光源知识培训-气体放电的基本原理
高电压技术第二章-气体放电

各种粒子在气体中运动时不断地互相碰撞,任一粒子在1cm的 行程中所遭遇的碰撞次数与气体分子的半径和密度有关。 单位行程中的碰撞次数n的倒数 长度。 即为该粒子的平均自由行程
处于电场中的带电质点,在电场E的作用下,沿电场方向不断得到加速并积 累动能。当具有的动能积累到一定数值后,在与其气体原子或分子发生碰撞时, 可以使后者产生游离。由碰撞而引起的游离称为碰撞游离。 电子在场强为E的电场中移过x距离时获得的动能为:
第二章 气体放电的基本物理过程
一、碰撞电离[ionization by collision] :
4 火花放电[spark discharge ] 定义:放电间隙反复击穿时,在气体间隙中形成贯通两极的断断续续的不稳
定的明亮细线状火花,这种放电形式称为火花放电。
在通常气压下,当在曲率不太大的冷电极间加高电压时,若电源供给的功率不太 大,就会出现火花放电,火花放电时,碰撞电离并不发生在电极间的整个区域内, 只是沿着狭窄曲折的发光通道进行,并伴随爆裂声。由于气体击穿后突然由绝缘 体变为良导体,电流猛增,而电源功率不够,因此电压下降,放电暂时熄灭,待 电压恢复再次放电。所以火花放电具有间隙性。雷电就是自然界中大规模的火花 放电。
第二章 气体放电的基本物理过程
B. 放电[discharge] 定义:放电指的是电气设备绝缘有电流流过的现象,从带电到不带电的过程。
日光灯 的工作原理

日光灯的工作原理
标题:日光灯的工作原理
引言概述:日光灯是一种常见的照明设备,其工作原理是通过电流激发气体放电,产生紫外线,再被荧光粉转换为可见光。
下面将详细介绍日光灯的工作原理。
一、电流激发气体放电
1.1 电流通过电极产生电场
1.2 电场使气体中的电子加速
1.3 电子碰撞气体原子,使气体原子激发
二、产生紫外线
2.1 激发的气体原子释放出能量
2.2 能量激发荧光粉中的电子
2.3 荧光粉中的电子跃迁,产生紫外线
三、荧光粉转换为可见光
3.1 紫外线激发荧光粉
3.2 荧光粉中的电子跃迁,产生可见光
3.3 不同荧光粉产生不同颜色的光
四、日光灯的优点
4.1 节能环保,寿命长
4.2 光线柔和,不易眩目
4.3 无噪音,启动快速
五、日光灯的应用领域
5.1 家庭照明
5.2 商业场所
5.3 工业生产
结论:日光灯通过电流激发气体放电,产生紫外线,再被荧光粉转换为可见光,是一种节能环保、寿命长的照明设备,广泛应用于家庭、商业和工业领域。
深入了解日光灯的工作原理,有助于我们更好地使用和维护这种照明设备。
4.3气体放电灯基本原理

Lν(x0)= Lν(0)e
+ Sν(τ)[1-e
]
9
光源原理与设计—气体放电的基本原理
诸定昌
1. τ(ν,0)<<1
称光性薄等离子体 10
Lν(x0)= Lν(0)+ Sν(τ) τ(ν,0)
2. τ(ν,0)>>1
称光性厚等离子体
2 hν = c2
3
Lν(x0)= Sν(τ)
e
hν KT
1 -1
7
光源原理与设计—气体放电的基本原理
诸定昌
平衡下:
1 nn Anm hνProf.ν 4π 1 + nn Bnm LνB hνProf.ν c 8
Lν
1 = nm Bmn LνB hνProf.ν c 光谱的吸收系数: 定义: ν= K
x
x+dx
L’ν
dLν Lνdx
其中 dLν=L’ν-Lν
光源原理与设计—气体放电的基本原理
KT
13
二. 辐射转移方程
