2017------2018学年度上学期九年级数学期末考试模拟试题AB卷
2017-2018学年第一学期期末检测九年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试九年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号一二三20 21 22 23 24 25 26得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.)题号 1 2 3 4 5 6 7 8 答案题号9 10 11 12 13 14 15 16 答案1.自行车车轮要做成圆形,实际上是根据圆的特征A.圆是轴对称图形B.直径是圆中最长的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形2.下列说法中正确的是A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“概率为0.0001的事件”是不可能事件C.“任意画出一个平行四边形,它是中心对称图形”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.两个相似多边形的面积比是9:16,其中小多边形的周长为36cm,则较大多边形的周长为A.48cm B.54cm C.56cm D.64cm4.图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是A.条件不足,无法求B.π C.4πD.π5.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有摩擦,则重物上升了A.5πcm B.3πcm C.2πcm D.πcm6.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2cm B.cm C.2cm D.2cm7.如图,在直角坐标系中,正方形EFOH是正方形ABCD经过位似变换得到的,对角线OE=4,则位似中心的坐标是A.(,)B.(0,0)C.(,)D.(-2,2)8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是A.2秒钟B.3秒钟C.4秒钟D.5秒钟9.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)10.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是A.B.C.D.11.已知关于x的方程kx2+(2k+1)x+(k-1)=0有实数根,则k的取值范围为A.k≥-B.k>-C.k≥-且k≠0D.k<-12.如图,路灯距地面8米,身高1.6米的小明从距离灯底(点O)20米的点A处,沿AO所在直线行走12米到达点B时,小明身影长度A.变长2.5米B.变短2米C.变短2.5米D.变短3米13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=在同一坐标系中的大致图象是A.B.C. D.14.关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是①当c=0时,函数的图象经过原点;②当b=0时,函数的图象关于y轴对称;③函数的图象最高点的纵坐标是;④当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根.A.0个B.1个C.2个D.3个15.如图,在平面直角坐标系中,A(-5,0),B(0,10),C(8,0),⊙A的半径为5.若F是⊙A上的一个动点,线段CF与y轴交于E点,则△CBE面积的最大值是A.B.40 C.20 D.16.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.18.如图,AB是⊙O的直径,AC是弦,D是AC的中点,若∠BAC=30°,则∠DCA=.19.如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△AOB连续作旋转变化,依次得到三角形①、②、③、④、…,则第⑦个三角形的直角顶点的坐标是;第17个三角形的直角顶点的坐标是.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本题满分8分)小明同学解一元二次方程x2-4x-1=0的过程如下所示问题:(1)小明解方程的方法是,他的求解过程从第步开始出现错误,这一步的运算依据应该是;(2)利用上面的方法正确解这个方程.21.(本题满分9分)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?22.(本题满分9分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连结EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.23.(本题满分9分)如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ADB∽△OBC;(2)连结CD,试说明CD是⊙O的切线;(3)若AB=2,,求AD的长.(结果保留根号)24.(本题满分10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C (2,n )沿OA 方向平移个单位长度得到点B ,判断四边形OABC的形状并证明你的结论.25.(本题满分11分)足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y (m )关于飞行时间x (s )的函数图象(不考虑空气的阻力),已知足球飞出1s 时,足球的飞行高度是2.44m ,足球从飞出到落地共用3s . (1)求y 关于x 的函数关系式;(2)足球的飞行高度能否达到4.88米?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m (如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m 处的守门员至少要以多大的平均速度到球门的左边框?26.(本题满分12分)如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,OA=1,OC=3. (1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,且△QBC 为直角三角形,求点Q 的坐标. (备注:两点()11M x y ,,()22N x y ,之间的距离为()()222121MN x x y y =-+-)参考答案一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)题号 1 2 3 4 5 6 7 8答案 C C A D B D D B题号9 10 11 12 13 14 15 16 答案 B A A D C B A B 二、(本大题有3个小题,共10分.17~18小题每个3分;19小题有2个空,每空2分)17.3;18.30°;19.(24,0),(67,).三、(本大题有7小题,共68分)20. (1)配方法,②,等式的基本性质;解:(2)x2-4x=1,x2-4x+4=1+4,(x-2)2=5,x-2=,x=2±,∴x1=2+,x2=2-.21.(1)不放回(2)(3,2)解:(3)小明获胜的可能性大.理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.22. (1)A、90.(2)等腰直角.解:(3)由题意得:△ADE≌△ABF,∴S四边形AECF=S正方形ABCD=25,∴AD=5,又∵∠D=90°,DE=2,∴.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,。
