻转,此时T1 3—4绕组的感应电动势极性为上负下正,该电动势反馈到Q1的基极后,使IB进一步减小,如此循环,进入另一个强烈正反馈过程,使Q1迅速截止.随后C2在自身放电及+300V对它的反向充电的作用下,又使Q1基极电压回升,进入下一轮循环,从而产生周期性的振荡,使Q1工作在不断的开、关状态下。
电池充电器工作原理

电池充电器工作原理
电池充电器是一种用来给电池充电的设备,其工作原理主要包括以下几个方面。
1. 原理介绍:电池充电器通过改变外电源的电压和电流来向电池提供所需的电能,以实现电池的充电。
2. 变压器:充电器中通常配备有一个变压器。
变压器的作用是将输入的交流电转换为适合电池充电的电压。
一般情况下,电池充电所需的电压要比输入电源的电压低,因此变压器会将输入电压降低到合适的充电电压。
3. 整流器:变压器输出的是交流电,而电池需要直流电才能充电。
因此,充电器中还会配备一个整流器。
整流器的作用是将交流电转换为直流电,以满足电池充电的需求。
4. 控制电路:充电器还会配备一个控制电路,控制电路能够根据电池的充电状态来控制充电器的工作。
当电池处于放电状态或充电状态不足时,控制电路会使充电器工作;当电池充电至一定程度或充电完毕时,控制电路会停止充电器的工作。
这样可以防止过充电或过放电对电池的损害。
5. 保护功能:一些充电器还会配备一些保护功能,比如过电流保护、过热保护等,以确保充电器和电池的安全性。
总结:电池充电器通过变压器将输入电压降低,并通过整流器将交流电转换为直流电,以向电池提供合适的充电电压和电流。
同时配备控制电路和保护功能来保护电池和充电器的安全,实现电池的充电。
电瓶充电器的工作原理

电瓶充电器的工作原理
电瓶充电器的工作原理是将交流电转换为直流电,并通过控制电流和电压的方式将直流电输入到电池中进行充电。
电瓶充电器一般由变压器、整流桥、电子控制电路和输出滤波电路等组成。
首先,变压器将输入的交流电转换为较低电压的交流电,并通过整流桥将交流电转换为直流电。
然后,电子控制电路负责控制直流电的电压和电流的输出,以保证电池的充电过程安全无误。
最后,输出滤波电路用于滤除输出直流电中的杂散波动,以确保输出电流的稳定性和纯度。
在充电过程中,电瓶充电器的电子控制电路会根据电池的电压和电流的需要,调节输出电压和电流。
当电池电压较低时,充电器会提供较高的电压和电流进行充电,直到电池电压接近正常值时,电瓶充电器会降低输出电压和电流,以避免过充。
同时,电瓶充电器还会具备保护功能,如过流保护、过热保护等,以确保充电过程的安全性。
总而言之,电瓶充电器的工作原理是通过变压器将交流电转换为直流电,然后通过控制电压和电流的方式进行可控的充电过程,以满足电池的充电需求。
实用万能充电器电路原理图及分析

实用万能充电器电路原理图及分析一、工作原理该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。
在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。
具体电路原理如下。
1.振荡电路该电路主要由三极管VT2及开关变压器T1等组成。
接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。
该电压经开关变压器T的1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。
此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。
由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。
随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T的1-1初级绕组中产生的磁通量也开始减少。
在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。