dLν(x)= εν(x)dx- Kν (x)Lν(x)dx dLν(x) =εν(x)- Kν (x)Lν(x) dx
单位面积 Lν(x) Lν(x+dx) Lν(x0) 0 x x+dx x0
1
Lν(0)
光源原理与设计—气体放电的基本原理
诸定昌
1.εν(x)=0
dLν(x) = - Kν (x)Lν(x) dx dLν(x) = - Kνdx Lν(x) 在 0→x和 Lν(0) → Lν(x)间积分 Lν(x)= Lν(0) exp(-∫
s
1 nn Anm hνProf.ν 4π
气体放电的基本物理过程

放电的电流与电压特性
电流特性
气体放电的电流大小和波形取决于放电条件,如气压、电流密度和电极形状等。在一定条件下,放电 电流会呈现脉冲或持续的波形。
电压特性
气体放电的电压特性与电流特性密切相关。在放电过程中,电压会随着电流的变化而变化,通常在放 电开始时电压较高,随着电流增大,电压逐渐降低。
放电的热效应与声效应
拓展气体放电的应用领域
能源领域
利用气体放电技术实现高 效、清洁的能源转化,如 燃料电池、太阳能电池等。
问题,如烟气脱硫 脱硝、废水处理等。
医疗领域
利用气体放电技术进行杀 菌消毒、病毒灭活等,保 障公共卫生安全。
THANKS
感谢观看
电场与气体原子的相互作用
库仑相互作用
气体原子在电场中受到正负电荷的库 仑力作用,导致原子运动状态发生变 化。
电子与原子的碰撞
电场加速的电子与气体原子发生碰撞 ,传递能量,引起原子的激发和电离 。
电子的产生与运动
电子从气体原子或分子的束缚态跃迁 到自由态,形成自由电子和正离子。
电子在电场中受到加速或减速作用, 能量发生变化,运动轨迹发生偏转。
探索新型的气体放电技术
01
02
03
脉冲放电技术
利用脉冲电源产生高电压、 大电流的脉冲,实现高效 率、高稳定性的气体放电。
介质阻挡放电技术
通过在放电空间中设置绝 缘介质,降低放电的击穿 电压,实现低电压、高效 率的气体放电。
电晕放电技术
利用高电压电场产生电晕, 使气体发生局部电离,实 现低电流、低能耗的气体 放电。
电弧放电
另一种不稳定的气体放电状态是电弧放电。 电弧放电会产生强烈的弧光和高温,同时伴 随着较大的电流和电压波动。这种不稳定性 会对放电产生负面影响,甚至导致设备损坏。
第4章改 气体放电原理

A* + B → A + B+ + e + ∆E
举例:
Ar*(Vm=11.53v) + Hg (Vi=10.4v)→ Ar + Hg+ + e Ne*(Vm=16.62v) + Ar (Vi=15.8v)→ Ne + Ar+ + e
三、辉光放电
① ②
③
④ ⑤ ⑥ ⑦ ⑧
度大处就会向带电粒子浓度小处形成定向运动,如此形成的定向运动,就叫 扩散。
“双极”扩散率
等离子体中有电子和离子。电子轻且杂乱 热运动使其速度快,因此预测电子向管壁 扩散比正离子快,所以等离子体中正离子 过剩。 由于正离子吸引电子,所以减慢电子扩散 速率;另正离子产生一径向电场,加速正 离子向管壁扩散。 所以,总的效应使电子扩散慢下来,而正 离子的扩散快起来,直到二者以相同的速 率扩散为止,这个扩散率就是。。。
原子的量子态 n2S+1 L J (主量子、角量子、磁量子43;Er
转动能级)
(原子能级、分子振动能级、分子
4.2 气体放电的辐射
4.2.2 原子发光和分子发光
原子的线光谱
∆ E= e∆v = hC/λ, 即 λ = 1239/ ∆v nm 共振辐射
分子的带状光谱