2018年上期九年级数学期末模拟检测试题参考答案及评分意见

2017-2018学年度第二学期期末模拟检测九年级数学参考答案及评分意见A 卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分.)1.C 2.B 3.A 4.D 5.B 6.C 7.C 8.B 9.D 10.D 11.A 12.A 第12题解析:①∵ABCD 为菱形,∴AB=AD , ∵AB=BD ,∴△ABD 为等边三角形, ∴∠A=∠BDF=60°, 又∵AE=DF ,AD=BD ,∴△AED ≌△DFB ,故本选项正确;②过点F 作FP ∥AE 交DE 于P 点(如图1), ∵AF=2FD ,∴FP :AE=DF :DA=1:3, ∵AE=DF ,AB=AD , ∴BE=2AE ,∴FP :BE=FP :2AE=1:6, ∵FP ∥AE , ∴PF ∥BE ,∴FG :BG=FP :BE=1:6, 即BG=6GF ,故本选项正确;③当点E ,F 分别是AB ,AD 中点时(如图2), 由(1)知,△ABD ,△BDC 为等边三角形, ∵点E ,F 分别是AB ,AD 中点, ∴∠BDE=∠DBG=30°, ∴DG=BG ,在△GDC 与△BGC 中, ⎪⎩⎪⎨⎧===CB CD CG CG BG DG , ∴△GDC ≌△BGC , ∴∠DCG=∠BCG ,∴CH ⊥BD ,即CG ⊥BD ,故本选项错误;④∵∠BGE=∠BDG +∠DBF=∠BDG +∠GDF=60°,为定值, 故本选项正确;综上所述,错误的结论有③,共1个, 故选:A .二、填空题(本大题共4小题,每小题5分,共20分.)图1 图213.x > 3 14.2 15.27 16.235 三、解答题(本大题共5小题,共44分)17.解:32--(2018-π)°+2sin60°+(31)-1. =2-3-1+2×23+3 ································································ 5分 =2-3-1+3+3 ······································································· 7分=4 ································································································ 8分 18.(1)证明:∵ ∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠B ······························ 2分∴ △AMF ∽△BGM . ··············································································· 3分 (2)解:当α=45°时,可得AC ⊥BC 且AC =BC∵M 为AB 的中点,∴AM =BM=························································ 4分 又∵AMF ∽△BGM ,∴AF BMAM BG=······························································ 5分 ∴BG =AF BM AM ⋅=32222⨯=38························································· 6分又4AC BC ===,∴84433CG =-=,431CF =-= ······················ 7分∴53FG = ························································· 8分(第18题图)MGFEDCBA19.解:(1)根据题意得:3÷15%=20(人) ; ···················································· 1分 表示“D 等级”的扇形的圆心角为204×360°=72°; ································ 2分C 级所占的百分比为208×100%=40%,m =40 . ······································· 3分 (2)等级B 的人数为20-(3+8+4) =5(人); ·················································· 4分 补全统计图,如图所示:······················································· 6分(3)列表和树状图二选一列表如下:(女,女)(女,女)(女,男)(女,男)(男,女)(男,女)女女女女男男························ 8分树状图如下:女1女2女2女1女1开始女2男男男所有相等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P (恰好是一名男生和一名女生) =64=32. ································································· 9分 20. 解:设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件,则9015040xx=- ……………………………………………………2分解得 x=15, ……………………………………………………3分 经检验x=15是原方程的解.……………………………………………………4分答:甲,乙两种玩具的进价分别是15元/件,25元/件;…………………5分 (2)设购进甲种玩具y 件,则购进乙种玩具(48﹣y )件,则481525(48)1000<yy y y -+-≤⎧⎨⎩, ………………………………7分 解得 20≤y <24. ……………………………………………………8分 因为y 是整数,甲种玩具的件数少于乙种玩具的件数, ∴y 取20,21,22,23,答:商场共有4种进货方案. ……………………………………………9分 21.(1)证明:如图①,取AD 的中点P ,连接PM . ······································ 1分∵∠PDM +∠DMA =∠BMN +∠DMA =90°∴∠PDM =∠BMN , ∵ AP =21AD =21AB =AM =MB =DP , ∵BN 平分∠CBE ,∴∠DPM =∠MBN =135°. ∵DP =MB ,在△DPM 和△MBN 中⎪⎩⎪⎨⎧=∠=∠∠=∠BM DP MBN DPM BMN PDM ∴△DPM ≌△MBN . ··············································································· 4分 ∴DM =MN . ·························································································· 5分P(第21题图①)F(第21题图②)ENMD B CA(2)结论:DM =MN . ········································································· 6分证明:如图②,在AD 上截取AF =AM ,连接FM . ································ 7分 ∵DF =AD ﹣AF ,MB =AB ﹣AM ,AD =AB ,AF =AM , ∴DF =MB .∵∠FDM +∠DMA =∠BMN +∠DMA =90°,∴∠FDM =∠BMN .