余数性质及同余定理(B级) 1

合集下载

余数及同余

余数及同余

余数及同余
一、带余除法的定义:
一般地,如果a是整数,b是整数(b≠0),若有a÷b=q…r,也就是a =b×q+r,
0≤r<b;我们称上面的除法算式为一个带余除法算式.这里:
(1)当时:我们称a可以被b整除,记作b|a,q称为a除以b 的商或完全商
(2)当时:我们称a不可以被b整除,记作,q称为a除以b的商或不完全商
二、同余的概念
两个整数被同一个大于1的整数m除,所得的余数相同,就说这两个
整数对于除数m来说是同余的.也可以换句话来说这个概念,如果两个整数的差能被大于1的整数m整除,那么这两个整数对于除数m来说是同余的.
同余的概念和符号都是德国伟大数学家高斯引进的.一般地,两个整数a和b,除以大于1的正整数m,如果所得的余数相同,就说a、b对于模m 同余,记作a≡b(mod m).
由于一个整数被m除的余数只能是0、1、2、3、…、m-1这m个数,所以全体整数可按被m除的余数分类,凡是余数相同的归为一类,全体整
数就被划分成了m类,同一类中的任何两数被m除的余数都相等,即同一
类中任何两数的差都能被m整除,不同类的任何两数被m除的余数都不相等.
1
“华杯赛”官网()版权所有第页。

数论中的同余定理

数论中的同余定理

数论是研究整数的性质和结构的学科,它涉及了很多有趣而又重要的定理和原理。

在数论中,同余定理是一个非常基础而且重要的概念。

同余定理通过研究整数的除法运算与取余运算之间的关系,帮助我们理解整数的性质和规律。

下面我们将详细讨论同余定理的概念和其在数论中的应用。

首先,我们来了解一下同余的概念。

在数学中,同余是指整数之间满足某种特定关系的性质。

具体而言,如果两个整数除以同一个正整数所得的余数相等,则这两个整数被称为同余的。

用数学符号来表示,即对于整数a、b和正整数m,如果a与b除以m所得的余数相等,则称a与b关于模m同余,记作a≡b (mod m)。

例如,5≡11 (mod 3),表示5与11关于模3同余。

接下来,我们来介绍同余定理及其相关概念。

同余定理是数论中的一组基本定理,它揭示了整数之间同余关系的一些基本性质。

常见的同余定理有三类:欧拉定理、费马小定理和中国剩余定理。

欧拉定理是数论中最重要的定理之一。

它是基于欧拉函数的一个结论,表明对于任意正整数a和正整数m,如果a与m互质(即它们没有公共因子),则有a^φ(m)≡1 (mod m),其中φ(m)表示小于m且与m互质的正整数的个数。

费马小定理是同余定理中的另一个重要定理。

它是费马定理的一个特殊情况,宣称对于任意正整数a和质数p,有a^p≡a (mod p)。

这个定理常常用于证明一些数论问题,尤其是在素数的应用中经常被使用。

中国剩余定理是一组定理的集合,用于解决一类同余方程组的问题。

对于给定的一组余数和模数,中国剩余定理可以找到一个与这组余数同余的最小非负整数。

这个定理在密码学和计算机科学中有着广泛的应用,被用于构建高效的算法和数据结构。

同余定理在数论中有着重要的应用。

首先,同余定理可以帮助我们简化复杂的计算。

由于同余关系的转换性,我们可以通过将整数转换为其对模m的余数,将复杂的运算转化为简单的模运算,从而简化了问题的求解过程。

此外,同余定理还能够帮助我们证明数论问题中的一些重要结论。

余数与同余解析

余数与同余解析

六余数和同余 1.有余数的除法各部分之间的关系:被除数=除数×商+余数被除数-余数=商×除法 2.除法算式的特征:余数<除数 3.有关余数问题的性质:性质1:如果两个整数a,b 除以同一个数m,而余数相同,那么a 和b 的差能被m 整除。

