玻色一爱因斯坦凝聚

合集下载

玻色-爱因斯坦凝聚简介

玻色-爱因斯坦凝聚简介
科技信息
高校 理科 研 究
玻色 一爱因斯l 凝聚简介 旦
空军航 空大 学基础部 仲 丽丽 胡 玮通 徐 莹 于 丹
[ 摘 要] 近年来 , 有关玻 色 一爱因斯坦凝聚 B s— is i o dnain B C) ̄ oe Ent ncn es o ( E 6 实验研 究取得 了一 系列重要成果。本 文简述 了玻 色 e t J 爱 因斯 坦 凝 聚 的 由来 、 究 进展 和相 关 实验 实现 , 对 B C 的 应 用 做 了概 括 性 介 绍 。 研 并 E
12 9 4年 6月印度物理 教师玻色送 了一份手稿给爱 因斯坦 ,试 图不 依赖经典 电动力学来 推导普 朗克定律 的系数… 爱因斯坦意识 到玻色工 。 作的重要性 , 立即着手对这一 问题进行研究 。 他将玻 色对光子 的统计方
法 推 广 到 某 类 原 子 , 预 言 当这 类 原 子 的 温 度 足 够 低 时 , 有 的 原 子 就 并 所

[ 关键词 ] 色 一爱因斯坦凝 聚 实验 实现 玻
应用 势场零点为势能最 高点, 子会逸出阱外。由于存在上述的“ 原 漏洞 ”严 , 重地限制了阱中原 子密度 的增加 。 为克服它的影响 , 可以采用 “ O ” 、 T P阱 “o I舵”阱等办法 。它们都可 以有效地解决普通四极静磁 阱中心存在 的 “ 原子泄漏 ” 问题 , 为提 高阱 中原子 相空 间密度 , 实现 B C提供 了关键 E 的技术保证。 2 蒸发冷却技术及玻 色 一爱因斯坦凝 聚的检测技术 . 2 蒸发冷却是有选 择地 把磁阱中能量较高的原子释放 出来 ,然后剩 下的原子通过弹性 碰撞重新达到温度更低的热平衡 ,如此反复不断降 低原子气体 的温度 。在 实现 B C的过程 中, E 蒸发 冷却 是由一个射频磁 场来完成的。在磁 阱中, 能量 较大的原子可达到磁场较强的地方 , 产生 的塞曼分裂也较大。可选择适 当的射频场频率 , 使这些原子跃迁到非 囚 禁的 自旋态而逸出磁阱, 通过 把射频 场频率慢慢变低 , 迫使更多能量较 高的原子逸出磁阱。于是 , 阱中原子密度和弹性碰撞几率增加 , 温度变 低, 最终的温度和相空间密度取决于最后的射频场频率。 观测 B C的形成 可采用 共振吸收成像 技术 , E 用这种技术 可以确定 原子的数 目、 密度 以及 原 子 的空 间分 布 。 3玻 色 一爱 因 斯 坦凝 聚 的研 究意 义 . B C体所 具有 的奇 特性质对基 础研究 以及应用具 有重要意 义, E 可 以利用 B C E 体来 改进 现有的原子钟 。此外 , 通过实现原 子束 的相干放 大获得的原子激光 , 有可 能对 高新技术产生革命性的影响 。另外 , 原子 ( 或分子 )E B C凝聚体在光波群速度减慢 及其相干光信息存储 、量子通 信、 量子计 算等领域 中也有广 阔的应用前景。 不容置 疑,玻 色 一爱 因斯 坦凝聚的研究将深刻地影响着二十一世 纪 物理 学 的发 展 和科 学 技 术 的进 步 。 参考文献 [] 1 李师群 超 冷原子 物理 学与原 子光 学[]物理 与工程 , 0 ,2 I 2 2 1 0

玻色-爱因斯坦分布

玻色-爱因斯坦分布

玻色-爱因斯坦分布
玻色-爱因斯坦分布(Bose-Einstein distribution)是一种描述玻色子的概率分布,它是由印度物理学家萨提亚·恩德拉·博色和阿尔伯特·爱因斯坦于1924年共同提出的。

该分布可以用来描述在热力学平衡状态下多个玻色子所处的能级分布情况。

根据玻色-爱因斯坦分布的公式,玻色子在不同能级上的分布情况是与温度、化学势和能级之间的关系有关的。

在低温下,玻色子会聚集在能量最低的态上,形成玻色-爱因斯坦凝聚体(Bose-Einstein condensate),这是一种量子现象,在凝聚态物理中具有重要的应用价值。