又∠DFM =∠MBN =135° 在△DFM 和△MBN 中⎪⎩⎪⎨⎧∠=∠=∠=∠MBN DFM BMDF BMN FDM ∴△DFM ≌△MBN . ········································································ 9分 ∴DM =MN . ················································································ 10分B 卷(共60分)分,共36分.) ····················································· 2分····················································· 4分23421222122142a a a a a a a a a S ABC =⨯⨯-⨯⨯-⨯⨯-⨯=∆. ······················· 6分 (3)解:构造△ABC 如图(3)所示:(图③)3 ·············································· 9分mn n n n m n m n m S ABC 52221232142143=⨯⨯-⨯⨯-⨯⨯-⨯=∆ . ·············· 12分 27. 解:(1)在△OEB 和△FOC 中,∠EOB +∠FOC =135°,∠EOB +∠OEB =135°, ∴∠FOC =∠OEB . ················································································· 2分 又∵∠B =∠C ,∴△OEB ∽△FOC . ················································································· 4分 (2)在Rt △ABC 中, ∵AB =AC =2, ∴BC =22, ∵O 是BC 的中点,∴BO =CO =2. ·················································································· 5分 ∵△OEB ∽△FOC , ∴OFEOCF BO CO BE ==. 而OE =OF ,所以122==CFBE .∴BE =CF =2. ···································· 6分 由此可得出AE =AF =2-2. ·································································· 7分 在Rt △AEF 中,由勾股定理得EF =22-2. ·············································· 8分 (3)EF 与⊙O 相切. ············································································· 9分 OEB FOC ∵△∽△,BE OECO OF =∴. BE OE BO OF =∴.即BE BOOE OF=. 又45B EOF ∠=∠=∵°, BEO OEF ∴△∽△. BEO OEF ∠=∠∴. ··········································································· 10分 ∴点O 到AB 和EF 的距离相等. AB ∵与⊙O 相切,∴点O 到EF 的距离等于⊙O 的半径. EF ∴与⊙O 相切. ··············································································· 12分28.解:(1)∵抛物线y =(x -3)(x +1) 与x 轴交于A ,B 两点(点A 在点B 左侧), ∴当y =0时, (x -3)(x +1) =0,解得x =3或x =﹣1.∴点B 的坐标为(3,0).1分 ∵y =(x -3)(x +1) = x 2-2x -3=(x -1)2﹣4,∴顶点D 的坐标为(1,-4). ······ 2分 (2)①如图,∵抛物线y =(x -3)(x +1)与y 轴交于点C , ∴C 点坐标为(0,-3). ∵对称轴为直线x =1, ∴点E 的坐标为(1,0).连接BC ,过点C 作CH ⊥DE 于H ,则H 点坐标为(1,﹣3), ∴CH =DH =1.∴∠CDH =∠BCO =∠BCH =45°. ∴CD =2,CB =32,△BCD 为直角三角形.分别延长PC 、DC ,与x 轴相交于点Q ,R . ∵∠BDE =∠DCP =∠QCR , ∠CDB =∠CDE +∠BDE =45°+∠DCP ,∠QCO =∠RCO +∠QC R =45°+∠DCP , ∴∠CDB =∠QCO .∴△BCD ∽△QOC .∴31==CB CD OQ OC . ·························· 4分∴OQ =3OC =9,即Q (﹣9,0). ∴直线CQ 的解析式为y =-31x -3 . 又直线BD 的解析式为y =2x -6 ,由方程组⎪⎩⎪⎨⎧-=--=62331x y x y 解得:⎪⎪⎩⎪⎪⎨⎧-==72479y x . ·················································· 5分 ∴点P 的坐标为(79,-724). ································································· 6分 ②(Ⅰ)当点M 在对称轴右侧时,若点N 在射线CD 上,如图,延长MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G . ∵∠CMN =∠BDE ,∠CNM =∠BED =90°, ∴△MCN ∽△DBE . ∴21==DE BE MN CN .∴MN =2CN . 设CN =a ,则MN =2a . ∵∠CDE =∠DCF =45.∴△CNF ,△MG F 均为等腰直角三角形.∴NF =CN =a ,CF =2a .∴MF =MN+NF =3a .∴MG =FG =223a . ∴CG =FG ﹣FC =22a .∴M (223a ,-3+22a ). ···································································· 7分 代入抛物线y =(x -3)(x +1) ,解得a =927. ∴M (37,-920). ················································································· 8分 若点N 在射线DC 上,如图,MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G . ∵∠CMN =∠BDE ,∠CNM =∠BED =90°.∴△MCN ∽△DBE ,∴21==DE BE MN CN .∴MN =2CN .设CN =a ,则MN =2a . ∵∠CDE =45°,∴△CNF ,△MGF 均为等腰直角三角形. ∴NF =CN =a ,CF =2a .∴MF =MN ﹣NF =a ,∴MG =FG =22a .∴CG =FG+FC =223a .∴M (22a ,-3+223a ). ··························································································· 9分 代入抛物线y =(x -3)(x +1),解得a =52.∴M (5,12). ······················································································ 10分九年级数学答案第11页(共11页) (Ⅱ)当点M 在对称轴左侧时,∵∠CMN =∠BDE<45°,∴∠MCN > 45°.而抛物线左侧任意一点K ,都有∠KCN < 45°,∴点M 不存在. ························ 11分 综上可知,点M 坐标为(37,920 )或(5,12). ····································· 12分。