此,阴极经常使用逸出功低的材料。 例如,钍钨比钨好;碱 土金属氧化物(BaO, SrO)。 2)绝大多数材料在室温时热电子发射很低,到 1000K时发射显著。所以要足够发射,阴极必须加热到一定 温度。按加热方式分自热阴极和独立式阴极。
总结:1)热阴极材料应具有低的逸出功,高熔点, 低蒸发速率; 2)热电子发射是弧光放电阴极最主要的一种 发射形式。
气体放电基础知识

气体放电基础知识关于气体击穿常用气体绝缘介质:空气、SF6、CO2、N2、混合气体(SF6+ CO2、SF6+N2)等。
气体击穿:正常情况下气体是良好的绝缘介质,但当电场强度达到一定数值后,气体会失去绝缘能力(气体击穿)。
气体击穿是气体绝缘失败的最后表现形式,深入了解气体击穿的发展过程,对于提高分析问题、解决问题的能力更有意义。
平均电场强度与最大电场强度尖端效应或边缘效应电极表面的电场强度与其表面电荷密度成正比。
在电极尖端或边缘的曲率半径小,表面电荷密度大,电力线密集,电场强度高,容易发生局部放电。
这种现象称为尖端效应或边缘效应。
尖端效应或边缘效应是极不均匀电场的重要标志。
工程上常需改善电极形状,避免电极表面曲率过大或出现尖锐边缘。
分析绝缘结构的击穿电压时,不仅要考虑绝缘距离,而且还要考虑电场不均匀程度的影响。
对于同样距离的间隙,电场愈不均匀,通常击穿电压愈低。
茹柯夫斯基电极任一等位面上电场强度最大值:12211222C U U C C =+静电感应现象电容分压导体受邻近带电体的影响,在其表面不同部位出现正负电荷的现象称为静电感应。
气体放电的几个概念:气体放电:气体中出现电流的各种形式统称为气体放电。
气体击穿:由于外施电压升高,电流突然剧增,气体失去绝缘性能。
气体由绝缘状态突变为良导电态的过程,称为击穿。
沿面闪络:当击穿过程发生在气体与液体或气体与固体的交界面上时,称为沿面闪络。
气体放电的基本形式包括:1、电晕放电(局部放电);2、辉光放电;3、电弧放电;4、火花放电。
气体击穿后的放电形式受气体压力、电源功率、电极形状等因素的影响。
1、电晕放电:随着电压升高,在电极附近电场最强处出现发光层。
发生电晕放电时,气体间隙的大部分尚未丧失绝缘性能,放电电流很小,间隙仍能耐受电压的作用。
2、辉光放电:当气体压力不大、电源功率很小(放电回路中串入很大阻抗),外施电压增到一定值后,回路中电流突增至明显数值,管内阴极和阳极间整个空间出现发光现象。
气体放电的基本原理与应用探究

气体放电的基本原理与应用探究气体放电是一种电现象,其起源是气体分子在电场作用下受到激发和电离。
气体放电现象广泛存在于生产、生活、研究等各个领域。
气体放电被广泛应用于灯泡、电视、医学、工业、航空航天等领域。
本文分别从基本原理和应用两个方面进行探究。
一、气体放电的基本原理气体放电是一种特殊的电现象,它是由于气体分子在电场作用下获得能量后发生电离并形成电流的现象。
气体放电有多种类型,如直流气体放电、交流气体放电、脉冲气体放电、空间气体放电等,其中最常见的是直流气体放电。
1、电离气体放电的前提是气体分子电离。
当气体分子获得足够的能量时,就可能发生电离现象,电子从原子或分子中被剥离出来。
电子是一种负电荷的微粒子,被剥离出来后,就可以在气体中自由运动。
气体分子的电离有两种情况:一种是电子从气体分子中脱离,成为带负电荷的自由电子;另一种是气体分子失去部分电子,变成带正电荷的离子。
2、电场作用当在气体中建立电场时,电荷在电场力的作用下就会受到约束向某个方向运动。
在气体中,由于带正电的离子和带负电的电子的数量相等,因此,它们会受到电场的作用而向着相反的方向运动。