玻色-爱因斯坦分布对于解释热力学系统中的许多现象有着重要的作用。

例如,对于黑体辐射,玻色-爱因斯坦分布可以用来计算各个频率上的光子数目,从而得到黑体辐射的能谱分布。

此外,它还可以用来描述超流体、超导体等系统的性质,这些都是凝聚态物理中的重要课题。

总之,玻色-爱因斯坦分布是一种用于描述玻色子在热力学平衡状态下能级分布的概率分布。

它对于解释和研究凝聚态物理中的各种现象具有重要的作用。

玻色爱因斯坦凝聚概念

玻色爱因斯坦凝聚概念

玻色爱因斯坦凝聚概念一、引言玻色-爱因斯坦凝聚是物理学中的一个重要概念,它是指在低温下将大量玻色子(如氢原子、氦原子等)聚集在一起形成的一种新的物质状态。

这种凝聚态具有许多奇特的物理性质,如超流动、相干性等,因此受到了广泛的研究和应用。

二、基本概念1. 玻色子玻色子是一类遵循玻色-爱因斯坦统计规律的粒子,其特点是可以占据同一个量子态。

常见的玻色子有光子、声子和某些原子核等。

2. 凝聚态凝聚态是指由大量粒子组成的系统在低温下形成的一种新状态。

常见的凝聚态有固体、液体和气体等。

3. 玻色-爱因斯坦凝聚当低温下大量玻色子占据同一个能级时,它们将形成一个宏观量级的波函数,从而产生了相干性和超流动性质。

这种现象被称为玻色-爱因斯坦凝聚。

三、产生条件1. 低温玻色-爱因斯坦凝聚需要低于玻色子的临界温度,也就是玻色子能够占据同一能级的温度。

2. 高密度为了形成凝聚态,需要大量的玻色子。

这意味着需要将玻色子密集地聚集在一起。

3. 弱相互作用为了保持相干性和超流动性质,需要让玻色子之间的相互作用尽可能地弱化。

四、物理性质1. 相干性由于所有的玻色子处于同一波函数中,它们之间存在着相干性,即它们会同时偏离或回到平衡位置。

这种相干性使得整个系统表现出非常稳定的特点。

2. 超流动性质由于所有的玻色子都处于同一波函数中,它们可以无阻碍地穿过任何障碍物而不损失能量。

这种现象被称为超流动。

3. 凝聚态密度分布在玻色-爱因斯坦凝聚中,大量的玻色子将占据同一个能级,并形成一个密度分布曲线。

该曲线通常呈现出高度对称的形状,且具有明显的峰值。

五、应用1. 模拟宇宙学玻色-爱因斯坦凝聚可以用来模拟宇宙学中的暗物质,从而帮助我们更好地理解宇宙的形成和演化。

2. 超导材料由于玻色-爱因斯坦凝聚具有超流动性质,因此可以用来制造超导材料,从而实现能量损失极小的电力传输。

3. 量子计算玻色-爱因斯坦凝聚可以用来实现量子计算中的一些重要操作,如量子比特的存储和操作等。

物理玻色-爱因斯坦凝聚(共38张PPT)

物理玻色-爱因斯坦凝聚(共38张PPT)
the condensate.
Einstein predicted that if a gas is cooled to very low temperatures, all the atoms should gather in the lowest energy state. Matter waves of the individual atoms then merge into a single wave; indeed, they can be said to "sing in
图片中部的亮点是一团被俘获的冷却 钠原子。研究者们从1978年开始使 用激光冷却原子,当时最低能够到达 40开尔文。而仅仅十年之后他们就到 达这一记录的百万分之一,该技术的 突飞猛进导致更精确原子钟的产生以 及在极低温下观察到新的超冷物质凝 聚态。
可以用静磁阱来囚禁具有磁偶极矩的中性原子
§4 BEC研究的新进展
知 为T和n的函数。
Predicted 1924.
新领域:非线性原子光学
波长长,频率小,能量小
化学势随温度的降低而升高,当温度降至某一临界温度
Phillips)和斯坦福大学的朱棣文(Steven Chu)首先实现了激光冷却原子的实验,并得到了极低温度(24μK)的钠原子气体。
" Thousands of atoms behave like one big superatom.
玻色-爱因斯坦凝聚
Bose-Einstein Condensation (BEC)
BEC - What is it and where did the idea come from?
BEC in a gas: a new form of matter at the coldest temperatures in the universe...