初中数学2017-2018第一学期期末九数试卷

2017—2018学年度第一学期期末教学质量检测九年级数学试卷注意事项:1.答卷前,先将密封线左侧的项目填写清楚.2.答卷时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.一、选择题:(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2cos 45°的值等于……………………………………………【】(A )2 (B )22 (C )42 (D )22 2.一元二次方程x 2 –2x=的解是……………………………………………………【 】(A )0 (B )0或2 (C )2 (D )此方程无实数解3.数学课上,老师让学生尺规作图画Rt△ABC ,使其斜边AB =c ,一条直角边BC =a ,小明的作法如图1,你认为这种作法中判断∠ACB 是直角的依据是………………【 】(A ) 勾股定理 (B ) 勾股定理是逆定理 (C ) 直径所对的圆周角是直角 (D ) 90°的圆周角所对的弦是直径4.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图2的统计图.在每天所走的步数这组数据中,众数和中位数分别是…………………………………………………【 】(A )1.2,1.3 (B )1.4,1.3 (C )1.4,1.35 (D )1.3,1.35.如图3,在平面直角坐标系中,已知点O (0,0),A (6,0),B (0,8),以某点为位似中心,作出与△AOB 的位似比为k 的位似△CDE ,则位似中心的坐标和k的值分别图 2图1为………………………………………………………………………………【 】(A )(0,0),2 (B )(2,2),2 (C )(2,2),21(D )(1,1),21 6.已知二次函数y=ax 2+bx +c 的x 、y 的部分对应值如下表:为…………………………………………………【 】(A )y 轴 (B)直线x =25 (C )直线x =1 (D)直线x =23 7.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形又是轴对称图形的概率是……………………………【 】 (A ) 1 (B ) (C )(D ) 8.如图4,函数y=xk的图象经过点A (1,﹣3),AB 垂直x 轴 于点B ,则下列说法正确的是………………………【 】 (A )k =3 (B )x <0时,y 随x 增大而增大 (C )S △AOB =3 (D )函数图象关于y 轴对称9.如图5,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =35°,则∠OAC 的度图4A N D CE M图7数是…【 】(A )35° (B )70° (C )65° (D )55° 10.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电………………………………………………………………【 】 (A )41度 (B )42度 (C )45.5度 (D )46度11.如图6,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是………………【 】(A )32 cm (B )3 cm (C )332 cm (D )1cm 12.如图7,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则NM ∶MC 等于……………………………………………………………………【 】 (A )1∶2 (B )1∶3 (C )1∶4 (D )1∶5图6 图513.某厂前年缴税30万元,今年缴税36.3万元,若该厂缴税的年平均增长率为x,则可列方程…………………………………………………………………………………【 】(A ) 30x 2=36.3 (B ) 30(1-x )2=36.3 (C ) 30+30(1+x )+30(1+x )2=36.3 (D ) 30(1+x )2=36.314. 如图8,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α, AB = 4,则AD 的长为…………………………………………………………………………【 】 (A )316 (B )320 (C )3 (D )516图10ABCDE图8图915.如图9为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是…………【 】(A )△ACD 的外心(B )△ABC 的内心 (C )△ACD 的内心 (D )△ABC 的外心16.如图10,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx+c =0的两个根是x 1=﹣1,x 2=3;③3a +c >0; ④当y >0时,x 的取值范围是﹣1≤x <3;⑤当x <0时,y 随x 增大而增大;其中结论正确的个数是……………………………………………………【 】(A )4个 (B )3个 (C )2个 (D )1个 二、填空题:(本大题共3个小题,17-18每小题3分,19每空2分,共10分.把答案写在题中横线上) 17.二次函数y =2(x ﹣3)2﹣4的最小值为.18.如图11,在△ABC 中,∠ACB =90°,AC =1,AB =2,以A 为圆心,以AC 为半径画弧,交AB 于D ,则扇形CAD的周长是 .(结果保留 )三、解答题(本大题共6个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20. (本题满分9分) 已知关于x 的一元二次方程x 2+3x +1﹣m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为负整数,求此时方程的根.21. (本题满分9分) 为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成图13-1的条形统计图和图13-2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图13-1的条形统计图. (2)在图13-2扇形统计图中,m 的值为_____,表示“D 等级”的扇形的圆心角为_____度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.图13-1 图13-222. (本题满分9分)如图14,某学校的围墙CD到教学楼AB的距离CE=22.5米,CD=3米.该学校为了纪念校庆准备彩旗连接线AC,∠ACE=22°.(1)求彩旗的连接线AC的长(精确到0.1m);(2)求教学楼高度AB .23. (本题满分9分) 如图15ABCD 的边AB =2,顶点A 坐标为(1,b ),点D 坐标为(2,b +1).(1)点B 的坐标是_____,点C 的坐标是_____(用b 表示);(2)若双曲线ky x=ABCD 的顶点B 和D ,求该双曲线的表达式; (3)若ABCD 与双曲线4(0)y x x=>总有公共点,求b 的取值范围.24. (本题满分10分)如图16,△ABC∽△DEC,CA=CB,且点E在AB的延长线上.(1)求证:AE=BD;(2)求证:△BOE∽△COD.