在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充电电压。
2.充电电路该电路主要由一块软塑封集成块IC1(YLT539)和三极管VT3等组成。
从变压器T的1-3绕组感应出的交流电压5.5V经二极管VD3整流、电容C3滤波后,输出一个直流8.5V左右电压(空载时),该电压一部分加到三极管VT3的e极;另一部分送到软塑封集成块IC1(YLT539)的1脚,为其提供工作电源。
集成块IC1有了工作电源后开始启动工作,在其8脚输出低电平充电脉冲,使三极管VT3导通,直流8.5V电压开始向电池E充电。
手机充电器的工作原理

手机充电器的工作原理
手机充电器的工作原理主要包括三个步骤:变压、整流以及稳压。
1. 变压:手机充电器会将来自电源插座的交流电(AC)通过
变压器进行转换,降低电压到适合手机充电的直流电(DC)。
这是因为手机电池需要直流电才能进行充电。
2. 整流:在变压之后,交流电会经过整流电路。
整流电路使用二极管将交流电转换为只具有一个方向电流的直流电。
这样可以确保电流持续流入手机电池,而不会产生反向电流。
3. 稳压:为了确保手机电池可以安全充电并保护电池寿命,充电器会通过稳压电路来控制输出电压的稳定性。
稳压电路可以调整电压并保持在一个恒定的水平,以满足手机电池的充电需求。
综上所述,手机充电器通过变压、整流和稳压三个步骤将来自电源插座的交流电转换为适合手机电池充电的稳定直流电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
充电电路工作原理蓄电池与逆变器对直流电源的要求不同:逆变器要求直流电源提供稳定电压;蓄电池要求直流电源提供的电压能随着蓄电池的充电过程而变化。
为了解决蓄电池、逆变器对直流电源的不同要求,故UPS分别设置整流器及充电电路。
根据UPS容量大小、工作方式不同,充电电路可分为恒压充电、恒流充电、分级充电等电路。
介于充电电路在整个系统中的重要作用,我做了多方面的考虑,最后决定采用高压快速充电电路。
在此所用的高压快速充电电路不但解决了UPS内部蓄电池的快速充电问题,而且解决了一般不能快充外接蓄电池的问题。
工作原理分析:该电路适用于长备用时间、大容量蓄电池的充电。
它由以下几个部分组成:(1)加电电路在不加交流输入电压时,继电器J2的中间触点a2和b2相连,如果这时开关K是闭合的,那么外加蓄电池电压就和UPS内部蓄电池形成并联结构,此时控制电路由于没有电源而不能工作。
当市电电压220V加到输入端时,由于继电器J1的触点处于断开状态,因而交流电压220V就不能加到变压器T1上。
当按下按钮N1时,J1被激励,触点J1闭合。
这时电流经限流电阻R x加到变压器T1上,等到变压器初级绕组的电压达到一定值时,J3被激励,触点闭合,将电阻R x短路。
在交流220V加到输入端的同时,J2被激励,继电器触点a2转接到c2,于是电池组电压UB经R2、VD6加到控制电路上。
N2为按断开关,在未按下开关N2时其处于闭合状态将两个单结晶体管振荡器的发射扳旁路,故振荡器不工作,电路处于静止等待状态。
加电电路中之所以加入了J3和R x环节,是因为一般电源变压器的匝间电容使加电前沿的电流被旁路,磁通不能马上建立起来,形成很大的短路电流。
如未变压器容量再增加,这种启动瞬间短路电流就会更严重。
因此,在加电前瞬间用电阻R x限流,当变压器上电压升到一定值时,再将R x短路就可避免这种情况的发生。
当按下开关N1瞬间,由于有上述的过程,最好不要马上供电。
在N2被按下,该开关处于断开状态,电容C5的充电能延缓振荡器的起振,只有当C5上电压上;升到一定值时,振荡器才开始工作。
(2)振荡电路Q 1、R 4、R 5和C 2、T 2,Q 2、R 9、R 10 、C 3和T 3组成了两套单结晶体管振荡器。
之所以采用单结晶体管方案,是因为它电路简单而且能瞬时给出大的触发功率,可直接驱动可控硅。