这时,正负电荷的运动方向相反,就形成了电流。
3、电晕放电电晕放电是一种特殊的气体放电现象,是指在不产生弧光的情况下,通过高电压和低电流将气体电离所产生的电子和离子加速,使它们具有足够的能量发生反弹,并再次与气体分子碰撞,从而使气体分子产生有效的激发电离。
电晕放电主要发生在电极表面上,其放电特性与电极形状、电场强度、气体种类和压力等因素有关。
二、气体放电的应用气体放电由于其稳定、可控、便捷等特点,已经被广泛应用于医学、工业、冶金、生产等众多领域。
1、灯具气体放电在灯泡的制造中得到广泛的应用。
最常见的一种是荧光灯,它采用高压电场使稀薄的气体放电发光,以此来发出明亮的光线。
其他的一些小灯泡也是用气体放电来制造的。
2、宇航技术气体放电不仅在地球上使用得很广泛,在宇航技术中也有广泛的应用。
气体放电原理

气体放电原理
气体放电是指当气体中的电子和离子获得足够的能量时,发生放电现象的过程。
其原理涉及到气体的电离和电子的碰撞等基本物理过程。
气体电离是指在电场的作用下,气体中的原子或分子失去电子成为正离子和自由电子的过程。
当电场强度足够大时,气体中的原子或分子受到电场的力,电子被加速并获得足够的能量,从而发生电离,形成正离子和自由电子。
电子的碰撞是指在气体中,自由电子与离子或原子之间发生的碰撞过程。
电子在碰撞过程中会失去能量,导致其速度减小。
当碰撞速率和电子再次获得能量的速率达到平衡时,电子的速度将保持稳定。
在气体放电过程中,电子和离子受到电场的作用而产生加速,当它们的能量达到一定程度时,就会引发碰撞电离,进而导致更多的电离。
这种连锁反应会引起电流的流动,形成可见的放电现象,如闪电、辉光灯等。
不同的气体放电现象具有不同的特点和应用。
例如,闪电放电具有极高的能量和电流,可破坏设备和引起火灾。
辉光灯则是通过控制气体放电来产生可见光,用于照明和显示等领域。
总之,气体放电现象是通过电场作用下的电离和碰撞过程实现的。
这一原理在各种领域的应用中发挥着重要的作用,从科学研究到工业应用都有广泛的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光源原理与设计—气体放电的基本原理
诸定昌
二. 线光谱
hνnm =En -Em =e△Vnm =hc/λnm λnm=1239/△Vnm
E
△V→V
λnm→nm
hγmn
En
Em
E0
hγn0
光源原理与设计—气体放电的基本原理
诸定昌
1. 不同元素的能级不同,其辐射的波长不同 →选择性强 2. 共振辐射的效率(特别是第一共振态)最高 3. 能级之间的跃迁服从选择定则 4. 线光谱辐射的功率密度Pnm
1 nn BnmρB(ν) hνProf.ν 4π 1 = c nn Bnm LνB hνProf.ν
6
c ρB(ν) 其中: LνB = 4π
εν s c2 由5和6得: i = εν 2hν
3
LνB
7
光源原理与设计—气体放电的基本原理
诸定昌
平衡下:
1 nn Anm hνProf.ν 4π 1 + nn Bnm LνB hνProf.ν c 8
诸定昌
b)色散型(洛仑兹力)轮廓 γ 1 Prof.ω= 2π 2 ( γ) (ω- ω0) + 2 c)高斯型轮廓 Prof.ω=( 4Ln2) exp[πγ 2
1 2
2
4Ln2(ω- ω0) γ2
2
]
光源原理与设计—气体放电的基本原理
诸定昌
二.谱线的自然宽度
t→t+dt dnn=- Anm nn dt
12
光源原理与设计—气体放电的基本原理
诸定昌
εν εν +εν