(3)已知:CD=10,BE=5,求OE的长.图1625. (本题满分10分)经研究表明,某市跨河大桥上的车流速度V (单位:千米/时)是车流密度x (单位:辆/千米)的函数,函数图像如图17所示.(1)求当28≤x ≤188时,V 关于x 的函数表达式;(2)求车流量P (单位:辆/时)与车流密度x 之间的函数关系式.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)(3)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P 达到最大,并求出这一最大值.图1726. (本题满分12分)如图18-1,以边长为8的正方形纸片ABCD 的边AB 为直径作⊙O ,交对角线AC 于点E .(1)线段AE =____________;(2)如图18-2,以点A 为端点作∠DAM =30°,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt△ADM 绕点A 逆时针旋转(如图18-3),设旋转角为α(0°<图18-1 图18-2 图18-3α<150°),旋转过程中AD与⊙O交于点F.①当α=30°时,请求出线段AF的长;②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;③当α=___________°时,DM与⊙O相切.备用图备用图。
2017-2018学年第一学期九年级期末检测数学试卷(附答案)

2017—2018学年度第一学期期末考试九年级数学试题全卷满分150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题(每小题4分,共48分)1、下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.4、如图,在44⨯的正方形网格中,每个小正方形的边长为1,若将∆,则的长为()。
∆绕点O顺时针旋转900得到BODAOCA.πB.6πC.3πD.1.5π5、如图,已知O=AB,M是AB上任意一点,Θ的半径为10,弦12则线段OM的长可能是( )A. 5B. 7C. 9D. 116、某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为,则可列方程为()。
A: 36482=+x)1()1(482=-x B: 36C: 48)1(362=+x-x D: 48)1(362=7、二次函数n+=2)(a的图象如图,则一次函数y=mx+n的图象经过y+mxA. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限7题图8题图9题图10题图8、在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作半径交BC于点M、N,半圆O与AB、AC相切,切点分别为D、E,则半圆O 的半径和MND∠的度数分别为()。
20172018学年度上学期九年级数学期末考试模拟试题AB卷

2017------2018学年度上学期 九年级数学期末考试模拟试题AB 卷2017-2018学年度第一学期期末考试九年级数学模拟试题(A 卷)一、选择题(本题满分24分,共有8道小题,每小题3分) 1.一元二次方程230x x -=的根为( ).A .13x =,20x =B .1x =,2x =C .xD .3x =2.如图是一个用于防震的L 形的包装用泡沫塑料,则它的左视图是( ).3.如图在Rt ABC △中,90ACB ∠=︒,3BC =,5AB =,则下列结论正确的是( ). A .3sin 5A =B .3tan 4A =C .3tan 4B =D .3cos 4B =4.已知0234a b c ==≠,216a b +=,则c 的值为( ). A .1287B .645C .8D .25.某商场出售某种服装,平均每天可售出20件,每件盈利60元,为了扩大销售,若每件降价1元,则每天可多售出3件.若每天要盈利2000元,设每件应降价x 元,则可列出关于x 的方程为( ). A .60(203)2000x +=B .[](60)203(60)0x x -+-=C .(60)(203)2000x x -+=D .(60)(203)2000x x --=6.如图,矩形的中心为直角坐标系的原点O,各边分别与坐标轴平行,其中一边AB交x轴于点C,交反比例函数图像于点P,且点P是AC的中点.已知图中阴影部分的面积为8,该反比例函数的表达式是().A.y=B.4yx=C.y=D.8yx=7.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若3AB=,则菱形AECF的面积是().AB.C.D.48.下面表格中的数据是二次函数2y ax bx c=++的几组对应值.根据表中的数据我们可以判断.当20y ax bx c=++>时,自变量x的取值范围是().LLA.1x>B.1x<-3x>5x>13x-<<二、填空题9.计算2cos60sin45︒+︒=__________.10.已知两个等腰三角形相似,其中一个等腰三角形的腰长和底边长分别为8cm和6cm,若另一个等腰三角形的底边长为4cm,则它的腰长为__________cm.11.如图,用一个可以自由转动的转盘(转盘被平均分成面积相等的三部分)做游戏,转动转盘两次,两次所得数字之乘积大于5的概率为__________.12.二次函数263y kx x =-+的图像与x 轴有交点,则k 的取值范围是__________.13.如图所示是某种货号的直三棱柱零件的三视图,则它的表面积为__________平方厘米.14.如图,在平行四边形ABCD 中,6AB =,8AD =,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥,垂足为G,BG =则CEF △的周长为__________.三、作图题用尺规,直尺作图,不写作法,但要保留作图痕迹. 15.己知:矩形ABCD 内有一点P .求做:等腰直角PEF △,使它的直角顶点为P ,斜边EF 落在边CD 上.2cm5cmFECBAGD四、解答题16.(1)解方程:23210x x --=.(2)用配方法求二次函数241y x x =-+的顶点坐标.17.在研究“6个人中有2个人生肖相同的概率大约是多少?”是,小明所在的学习小组利用模拟实验的方法,即用大小相同、编号为1到12的小球代表12个生肖,将他们放入不透明的口袋中,从中随机摸出1个球,记下号码,放回去L L 直至摸到第6个小球,记下6个号码,到此为一次模拟实验.小明他们重复了多次这样的模拟实验,并将试验结果制成统计表如下:(1)根据上表,完成折线统计图.(2)根据统计图表中所提供的消息,请你估计6个人中有2个人生肖相同的概率大约是多少?并简要说明你是怎样估计的?18.(本小题满分6分)实验总次数如图,某学校教学楼AB 的后面有一建筑物CD ,在距离CD 正后方28米的观测点P 处,以22︒的仰角测得建筑物的顶端C 恰好挡住教学楼的顶端A ,而在建筑物CD 上距离地面2米高的E 处,测的教学楼的顶端A 的仰角为45︒,求教学楼AB 的高度(结果保留整数).19.(本小题满分6分)如图所示,旗杆AB 和竹竿CD 直立在太阳光下.已知,竹竿CD 的长为3米,它的影子有一部分落在墙上,且墙上部分的影子长度与落在地面的影子长度均为1米,同一时刻测得旗杆AB 影子长为8米,求旗杆AB 的实际长度.20.(本小题满分8分)挪威生理学家古德贝尔对闭眼转圈问题进行了深入研究,通过大量事例分析得出:长年累月养成的习惯,使每个人一只脚的步子,要比另一只脚的步子长出一段微乎其微的距离.正是这一小段步差x 毫米,导致这个人绕半径为y 米的圆转圈.更令人惊奇的是,y 与x 恰好满足反比例函数关系.已知,某迷路人的步差为0.2毫米,他绕半径为700米的圆转圈.(1)写出y 与x 之间的函数关系式.