玻色_爱因斯坦凝聚的研究

玻色_爱因斯坦凝聚的研究

玻色———爱因斯坦凝聚的研究谢世标(广西民族学院物理与电子工程系,广西 南宁 530006) 摘 要: 综述了玻色—爱因斯坦凝聚的由来、概念及其形成条件,并介绍了当前国内外玻色—爱因斯坦凝聚研究的动态与进展及其前景展望。

关键词: 玻色—爱因斯坦凝聚;临界温度;激光冷却;磁陷阱中图分类号: O469 文献标识码:A 文章编号:1003-7551(2002)03-0047-041 玻色—爱因斯坦凝聚的由来我们知道,自然界中,粒子按统计性质分为玻色(Bose)子和费米(Fermi)子。

自旋为整数的粒子,如光子、π介子和α粒子是玻色子,玻色子服从玻色—爱因斯坦统计;自旋为半整数的粒子,如电子、质子、中子、μ介子是费米子,费米子服从费米—狄拉克统计。

1924年6月24日,30岁的印度物理教师玻色送一份手稿给爱因斯坦,试图不依赖经典电动力学来推导普朗克(黑体辐射)定律的系数8πν2/c3,办法是假定相空间最基本区域的体积为h3。

爱因斯坦亲自把玻色的手稿译成德文,送去发表,并在文末加注说:“我以为玻色对普朗克公式的推导乃是一项重大进步,所用方法也将导致理想气体的量子理论”。

爱因斯坦意识到玻色工作的重要性,立即着手这一问题的研究。

他于1924年和1925年发表两篇论文,将玻色对光子的统计方法推广到某类原子,并预言当这类原子的温度足够低时,所有的原子就会突然聚集在一种尽可能低的能量状态,这就是我们所说的玻色—爱因斯坦凝聚。

但在很长一段时间里,没有任何物理系统认为与玻色—爱因斯坦凝聚现象有关。

直到1938年,伦敦(F.London)指出,超流和超导现象可能是玻色—爱因斯坦凝聚的表现,玻色—爱因斯坦凝聚才真正引起物理学界的重视。

不过这两种现象都发生在强相互作用的体系中。

超流液氦中只有10%的原子凝聚;超导与玻色—爱因斯坦凝聚的关系要经过电子的配对,涉及更复杂的相互作用。

只有近理想或弱相互作用的玻色气体的玻色—爱因斯坦凝聚,才更易于同理论比较,但一直没有实验证实。

玻色爱因斯坦凝聚态

玻色爱因斯坦凝聚态

玻色爱因斯坦凝聚态玻色一爱因斯坦凝聚态(BEC)原子气体是一种新的量子流体,已经被公认为物质的第五种状态,已经形成一种间于原子物理与凝聚态之间的新的学科增长点,借助激光与蒸发冷却技术在将一种稀薄原子气体冷却到nK温度时可产生该种物质状态[1]。

玻色一爱因斯坦凝聚态发现与研究自1924年爱因斯坦提出玻色-爱因斯坦凝聚态以来,在实验室水平上实现中性原子气体的这种凝聚态一直是物理学家的目标。

终于在1995年,科罗拉多大学、莱斯大学和麻省理工学院的研究小组在实验室水平上实现了碱金属原子气体的这种凝聚态。

随之诞生了大量相关的理论研究成果。

然而,多数理论研究仅仅限于所谓的二体碰撞作用研究方面,或更进一步扩展到G-P方程,或玻色一爱因斯坦凝聚态的一些基本特性研究。

实际情况是在nK温度时,玻色一爱因斯坦凝聚态表现出很强的集体性,因此,我们不得不从原子结团角度重新审视该种物态的基本特性。

更为重要的是,如果我们能够把握玻色一爱因斯坦凝聚态的内在结团特性,那么我们就可以有一套行之有效的方法处理二个分离的玻色一爱因斯坦凝聚态或更多该种物态之间的相互作用。

因此,故该问题是我们研究的焦点[2]。

理论模型冷原子气体热动力学的主要特征是作为玻色-爱因斯坦凝聚态主要特性的相变温度的存在,传统的说法是在实现该凝聚态时,表现出来的宏观特征为所有的原子占据同一个宏观量子态,尽管玻色一爱因斯坦凝聚态的提出时间可以推溯到1924年,但是其相变问题直到最近才被人们所理解,特别是蒙特一卡诺计算方法的兴起与推行,关于原子之间作用对相变问题的探索才被系统的开发出来,一般的情况是对于小的作用强度,温度是随着原子作用的增加而加大;但是对于大的原子作用,情况正好相反,可以从临界温度的下降来理解有效质量效应。