性质2:对于同一个除数,如果两个整数同余,那么他们的差就一定能被这个数整除。

性质3:对于同一个除数,如果两个整数同余,那么他们的乘方仍然同余。

解答同余类型题目的关键是灵活运用性质,把求一个比较大的数字除以某数的余数问题转化为求一个较小数除以这个数的余数,使复杂的问题变得简单化。

1.把题目转化为算式就是:□÷7=□……□ 余数要比除数7 小,商和余数相同,题中商和余数可能是0、1、2、3、4、5、6,带入原式。

根据被除数=商×除法+余数,算得:0×7+0=0;1×7+1=8;2×7+2=16;3×7+3=24;4×7+4=32;5×7+5=40;6×7+6=48。

所求被除数可能是:0、8、16、24、32、40、48。

一个三位数被37 除余17,被36 除余3,那么这个三位数是多少?有啥好方法吗?这道题可采取经典的余数处理方法------凑。

这个凑,可不是漫无目的的凑。

而是有理有据才行。

1、找一个最小的自然数,满足除以37 余17,当然17 即可满足。

2、很显然,这个数除以36 并不余3,作适当调整。

3、为了不改变37 的那个余数,每次可加上一个37. 4、每加一次37,除以36 的那个余数就增加1(记住,不要计算被除数是多少,而采取的是余数的性质。

被除数扩大一倍,余数也扩大一倍,被除数增加几,余数也会增加几(或者除以除数的余数))5、因为我们要求的数除以36 要余3,现在只是余17,即达到36 后再多出3,即余39 (注意,这里用的是扩展余数),还差39-17=22.所以要增加22 个37. 6、结果是17+22×37 即为答案。

同余运算原理

同余运算原理

同余运算原理同余运算原理是数论中一个重要的概念,它描述了两个整数之间的一种等价关系。

在数学中,同余运算是指两个整数除以同一个正整数所得的余数相等。

这个概念在密码学、计算机科学和其他领域中都有广泛的应用。

本文将从同余运算的定义、性质、应用以及相关定理等方面进行介绍。

同余运算的定义很简单,对于给定的整数a、b和正整数m,如果a和b除以m所得的余数相等,即(a mod m) = (b mod m),则称a与b在模m下同余,记作a ≡ b (mod m)。

其中mod是取模运算的符号,表示取余数的操作。

同余运算可以理解为将整数集合划分为若干个等价类,每个等价类中的整数与模m下的余数相等。

同余运算具有以下几个重要的性质:传递性、反射性、对称性和合并性。

传递性指如果a ≡ b (mod m)且b ≡ c (mod m),则a ≡ c (mod m)。

反射性指a ≡ a (mod m),即任意整数与自身在模m下同余。

对称性指如果a ≡ b (mod m),则b ≡ a (mod m)。

合并性指如果a ≡ b (mod m)且c ≡ d (mod m),则a + c ≡ b + d (mod m)和a - c ≡ b - d (mod m)。

同余运算在密码学中有广泛的应用,特别是在公钥密码学中。

RSA 加密算法就是基于同余运算原理设计的一种非对称加密算法。

在该算法中,两个大质数的乘积被用作模数m,并选择一个与欧拉函数值互质的整数作为加密密钥e。

通过对明文进行加密运算得到密文,密文再通过解密运算得到原始的明文。

RSA算法的安全性基于大整数分解的困难性,即将大整数因式分解的难题。

除了密码学,同余运算还在计算机科学中起到重要的作用。

在计算机中,同余运算常常用于计算哈希函数的值。

哈希函数将任意长度的输入数据映射为固定长度的哈希值,而同余运算可以将哈希值映射到一个较小的范围内。

这在数据索引、数据校验和数据完整性验证等方面都具有重要的应用。

同余的概念与性质

同余的概念与性质

同余的概念与性质同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。

性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。

性质2:同余关系满足下列规律:(1)自反律:对任何模m 都有)(mod m a a ≡;(2)对称律:若)(mod m b a ≡,则)(mod m a b ≡;(3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。