(2)若该迷路人绕周长为1800π米的圆转圈,则他的步差是多少? (3)若该迷路人的步差不小于0.1毫米,则他将在什么范围内转圈? 21.(本小题满分8分)已知:如图在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过A 点作AG DB ∥交CB 的延长线于点G . (1)求证:DE BF ∥.E C BAPD(2)若90G∠=︒,则四边形DEBF是什么特殊图形?请说明理由.22.(本小题满分10分)如图,一个圆形喷水池的中央安装了一个柱形喷水装置OA,A处的喷头向外喷水,水流沿抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系满足:2y x bx c=-++,且喷水柱OA的高度为74米,落点B距离喷水柱底端O处3.5米.(1)求抛物线的函数关系式.(2)若圆形水池的半径改为3米,在保证抛物线水流形状不变的前提下,调整喷水柱OA的高度,使水流的最高点数值下降1米,此时能否保证喷出的水流不落在池外?23.(本小题满分10分)(n操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为1BD.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD 上,折痕为EF.则四边形BCEF矩形.FEC BAG D证明:设正方形ABCD 的边长为1,则BD =. 由折叠性质可知1BG BC ==,∵90CFE BFE C ∠=∠=∠=︒,则四边形BCEF 为矩形. ∴90A BFE ∠=∠=︒. ∴EF AD ∥. ∴BG BFBD AB =1BF =. ∴BF =∴:BC BF ==.∴四边形BCEF 矩形. 阅读以上内容,回答下列问题:(1)已知四边形BCEF 为矩形,沿用上述操作方式,得到四边形BCMN ,如图②,求证:四边形BCMN(2)在图②中,求2tan D BC ∠的值.(3m k 和1tan k D BC -∠的值.(用含m 和n 的代数式表示,直接写出结论即可)24.(本小题满分12分)已知:如图,在等边ABC △中,6cm Ab =,AD BC ⊥于点D ,动点F 从点B 出发,沿BC 方向以1cm/s 的速度向点D 运动;同时,动点P 也从B 出发,沿BA 方向以3cm/s 的速度向点A 运动,过点P 作PE BC ∥,与边AC 交于点E ,与AD 交于点G ,连结ED ,PF .设运动的时间为(s)(02)t t <<. (1)当t 为何值时,四边形PEDF 为平行四边形?(2)设四边形PEDF 面积为y ,求y 与t 之间的函数关系式. (3)是否存在某一时刻t ,使得四边形PEDF 面积最大?若存在,请求出t 的值;若不存在,请说明理由.(4)连结PD 、EF ,当t 为何值时,PD EF ⊥?2016-2017学年度第一学期期末数学考试九年级数学模拟试题(B 卷)一、选择题(本题满分24分,共有8道小题,每小题3分) 下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.如图,空心圆柱的主视图是( ).2.某村耕地总面积为50公顷,且该村人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( ).A .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积y 与总人口x 成正比例C .若该村人均耕地面积为2公顷,则总人口有100人D .当该村总人口为50人时,人均耕地面积为1公顷F ECBA PGD)y (3.在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m ,则斜坡上相邻两树间的坡面距离是( )m .A .3B .C .D .44.抛物线2(2)3y x =+-可以由抛物线2y x =通过平移得到,平移过程正确的是( ).A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位5.如图,ABC △中,78A ∠=︒,4AB =,6AC =.将ABC △沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的个数为( ).6.输入一组数据,按下列程序进行计算,输出结果如下表:分析表格中的数据,估计方程2(8)8260x +-=的一个正数解x 的大致范围为( ). A .20.520.6x << B .20.620.7x << C .20.720.8x <<D .20.820.9x <<7.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为(1,0)-,其部分图象如图所示,则下列结论中正确的有( )个.①24ac b <;②当0x <时,y 随x 增大而增大;③当0x =或2x =时,3y =;④0a b c ++>.A .4个B .3个C .2个D .1个8.如图,正方形ABCD 中,E 、F 分别为BC 、CD 中点,连接AE ,BF 交于点G ,将BCF △沿BF 对折,得到BPF △,延长FP 交BA 延长线于点Q ,下列结论正确的有( )个.①AE BF =;②AE BF ⊥;③4sin 5BQP ∠=;④2BGE ECFG S S =四边形△. A .4B .3C .2D .1二、填空题(本题满分18分,共有6道小题,每小题3分) 92cos45︒-︒=__________.10.不透明的箱子里装有大小一样、黑白两种颜色的塑料球共3000个,为了估计两种颜色的球各有多少个,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的频率在0.7附近较稳定的波动,据此可以估计箱子里黑球个数约是__________个.11.如图,在菱形ABCD 中,60A ∠=︒,对角线6BD =,则菱形ABCD 的面积是__________.12.要在—块长16m ,宽12m 的矩形荒地上建一个花园,使花园所占面积为荒地面积的一半,小明的设计方案如图所示,根据题意可得方程__________. DG AB CEF P Q DAC m13.如图所示是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的半径为0.6m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为__________2m (结果保留π).14.如图,在平面直角坐标系中,矩形AOCB 的两边OA 、OC 分别在x 轴和y 轴上,且2OA =,1OC =.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形111AOC B ,再将矩形111AOC B 以原点O 为位似中心放大32倍,得到矩形222A OC B L ,以此类推,得到的矩形n n n A OC B 的对角线交点的坐标为__________.三、作图题(本题满分4分)15.如图,已知线段a .求作:ABC △,使得AB a =,30A ∠=︒,90C ∠=︒.要求:尺规作图,不写作法,保留作图痕迹.四、解答题(本题共有9道小题,满分74分)16.解方程(本题满分8分,共2道小题,每小题4分)(1)3(1)22x x x -=-.(2)23250x x +-=.17.(本题满分6分)小文和小颖做游戏,连续掷两枚质地均匀的硬币,如果两枚正面朝上,则小文胜,如果两枚反面朝上,则小颖胜,你认为这是个公平的游戏吗?请通过列表格或画树状图说明理由.a18.(本题满分6分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.己知10cmOA OB==.当18AOB∠=︒.求所作圆的半径(结果精确到0.01cm).(参考数据:sin90.1564︒≈,cos90.9877︒≈,sin180.3090︒≈,cos180.9511︒≈)19.