运动原子通过所感受的场来对其它的原子产生拖拉作用,使有效原子质量加大,由于TcoCl/m,相应地临界温度呈现下降趋向,传统的对弱作用原子气体理论研究,使得弱原子气体情况更为大家所熟悉,直观的理解是原子之间的排斥作用使得凝聚态原子密度波动幅度减小,因此使动量等于零的模式的布局数增加,进而使得温度有所升高,该临界温度的求解,数学性很强,物理解释不直接,玻色原子云通过短程势发生作用,其哈密顿量为:其中as,是散射长度,bq是动量为q的粒子消灭算符,m是粒子的质量,V=L3是系统的体积,我们感兴趣的函数是凝聚态原子数的几率分布,分布几率的表达式为:这里期望值是针对自由系综而言的,Fo F(a=0)是无相互作用体系的自由能。

波色爱因斯坦凝聚

波色爱因斯坦凝聚

Bose-Einstein condensation (BEC)玻色-爱因斯坦凝聚(BEC)是科学大师在70年前预言的一种新物态。

那个地址的“凝聚” 与日常生活中的凝聚不同,它表示原先不同状态的原子突然“凝聚”到同一状态(一样是基态)。

即处于不同状态的原子“凝聚”到了同一种状态。

形象地说,这就像让无数原子“齐声歌唱”,其行为就仿佛一个玻色子的放大,能够想象着给咱们明白得微观世界带来了什么。

这一物质形态具有的专门性质,在芯片技术、周密测量和纳米技术等领域都有美好的应用前景。

此刻全世界已经有数十个室验室实现了8种元素的BEC。

主若是碱金属,还有氦原子和钙等。

玻色-爱因斯坦冷凝态常温下的气体原子行为就象台球一样,原子之间和与器壁之间相互碰撞,其彼此作用遵从经典力学定律;低温的原子运动,其彼此作用那么遵从量子力学定律,由德布洛意波来描述其运动,现在的德布洛意波波长λdb小于原子之间的距离d,其运动由量子属性自旋量子数来决定。

咱们明白,自旋量子数为整数的粒子为玻色子,而自旋量子数为半整数的粒子为费米子。

玻色子具有整体特性,在低温时集聚到能量最低的同一量子态(基态);而具有相互排斥的特性,它们不能占据同一量子态,因此其它的费米子就得占据能量较高的量子态,原子中的电子确实是典型的费米子。

早在1924年玻色和爱因斯坦就从理论上预言存在另外的一种物质状态——玻色爱因斯坦冷凝态,即当温度足够低、原子的运动速度足够慢时,它们将集聚到能量最低的同一量子态。

现在,所有的原子就象一个原子一样,具有完全相同的物理性质。

依照量子力学中的德布洛意关系,λdb=h/p。

粒子的运动速度越慢(温度越低),其物质波的波长就越长。

当温度足够低时,原子的德布洛意波长与原子之间的距离在同一量级上,现在,物质波之间通过彼此作用而达到完全相同的状态,其性质由一个原子的波函数即可描述;当温度为时,现象就消失了,原子处于理想的玻色爱因斯坦冷凝态。

在理论提出70年以后,2001年的诺贝尔物理学奖取得者就从实验上实现了这一现象(在1995年)。

玻色 爱因斯坦凝聚

玻色 爱因斯坦凝聚

这话说起来有点酷:距离我办公桌数百米,在Eric Cornell教授的实验室里,存在着可能是这个星球上甚至这个宇宙中最寒冷的地方。

那里面的物质拥有一种神奇的状态:玻色-爱因斯坦凝聚。

这一切要从费米子和玻色子说起——大家知道,物质是由原子构成的,原子是由质子、中子、电子构成的,而质子、中子等又是由夸克构成的,另外还有传递相互作用的光子、胶子等等。

从原子、质子、中子到夸克、光子、胶子,这些都是微观粒子。

根据它们的物理性质不同,可以将这些微观粒子分成不同的类别,比如:是否为目前认为不能再向下分的基本粒子、是否带有电荷、是否带有静止质量,等等。

中子和质子组成的原子核,再加上核外的电子云就构成了原子的结构(图来自这里)依据微观粒子统计性质的不同,物理学家们把微观粒子划分为两类:费米子和玻色子。

费米子服从费米-狄拉克统计,玻色子则服从玻色-爱因斯坦统计 [1],简单一点说,这两种统计的不同意味着在不同微观状态之间分布的时候,占据状态方法的不同。

打个比方,如果同一种微观粒子聚众看电影,对于费米子来说,两个人不能同时坐在同一位置上,这就是有名的“泡利不相容”原理,而对于玻色子来说,则可以允许两个甚至更多个人同时坐于同一个位置——虽然位子足够多时,这种情况也很少发生。