性质 3:若,,,2,1),(mod s i m b a i i =≡则).(mod ),(mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++推论: 设k 是整数,n 是正整数,(1)若)(mod m c b a ≡+,则)(mod m b c a -≡。

(2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。

性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。

性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。

性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。

性质7:若)(mod m b a ≡,且m m |1,则)(mod 1m b a ≡。

性质8:若)(mod i m b a ≡,s i ,,2,1 =,则]),,,(mod[21s m m m b a ≡这里],,,[21s m m m 表示s m m m ,,,21 的最小公倍数。

同余定理知识点总结

同余定理知识点总结

同余定理知识点总结同余定理通常被描述为以下形式:如果整数a和b对于模m同余,即a ≡ b (mod m),那么a和b除以模m的余数是相等的。

同余定理可以改写为a mod m = b mod m。

同余定理有两个基本的性质。

首先,它是一种等价关系,具有自反性、对称性和传递性。

其次,同余定理具有乘法和加法性质。

首先,我们来讨论同余定理的基本性质。

同余关系是一种等价关系,即它具有自反性、对称性和传递性。

自反性指的是对于任意的整数a,a ≡ a (mod m)。

这意味着任意整数都与自己对模m同余。

对称性指的是如果a ≡ b (mod m),那么b ≡ a (mod m)。

传递性指的是如果a ≡ b (mod m)且b ≡ c (mod m),那么a ≡ c (mod m)。

这三种性质构成了同余关系的一个等价关系,可以将整数划分为同余类,使得具有相同除模m余数的整数在同一个同余类中。

其次,同余定理具有乘法和加法性质。

对于任意的整数a、b、c和模m,如果a ≡ b (mod m)和c ≡ d (mod m),那么有以下性质:a + c ≡ b + d (mod m)和a * c ≡ b * d (mod m)。

这两个性质表明了同余定理在乘法和加法下的保持性。

同余定理在数论和代数中有广泛的应用。

首先,同余定理常常被用来简化计算。

通过使用同余定理,我们可以将复杂的计算转化为求余数的简单计算,从而节省时间和精力。

其次,同余定理在代数方程的求解中有着广泛的应用。

例如,对于一个模线性方程a * x ≡ b (mod m),我们可以通过同余定理将其转化为x的一元一次同余方程,从而求解出x的取值范围。

此外,同余定理在密码学领域也有着重要的应用。

加密算法中常常使用同余定理来进行模运算,从而实现数据的加密和解密。

在数论中,同余定理还有一些重要的推论。

首先,费马小定理和欧拉定理是同余定理的重要推论。

费马小定理描述了素数模意义下的幂运算规律,欧拉定理描述了任意模意义下的幂运算规律。

余数性质及同余定理答案

余数性质及同余定理答案

知识框架一、带余除法的定义及性质1. 定义:一般地,如果a是整数,b是整数(b工0若有a4)=q••…r,也就是a= b X q+ r,0奇v b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当r 0时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当r 0时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图屈这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2. 余数的性质⑴ 被除数除数商余数;除数(被除数余数)商;商(被除数余数)除数;⑵余数小于除数.二、余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23, 16除以5的余数分别是3和1 ,所以23+16 = 39除以5的余数等于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23, 19除以5的余数分别是3和4,所以23+19 = 42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。

例如:23, 16除以5的余数分别是3和1,所以23 —16= 7除以5的余数等于2,两个余数差3- 1当余数的差不够减时时,补上除数再减。

例如:23, 14除以5的余数分别是3和4 , 23- 14= 9除以5的余数等于4,两个余数差为3 + 5-4 =43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23, 16除以5的余数分别是3和1,所以23X 16除以5的余数等于3X1= 3。