(本题满分6分)某厂从2012年起开始投入技术改进资金,经技术改进后,某产品的生产成本不断降低,具体数据如下表所示:(1)请认真分析表中数据,从所学习过的一次函数、二次函数和反比例函数中,确定哪种函数能表示其变化规律?说明你确定的理由,并求出y与x之间的关系式.(2)按照这种变化规律,若2017年将投入技改资金5万元,预计届时生产成本每件比2015年降低多少万元?20.(本题满分8分)某数学兴趣小组同学进行测量大厦CD高度的综合实践活动,如图,AB是直通大厦二楼露天平台BD的楼梯.测量得知,楼梯AB的坡角为37︒,且楼梯AB的长为10m,平台BD的长为8m,在B处测得楼顶C的仰角为65︒,那么大楼CD的高度约为多少米?(结果保留整数).(参考数据:3sin375︒≈,3tan374︒≈,9sin6510︒≈,15 tan657︒≈)21.(本题满分8分)已知:四边形ABCD 是矩形,它的对角线AC 、BD 交于点O ,过C 作CE BD ∥,过D 作DE AC ∥,DE 、CE 交于E .(1)求证:四边形OCED 是菱形.(2)四边形ABCD 满足什么条件时,四边形OCED 是正方形?证明你的结论.22.(本题满分10分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以50元的价格销售,平均每天可销售90箱;价格每提高1元,平均每天少销售3箱.假定每天销售价为y (箱)与销售价x (元/箱)之间满足一次函数关系式.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(本题满分10分)【提出问题】如果要从1、2、3M L L ,连续的M 天中选择相连的N 天去参加N 日游,有多少种不同的选择方法?37°65°DA B C ED AB C E O【探究问题】这里影响选择方法的变量有两个——总天数M 、相连天数N ,采用控制变量的方法去研究,如果固定相连数N ,变化总天数M ,会发现怎样的规律?如果固定总天数M ,变化相连数N ,会发现怎样的规律?让我们先从简单的问题开始研究,再把复杂问题转化为已解决的问题去求解. 探究一:如果要从连续的2、3、4、5L L 天中选择相连的2天,会有多少种不同的选择方法?我们把相连的天数用N 表示,可以使用下面的框图,令3M =、4、5L L 各自尝试探究,归纳出探究一的结论.2N =时,令3M =、4、5L L结论:从连续的M 天中选择相连的2天有__________种不同的选择方法. 探究二:如果要从100天中选择相连的2天、3天L ,有多少种不同的选择方法? 我们把相连的天数用N 表示,可以使用下面的框图尝试探究,发现规律并应用规律完成填空.结论:如果要从1、2、3100L L ,连续的100天中选择相连的8天去参加八日游,有__________种不同的选择方法.【问题解决】如果要从1、2、3M L L ,连续的M 天中选择相连N 天去参加N 日游,有__________种不同的选择方法.【实际应用】我们运用或拓展上述得到的探究结论,可以解决生活中的很多问题. 要在浴室的一面墙上贴瓷砖,将这块22⨯的花砖贴在这面墙的任意位置,有多少种不同的贴法呢?123451234123如图所示,设长有M个格子,宽有N个格子,每个格子都是11⨯的正方形,则有__________种不同的贴法选择.24.(本题满分12分)已知:如图,在矩形ABCD中,6cmBC=,对角线AC,BD交AB=,8cm于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长.交BC于点E.连接PQ与t t<<,解答下列问题:BD相交于点F,连接EQ.设运动时间为(s)(03)∠是直角?若存在,(1)在运动过程中,是否存在某一时刻t,使PQE求出t的值;若不存在,请说明理由.(2)设四边形PECQ的面积为2S,请确定S与t的函数关系式.(cm)(3)连接CF,设四边形CFPO的面积是y,在运动过程中,是否存在y s=?若存在,求出t的值;若不存在,请说明理由.某一时刻t,使:1:2。
(精选4套)2017—2018学年度上学期期末考试九年级数学试题

16题图2017—2018学年度上学期期末考试九年级数学试题一、选择题(每小题4分,共40分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A .B .C .D .2.一元二次方程0182=--x x 配方后可变形为( )A. 17)4(2=+xB. 15)4(2=+xC. 17)4(2=-xD. 15)4(2=-x3.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( ) A .抽10次必有一次抽到一等奖,B .抽一次不可能抽到一等奖 C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 4.设1x ,2x 是方程2530x x +-=的两个根,则2212x x+的值是()A .19B .25C .31D .305.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( ) A .15° B .20° C .25° D .30°6.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则AB ︵的长为( )A .πB .6πC .3πD .1.5π7.如图,平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为( )A .1B .1或5C .3D.5(第5题图) (第6题图) (第7题图) (第8题图)8.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )D9.若A (),B (),C ()是二次函数的图象上的三点,则的大小关系是A .B .C .D .10.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,对称轴是直线x =-1,下列结论:①abc <0;②2a +b =0;③a -b +c >0;④4a -2b +c <0,其中正确的是( )A .①②B . 只有①C .③④D . ①④(第10题图) (第14题图)(第15题图)二、填空题(每小题4分,共32分)11.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 . 12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 .13.已知整数k <5,若△ABC 的边长均满足关于x 的方程280x -+=,则△ABC 的周长是 . 14.如图,二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图象相交于点A (-2,4),B (8,2),则能使y 1>y 2成立的x 的取值范围是 .15.如图,在Rt △ABC 中,∠ACB =90°,AC =5cm ,BC =12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为 cm .16.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是 .17.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为第17题图18.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,…,如此作下去,则△B 2014A 2015B 2015的顶点A 2015的坐标是 .三、解答题(共7小题,78分) 19.(本题满分10分)解下列方程:(1)03)3(=-+-x x x ; (2)0142=+-x x .20.(本题满分8分)如图,在平面直角坐标系中,A (0,1),B (-3,5),C (-3,1).