不可分辨的同一种粒子抱歉,说起来,前边这个“电影院比喻”其实还是有失准确——因为,当我们面对电影院里的人,还是可以清晰分辨张三和李四的不同。

但当我们面对微观的粒子,同一种微观粒子之间却是不能够分辨的,一个粒子与另外一个粒子并无任何不同,所有人都失去了个性。

我们可以说“两个费米子不能坐在同一个位置上,两个玻色子可以坐在同一个位置上”,但是并不能分清楚到底是哪个微观粒子坐在这个位置上。

这个就是一般统计物理里面说的“全同的量子粒子不可分辨”的概念。

1925年的玻色(来自维基百科相关页面)。

萨特延德拉·纳特·玻色(Satyendra Nath Bose,1894年1月1日-1974年2月4日)是印度的一位物理学家,他最先提出了微观全同粒子不可分辨的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 近独立粒子的最概然分布
教学目标:1. 理解玻色分布和费米分布。

2. 理解三种分布之间的关系。

授课方式:理论讲授。

教学重点:1. 分布与微观状态
2. 三种分布之间的关系
教学难点:非简并性条件 教学内容:
玻色分布和费米分布
上节课中已经求出了玻耳兹曼系统的最概然分布,本节将推导玻色系统和费米系统中粒子的最概然分布。

现对费米分布推导如下 : 对!
!()!l F D l l l l a a ωω⋅Ω=
-∏取对数得:().ln ln !ln !ln !F D l l l l l
a a ωωΩ=---⎡⎤⎣⎦
∑ 1N
,若假设1l
a ,1l
ω可得到:
()()[]
∑----=Ωl
l l l l l l l l D F a a a a ωωωωln ln ln ln ..
约束条件:
l
l
a
N =∑ ;
l l
l
a E ε
=∑。

为求在此约束条件下的最大值,使用拉格朗日乘数法,取未定因子为α和β则拉格朗日函数为:.ln ln 0l
F D l l L l l a N E a a δαδβδαβεδω⎛⎫Ω--=-
++= ⎪-⎝⎭
∑ 若令上式为零,则有:ln
0l
l l l
a a αβεω++=- , 即 1l l l a e αβεω+=+。

上式给出了费米系统粒子的最概然分布,称为费米——狄拉克分布。

玻色分布的推导作为练习,请同学们课后自己推导。

三种分布的关系
1 、由:
l
l
a
N =∑ ;
l l
l
a E ε
=∑ 确定拉氏乘子a 和β的值。

在许多实际问题中,也
往往将β看作由实验确定的已知参量而由: l l
l
a E ε
=∑ 确定系统的内能.或将a 和β都
当作由实验确定的已知参量,而由:l
l
a
N =∑ ;l l l
a E ε=∑ 确定系统的平均总粒子数
和内能。

2 、能级的l ε有l ω个量子态处在其中任何一个量子态上的平均粒子数应该是相同的,因此处在能量为s ε的量子态S 上的平均粒子数为:s
s s
a f ω=
即: 定域系统:s e αβε--; 费米系统:11
s
e
αβε++;
玻色系统:
11
s
e
αβε+-
总粒子数可分别表示为:s
s
N f
=

即: 定域系统s
s
N e αβε
--=∑; 费米系统1
1
s
s
N e α
βε+=
+∑;
玻色系统:1
1
s
s
N e α
βε+=
-∑
能量s s
s
E f ε
=
∑,
即: 定域系统s
s s
E e αβε
ε--=
∑; 费米系统1
s
s
s
E e α
βεε+=
+∑;
玻色系统:
1
s
s
s
E e
αβεε+=-∑
3 、若α满足 1e
α
, 则 有:1
l l
l
l
l a e e ωω++=

±这时玻色分布和费米分布都过渡
到玻耳兹曼分布,由上式可知:
11l
l
l
a e αβεω+=
(对所有l )。

这时任一量子态上的平均粒子数都远小于1,这个式子就是前边提到的所谓的非简并性条件,当非简并条件满足时,费米分布和玻色分布都过渡到玻耳兹曼分布。

4 、在推导最概然分布时,应用了1l
,1l ω,1l l
a ω-等条件,这些条件实际上是
不满足的,这是推导过程的一个严重的缺点,我们将在后边的学习中用巨正则系统求平均分布的方法严格地导出这些分布。

5 、定域系统和满足经典极限条件的玻色(费米)系统虽然遵从同样的分布,但它们的微观状态数是不同的。

前者为.M B Ω后者为
.!
M B
N Ω因此对那些直接由分布函数导出的热力学量,
两者具有相同的统计表达式.然而,对于例如熵和自由能等与微观状态有关的热力学量,两者的统计表达式有差异。

6、最可几分布的推导也可以推广到含有多个组元的情况。

相关文档
最新文档