Kν LνB e = Kν LνB
- hν
KT
=e
- hν
KT
13
二. 辐射转移方程
dLν(x)= εν(x)dx- Kν (x)Lν(x)dx dLν(x) =εν(x)- Kν (x)Lν(x) dx
单位面积 Lν(x) Lν(x+dx) Lν(x0) 0 x x+dx x0
光源原理与设计—气体放电的基本原理
诸定昌
Reference:
1.W.Newman: Spectrosopic Methods of Plasma Diagnostics 2.统计物理学导论
3.原子光谱学和激发光谱学
光源原理与设计—气体放电的基本原理
诸定昌
4.3 辐射转移
光源原理与设计—气体放电的基本原理
+Lν(0) exp(-∫
5
光源原理与设计—气体放电的基本原理
诸定昌
三. 以光性厚度为变量的辐射转移过程 x0 ν 定义: τ=∫ Kx(x’)dx’
为x→x0区间的光性厚度
辐射转移方程1可写为: dLν(x) dLν(x) dτ dx = dτ dx dLν(x) [-Kν(x)] = dτ =εν(x)- Kν (x)Lν(x)
光源原理与设计—气体放电的基本原理
诸定昌
定义 Pnm =nn Anm hνnm Anm 从n→m跃迁几率 LTE下 nn由Boltzmann分布描述 gn En nn =n0 g0 exp() KT gn En Pnm=n0 g0 Anm hνnmexp(- KT) Pnm:压力p(n0),温度 T,能级性质(En,Anm)
1 -1
3
Bnm
gmBmn =gnBnm
3
2光谱的发射系数
光源原理与设计—气体放电的基本原理
诸定昌
定义: εν =
d4 E dtdVdΩdν
i
s εν = εν +εν
4
自发辐射 感应辐射
有: εν =
s
1 nn Anm hνProf.ν 4π
5
光源原理与设计—气体放电的基本原理
诸定昌
对应:
εν i=
i
KL =∫line Kν dυ=
光源原理与设计—气体放电的基本原理
诸定昌
i ~ 若把εν看作负吸收,有总的吸收系数Kν s εν +εν= i Kν
LνB平衡下:
~ LνB=εs Kν
i
~ LνB= Kν LνB- εν 所以: Kν
1 = nm Bmn LνB hνProf.ν c 1 nn Bnm LνB hνProf.ν c
1
Lν(0)
光源原理与设计—气体放电的基本原理
诸定昌
1.εν(x)=0
dLν(x) = - Kν (x)Lν(x) dx dLν(x) = - Kνdx Lν(x) 在 0→x和 Lν(0) → Lν(x)间积分 Lν(x)= Lν(0) exp(-∫
x Kν0 (x’)dx’)
2
3
离开等离子体的辐亮度:
诸定昌
四.谱线的压力放宽
1.定义:受激原子受其它粒子的碰撞作用,使 辐射状态受干扰而产生的谱线放宽称压力放 宽。
a)共振放宽:同种原子对激发态原子的干扰 b)范德瓦尔斯放宽:不同种类原子对激发态原 子的干扰 c)斯塔克放宽:带电粒子对激发态原子的干扰
光源原理与设计—气体放电的基本原理
诸定昌
2.轮廓的类型 →色散型 a)Lorentz理论:干扰下停止辐射 b)Lentz-Weisskof理论:干扰时辐射的 频率发生变化 c)Lindholm理论:干扰时相位产生位移
Lν(x0)= Lν(0) exp(-∫
x0 Kν(x’)dx') 0
4
光源原理与设计—气体放电的基本原理
诸定昌
2.εν(x)≠0
设试解: x Lν(x)= u(x) exp(-∫ Kν(x’)dx’) x0