同余的基本概念和性质

同余的基本概念和性质
4 16,28 256,216 154,232 1 (mod 641)。
例3 说明 是否被641整除。
因此 0 (mod 641),
即641 。
第一节 同余的基本性质
第一节 同余的基本性质
设式(4)对于n = k成立,则有 1 (mod 2k + 2) = 1 q2k + 2, 其中qZ,所以
=(1 q2k + 2)2=1 q 2k + 31(mod 2k + 3), 其中q 是某个整数。这说明式(4)当n = k 1也成立。 由归纳法知式(4)对所有正整数n成立。
第一节 同余的基本性质
a2 1 (mod p) pa2 1 = (a 1)(a 1),
证明 由
pa 1或pa 1,
所以必是
a 1或a 1 (mod p)。
例8 设p是素数,a是整数,则由a2 1(mod p)可以推出
即a 1 (mod p)或a 1 (mod p)。
解 因为792 = 8911,故 792n 8n,9n及11n。 我们有 8n 8 z = 6,
证明 留作习题。
定理5 下面的结论成立: (ⅰ) a b (mod m), dm, d>0 a b (mod d); (ⅱ) a b (mod m), k > 0, kN ak bk (mod mk); (ⅲ) a b (mod mi ),1 i k a b (mod [m1, m2, , mk]); (ⅳ) a b (mod m) (a, m) = (b, m); (ⅴ) ac bc(modm), (c, m) =1 a b (mod m).
定义1 给定正整数m,如果整数a与b之差被m整除,则称a与b对于模m同余,或称a与b同余,模m,记为 a b (mod m), 此时也称b是a对模m的同余
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MSDC模块化分级讲义体系 五年级奥数.数论. 余数性质及同余定理(B级).学生版 Page 1 of 9 一、 带余除法的定义及性质 1. 定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。这里: (1)当0r时:我们称a可以被b整除,q称为a除以b的商或完全商 (2)当0r时:我们称a不可以被b整除,q称为a除以b的商或不完全商 一个完美的带余除法讲解模型:如图

这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。 2. 余数的性质 ⑴ 被除数除数商余数;除数(被除数余数)商;商(被除数余数)除数; ⑵ 余数小于除数.

二、 余数定理: 1.余数的加法定理 a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为2

2.余数的加法定理 a与b的差除以c的余数,等于a,b分别除以c的余数之差。

知识框架 余数性质及同余定理 MSDC模块化分级讲义体系 五年级奥数.数论. 余数性质及同余定理(B级).学生版 Page 2 of 9

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2. 当余数的差不够减时时,补上除数再减。 例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4

3.余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a与b除以m的余数相同,那么na与nb除以m的余数也相同.

一、 同余定理 1、 定义 整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即 a≡b(modm) 2、 同余的重要性质及举例。 〈1〉a≡a(modm)(a为任意自然); 〈2〉若a≡b(modm),则b≡a(modm) 〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm); 〈4〉若a≡b(modm),则ac≡bc(modm) 〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm); 〈6〉若a≡b(modm)则an≡bm(modm) 其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性" 注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b(modm) 3、 整数分类: 〈1〉用2来将整数分类,分为两类: 1,3,5,7,9,……(奇数); 0,2,4,6,8,……(偶数) 〈2〉用3来将整数分类,分为三类: 0,3,6,9,12,……(被3除余数是0) 1,4,7,10,13,……(被3除余数是1) 2,5,8,11,14,……(被3除余数是2) MSDC模块化分级讲义体系 五年级奥数.数论. 余数性质及同余定理(B级).学生版 Page 3 of 9

〈3〉在模6的情况下,可将整数分成六类,分别是: 0(mod6):0,6,12,18,24,…… 1(mod6):1,7,13,19,25,…… 2(mod6):2,8,14,20,26,…… 3(mod6):3,9,15,21,27,…… 4(mod6):4,10,16,22,29,…… 5(mod6):5,11,17,23,29,……

一个自然数被9除的余数和这个自然数所有数字之和被9除的余数相同。 同余在解答竞赛题中有着广泛的应用.在这一讲中,我们将深入理解同余的概念和性质,悟出它的一些运用技巧和方法.