在需要给蓄电池组充电的情况下,单结晶体管振荡器呈连续振荡,其波形图如下图所示:图2.7 单结晶体管振荡器波形 U e 为发射极波形,eb 1为第一基极b 1的输出波形,其振荡周期可用下式表示:η-=11In T C R E E (2-2-10) 式中,T 为振荡周期(s ),RE 为接在单结管发射极的电阻(Ω),这里是R 5和R 9,CE 为单结管射极的电容(F ),这里是C 2和C 3,η为单结管的分压比。
由基极变压器将控制脉冲加到主回路可控硅的控制极上。
单结管振荡器的发射极各与两个并联运算放大器的输出相连,因而它们的工作状况受相应运算放大器的控制,振荡脉冲的有无与疏密随着相应运算放大器的工作状态而改变。
(3)测量与控制电路1)限流与恒流控制电路蓄电池经过一定时间的放电进行再充电时,初始充电电流很大,所以要进行限流,即在充电电流超过其规定值以前,将其恒定在规定的限流值上。
由图中可以看出,运放U 1的4端和6端均接基准电压,即U1-4=U 1-6,而U 1-5=U 1-7的电压为两个电压之差,即U 1-5=U 1-7=U 1-5B =U 1-5A -U 1-AB在上面的式子中,U1-5A为U1引脚5至A点电压,U5B为U1引脚5至B点的电压,U1-AB为充电期间,充电电流在导线BA上形成的压降,其方向和原来不充电时风上的电压极性相反。
U1-5>U1-4运放U1(LM339)输出开路,不影响振荡器工作。
一旦充电电流很大时,则U1-5=U1-5A-U1-AB=U1-5A-I充R AB接近了U1-4=U1-6值,运放进入放大状态,其输出就对两单结管发射极产生了旁路作用,从而降低了C2及C3的充电速度,降低了脉冲频率,延迟了对可控硅的触发时间,调整了导通角,达到了限流恒压充电的目的。
2)电压测量与控制电路由图中可以看出,和运放U l的两输出端1、2并联的还有U2的两个运放输出端1、2,这就是电压的测控环节。
在高压充电电路的电路设计中是这样规定的:当充电电压在预设值以下时,运放的输入端电压U2-4=U2-6<U2-5和U2-7所以比较器U;的这两个输出端是开路状态,两个振荡器都正常工作。
当充电电压U B达到第一限值时,U2的6端电平大于7端电平,则1端输出低电子,振荡管Q2的发射极被嵌位,于是由Q2构成的单给管振荡器停振,对应的可控硅VT2截止,快充结束,只剩下浮充(实际上这时仍是快充,不过其平均充电电流减半)。
当充电电平达到第二限值时,比较器U2的U2-4≥U2-5,使该组件为放大或开关状态,开始对第二只可控硅VT1进行相控,同时电压UB就稳定在这个电平上,电压变化小于0.1V。
4)冷却控制电路这里采取的是强迫风冷。
我们考虑到很多要求长备用时间的UPS电源是昼夜24小时开机的,但充电电路在大部分时间内都处于浮充状态,平时并不需要让风机始终工作在强风冷却状态。
为了延长风机的寿命,加入了冷却控制电路,由比较器U1的输入端8、9脚将信号引入,在电路进行全充电时,U1的输出端14脚为低电平,所以比较器U2的输入电平U2-8<U2-9,14脚输出高电平,经VD14去驱动Q4,从而继电器J4被激励,其中心触点将风机FAN接入220V全电压电路,进行强风冷却。
当蓄电池电平达到第一限值时,U1的14脚输出高电平,则比较器U2的U2-8>U2-9,其输出端14脚输出低电平,使Q4截止,其中心触点与降压输出相连接,于是风机FAN作降压运行,风力减弱,从而减轻了风机的磨损,节省了电力,降低了噪声。
5)主回路主充电回路主要包括两只可控硅和两只二极管整流器。
为了提高触发效率和进行隔离,采用了脉冲变压器隔离触发,在可控硅控制极的二极管是用来对控制脉冲进行整形的。
6)用继电器输出,实现了充电时与逆变器的隔离。
充电电路中各主要多数的计算(1)交流指示图中采用的10mA /1.5V 正向压降的发光二极管指示状态Ω≈=k mAV R 22102201 (2-2-11)w R I P 2.221==(2-2-12)(2)R x根据不同变压器容量取不同值,在这里我们的参数是10kV A,16块电池(12×16=192V ),浮充电压(设电池每单元浮充电压为2.25V ,一个12V 电池由六个单元构成)U 浮=(2.25 X 6)X 16=216V ,熔断丝 R D 取 6A ,则:Ω===366220RD X I U R (2-2-13) 功率P x =IU =6 * 2 20=1320W (2-2-14)实际上,R X 的使用只是一瞬间的事情,甚至来不及发热,J 3已将其旁路了。