代入后解得:
Lν(x0)= ∫ε
x0 ν(x)dx 0
exp(-∫
x0 Kν(x’)dx’) x x0 Kν(x’)dx’) 0
光源原理与设计—气体放电的基本原理
诸定昌
dLν(x) dτ
= Lν(x) -
εν(x)
Kν (x) 6
3
= Lν(x) -Sν(x)
Sν(x)=
εν(x)
Kν (x)
2 hν = c2
e
hν KT
1 -1
光源原理与设计—气体放电的基本原理
诸定昌
代试解:Lν(τ)=u(τ)e
τ
Lν(τ)=[-∫
S dτ’ τ(ν,0)ν(τ’)e
2. 辐射光谱可选择
3. 寿命大大高于热辐射光源,光维持性好 4. 基本矛盾 η-Ra 光谱放宽
光源原理与设计—气体放电的基本原理
诸定昌
4.2 光谱线的轮廓和放宽
光源原理与设计—气体放电的基本原理
诸定昌
一.光谱线的轮廓
Iλ
光强度在一定波长区内 都有分布的现象,称光谱线 的放宽。其分布的形状就称 为谱线的轮廓。
当v=0时
1 mv2 2 e e hγ hγ0
Ei-Em ν0 = h c) 辐射总功率
为频率下限
Pcr∝Z
4
2 -3/2 ne Te
光源原理与设计—气体放电的基本原理
诸定昌
2. 轫致辐射(f-f跃迁)
→ +→A++e+△E e+A a) h ν=
1 me(Ve 2 -Ve’ 2) 2
b) 可证 Pcb ∝Z 2 ne2 Te -1/2
Iλ=It*Prof. λ
∫Iλdλ=∫ItProf.λdλ=It∫Prof.λdλ=It ∫Prof.λdλ=1
→“归一化”性质
光源原理与设计—气体放电的基本原理
诸定昌
以频率ν表示 c Prof.ν= 2 Prof.λ ν 以ω表示 1 Prof.ω= Prof.ν 2π
光源原理与设计—气体放电的基本原理
Lν
1 = nm Bmn LνB hνProf.ν c 光谱的吸收系数: 定义: ν= K
x
x+dx
L’ν
dLν Lνdx
其中 dLν=L’ν-Lν
光源原理与设计—气体放电的基本原理
诸定昌
物理意义:Lν(x) =Lν(0)e
-Kx
Lν(0) 0
Lν(x) x x0
由基尔霍夫定律: εν 2 hν LνB = = Kν c2
光源原理与设计—气体放电的基本原理
诸定昌
1 = nmBmn LνB hνProf.ν(1c = Kν LνB(1-e
hν - KT
nnBnm ) nmBmn
11
)
nn g n exp(- hν ) = nm g m KT gmBmn =gnBnm
~ LνB =Kν LνB(1-e Kν
- hν
)KT
光源原理与设计—气体放电的基本原理
诸定昌
5. 可见辐射的△E范围
△E= En-Em λ△E=1239 λ=380~780
△E=1.7ev(780nm)~3.2ev(380nm)
光源原理与设计—气体放电的基本原理
诸定昌
三. 分子的带状光谱
E=Ee+Ev+Er
△E=△Ee+△Ev+△Er
△E = h h △Ee+△Ev+△Er
光源原理与设计—气体放电的基本原理
诸定昌
3.连续光谱产生的特点 a)高气压大电流密度放电下,有强的连续光谱
b)放电蒸汽元素的Z越大,连续光谱越强,且 以复合辐射为主
c)高温下,连续光谱以轫致辐射为主高
光源原理与设计—气体放电的基本原理
诸定昌
五. 气体放电光源辐射的特点
1. 工作温度不受灯丝材料性质的限制
→ +A→A+△E e
1 meve a) h ν=△E =Ei-Em+ 2 Ve=0~∞→为连续谱
光源原理与设计—气体放电的基本原理