【例 1】 一个两位奇数除1477,余数是49,那么,这个两位奇数是多少? 【巩固】 2024除以一个两位数,余数是22.求出符合条件的所有的两位数. 【例 2】 两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_______. 【巩固】 用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?

【例 3】 一个家庭,有父、母、兄、妹四人,他们任意三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是多少岁?

重难点 例题精讲 MSDC模块化分级讲义体系 五年级奥数.数论. 余数性质及同余定理(B级).学生版 Page 4 of 9 【巩固】 有三所学校,高中A校比B校多10人,B校比C校多10人.三校共有高中生2196人.有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等.三所学校总人数是5480人,那么A校总人数是________人.

【例 4】 求4373091993被7除的余数.

【巩固】 一个数被7除,余数是3,该数的3倍被7除,余数是 。 【例 5】 若2836,4582,5164,6522四个自然数都被同一个自然数相除,所得余数相同且为两位数,除数和余数的和为_______. MSDC模块化分级讲义体系 五年级奥数.数论. 余数性质及同余定理(B级).学生版 Page 5 of 9

【巩固】 一个大于1的数去除290,235,200时,得余数分别为a,2a,5a,则这个自然数是多少? 【例 6】 有这样一类2009位数,它们不含有数字0,任何相邻两位(按照原来的顺序)组成的两位数都有一个约数和20相差1,这样的2009位数共有________个.

【巩固】 在两位数10,11,…,98,99中,将每个被7除余2的数的个位与十位之间添加一个小数点,其余的数不变.问:经过这样改变之后,所有数的和是多少?

【例 7】 甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A

除乙数所得余数是A除丙数所得余数的2倍.求A等于多少? MSDC模块化分级讲义体系 五年级奥数.数论. 余数性质及同余定理(B级).学生版 Page 6 of 9

【巩固】 已知60,154,200被某自然数除所得的余数分别是1a,2a,31a,求该自然数的值. 【例 8】 【答案】29已知n是正整数,规定!12nn, 令1!12!23!32007!2007m,则整数m除以2008的余数为多少?

【巩固】 已知n是正整数,规定!12nn, 令3!34!45!52012!2012Q,则整数Q除以2013的余数为多少?

【例 9】 设n为正整数,2004nk,k被7除余数为2,k被11除余数为3,求n的最小值. MSDC模块化分级讲义体系 五年级奥数.数论. 余数性质及同余定理(B级).学生版 Page 7 of 9

【巩固】 试求不大于100,且使374nn能被11整除的所有自然数n的和. 【例 10】 一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?

【巩固】 两位自然数ab与ba除以7都余1,并且ab,求abba. 【随练1】 已知2008被一些自然数去除,所得的余数都是10,那么这样的自然数共有多少个? 课堂检测 MSDC模块化分级讲义体系 五年级奥数.数论. 余数性质及同余定理(B级).学生版 Page 8 of 9

【随练2】 20032与22003的和除以7的余数是________. 【随练3】 M、N为非零自然数,且20072008MN被7整除。MN的最小值为 。 【作业1】 大于35的所有数中,有多少个数除以7的余数和商相等? 【作业2】 一个三位数除以36,得余数8,这样的三位数中,最大的是__________。 【作业3】 三个数:23,51,72,各除以大于1的同一个自然数,得到同一个余数,则这个除数是 。

家庭作业 MSDC模块化分级讲义体系 五年级奥数.数论. 余数性质及同余定理(B级).学生版 Page 9 of 9

【作业4】 学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?

【作业5】 修改31743的某一个数字,可以得到823的倍数。问修改后的这个数是几? 【作业6】 科学家进行一项实验,每隔5小时做一次记录。做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?

学生对本次课的评价 ○特别满意 ○满意 ○一般 家长意见及建议

家长签字:

教学反馈

相关文档
最新文档