为了保险起见,取10W 足够了。
(3)J 1,J 2和J 3均取绕组电压为220V ,触点电流为相应容量的继电器就可以了。
(4)稳压管DW 8、 DW 9的选取:使 U Ds + U D ≈ 24V ,电流取10mA 。
其余各稳压管均取2CW54(2CW13)型 6V /10mA 即 可。
(5)单结管振荡器图中单结管选用了500mw 的BT33F ,由表查得η在0.65~0·85之间,取0·75,其振荡周期为E E E E C R In C R T 39.111≈-=η(2-2-15) 振荡周期较短可提高稳压精度,但不太显著;而较长其影响却非常显著,取振荡频率为IkHz 左右就可以了。
若取T =1ms ,则3310*719.039.110*139.1--===T C R E E (2-2-16) 根据触发脉冲的宽度,取CE=0.1μF 就够了,故Ω=⨯⨯=--k R E 19.7101.010719.063(2-2-17) 取8.2kΩ。
由于功率很小,取l /4W 就可以了。
以下的计算,如无特殊说明,均取1/4W 。
(6)限流环节因为基准电压为6V ,即运放U 1的4脚与6脚电压为6V ,只要电位器W 1可以将其5脚、7脚电压调到6.5V 即可,为此取通过R 7、W 1的电流为lmA ,则Ω==+k mAV W R 2412417 (2-2-18) 那么117W W R UP UA += (2-2-19) 于是()Ω=⨯=+=k UA UP W R W 624624171 (2-2-20) 取标称值6.8kΩ,则R 7=24-6.8=17.2k0,取18k Ω。
取18k Ω验算是否U P >6V 。
因为V U W R W U A P 6.6248.248.6171=⨯=+= (2-2-21) 所以满足要求。
(7)电压测控环节此电路电压分两挡控制,第一档为电池开始冒泡电压,第二挡为每单元电池达到2.25V 电压。
不同型号和不同厂家的电池其冒泡电压有所区别。
对于开放式半密封胶体电池来说,通过加电过程的观察,按实际情况定;而对密封电池,每单元电压按2V 计算。
设胶体电池在充电电压使每个单元电压达到 2.25V 时为第一限,这时的充电电压为U B =(2.25 * 6) * 16= 216V (2-2-22)仍设电阻臂电流为lmA ,并设M 点电压在216V 充电电压时,U M ≈6V ,于是Ω==+k mAV W R 2161216214 (2-2-23)()Ω=⨯=+=k U U W R W B M 621662162142 (2-2-24) 取标称值 6.8kΩ,则R 14=216-6=210kΩ,为使取值和第二限值统一,考虑给 W 2以较大的调节范围,故取R 14=210k Ω。
只要保证在第一限值 216V 以前 U M < 6V ,在216V 以后U M >6V ,在第二限值(2.3 * 6)*16=220.8V 以前U N <6V ,在220.8V 以后U N > 6V 就可以了。
为此,对上述两条分别作一个计算,即只要保证将W 2=W 3=6.8kΩ全值投入后,在216V 充电电压时,M 点分压大于6V 就可以了。
第二种计算就不需要了,因为 216V 时,U M >6V ,220.8V 时当然更大于 6V 了。
该计算是:V U W R W U B M 68.62162108.68.62142>≈⨯+=•+= (2-2-25) 计算结果满足要求。
因此,只需根据要求把电位器值适当调小就可以了。
(8)低压准备停机测量环节当电池放电时,原来充入的电荷会慢慢消耗,当电池组端电压降到一定值时,就应停止再放电,否则将会损害电池。