(1)在图中画出△ABC 以A 为旋转中心,沿顺时针方向旋转90° 后的图形△AB 1C 1,并写出B 1、C 1两点的坐标; (2)在图中画出与△ABC 关于原点对称的图形△A 2B 2C 2, 并写出B 2、C 2两点的坐标.21.(本题满分10分)已知甲同学手中藏有三张分别标有数字21,41,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b .⑴请你用树形图或列表法列出所有可能的结果;⑵现制订这样一个游戏规则,若所选出的a 、b 能使ax 2+bx +1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.22.(本题满分12分)已知:函数y =ax 2-(3a +1)x +2a +1(a 为常数). (1)若该函数图象与坐标轴只有两个交点,求a 的值;(2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (x 1,0),B (x 2,0)两点,与y 轴相交于点C ,且x 2-x 1=2.求抛物线的解析式23.(本题满分12分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y =-10x +1200.(1)求出利润S (元)与销售单价x (元)之间的关系式(利润=销售额-成本); (2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?24.(本题满分12分) 在直角三角形ABC 中,∠C=90°,点O 为AB 上的一点,以点O 为圆心,OA 为半径 的圆弧与BC 相切于点D ,交AC 于点E ,连接AD .证:25.(本题满分14分)如图,抛物线22y ax ax c =-+(a ≠0)与y 轴相交于点C (0,4),与x 轴相交于A 、B两点,点A 的坐标为(4,0). (1)求此抛物线的解析式;(2)抛物线在x 轴上方的部分有一动点Q ,当△QAB 的面积等于12时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2017—2018学年度上学期期末考试21.(本题满分8分)22.(本题满分10分)23.(本题满分10分)2017—2018学年度第一学期期末模拟考试卷九年级数学特别提醒:1、考试时间120分钟,满分150分.2、用黑色签字笔在答题卡...上答题,在试卷上答题无效。
2017------2018学年度上学期九年级数学期末考试模拟试题AB卷

2017------2018学年度上学期 九年级数学期末考试模拟试题AB 卷2017-2018学年度第一学期期末考试 九年级数学模拟试题(A 卷)一、选择题(本题满分24分,共有8道小题,每小题3分) 1.一元二次方程230x x -=的根为( ).A .13x =,20x =B .1x ,2x =C .xD .3x =2.如图是一个用于防震的L 形的包装用泡沫塑料,则它的左视图是( ).3.如图在Rt ABC △中,90ACB ∠=︒,3BC =,5AB =,则下列结论正确的是( ). A .3sin 5A =B .3tan 4A =C .3tan 4B =D .3cos 4B =4.已知0234a b c ==≠,216a b +=,则c 的值为( ). A .1287B .645C .8D .25.某商场出售某种服装,平均每天可售出20件,每件盈利60元,为了扩大销售,若每件降价1元,则每天可多售出3件.若每天要盈利2000元,设每件应降价x 元,则可列出关于x 的方程为( ). A .60(203)2000x +=B .[](60)203(60)0x x -+-=C .(60)(203)2000x x -+=D .(60)(203)2000x x --=6.如图,矩形的中心为直角坐标系的原点O ,各边分别与坐标轴平行,其中一边AB 交x 轴于点C ,交反比例函数图像于点P ,且点P 是AC 的中点.已知图中阴影部分的面积为8,该反比例函数的表达式是( ).A.y = B .4y x=C.y D .8y x=7.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF ,若3AB =,则菱形AECF 的面积是( ). AB.C.D .48.下面表格中的数据是二次函数2y ax bx c =++的几组对应值.根据表中的数据我们可以判断.当20y ax bx c =++>时,自变量x 的取值范围是( ).A .1x >B .1x <-或3x >C .5x >D .13x -<<二、填空题9.计算2cos60sin 45︒+︒=__________.10.已知两个等腰三角形相似,其中一个等腰三角形的腰长和底边长分别为8cm 和6cm ,若另一个等腰三角形的底边长为4cm ,则它的腰长为__________cm .11.如图,用一个可以自由转动的转盘(转盘被平均分成面积相等的三部分)做游戏,转动转盘两次,两次所得数字之乘积大于5的概率为__________.12.二次函数263y kx x =-+的图像与x 轴有交点,则k 的取值范围是__________.13.如图所示是某种货号的直三棱柱零件的三视图,则它的表面积为__________平方厘米.14.如图,在平行四边形ABCD 中,6AB =,8AD =,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥,垂足为G,BG =,则CEF △的周长为2cm5cm__________.三、作图题用尺规,直尺作图,不写作法,但要保留作图痕迹. 15.己知:矩形ABCD 内有一点P .求做:等腰直角PEF △,使它的直角顶点为P ,斜边EF 落在边CD 上.四、解答题16.(1)解方程:23210x x --=.(2)用配方法求二次函数241y x x =-+的顶点坐标.17.在研究“6个人中有2个人生肖相同的概率大约是多少?”是,小明所在的学习小组利用模拟实验的方法,即用大小相同、编号为1到12的小球代表12个生肖,将他们放入不透明的口袋中,从中随机摸出1个球,记下号码,放回去直至摸到第6个小球,记下6个号码,到此为一次模拟实验.小明他们重复了多次这样的模拟实验,并将试验结果制成统计表如下:FECBAGD(1)根据上表,完成折线统计图.(2)根据统计图表中所提供的消息,请你估计6个人中有2个人生肖相同的概率大约是多少?并简要说明你是怎样估计的?18.(本小题满分6分)如图,某学校教学楼AB 的后面有一建筑物CD ,在距离CD 正后方28米的观测点P 处,以22︒的仰角测得建筑物的顶端C 恰好挡住教学楼的顶端A ,而在建筑物CD 上距离地面2米高的E 处,测的教学楼的顶端A 的仰角为45︒,求教学楼AB 的高度(结果保留整数).19.(本小题满分6分)实验总次数E C BAP D如图所示,旗杆AB和竹竿CD直立在太阳光下.已知,竹竿CD的长为3米,它的影子有一部分落在墙上,且墙上部分的影子长度与落在地面的影子长度均为1米,同一时刻测得旗杆AB影子长为8米,求旗杆AB的实际长度.20.(本小题满分8分)挪威生理学家古德贝尔对闭眼转圈问题进行了深入研究,通过大量事例分析得出:长年累月养成的习惯,使每个人一只脚的步子,要比另一只脚的步子长出一段微乎其微的距离.正是这一小段步差x毫米,导致这个人绕半径为y米的圆转圈.更令人惊奇的是,y与x恰好满足反比例函数关系.已知,某迷路人的步差为0.2毫米,他绕半径为700米的圆转圈.(1)写出y与x之间的函数关系式.(2)若该迷路人绕周长为1800π米的圆转圈,则他的步差是多少?(3)若该迷路人的步差不小于0.1毫米,则他将在什么范围内转圈?21.(本小题满分8分)已知:如图在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG DB∥交CB的延长线于点G.(1)求证:DE BF∥.(2)若90G∠=︒,则四边形DEBF是什么特殊图形?请说明理由.F EC BAG D22.(本小题满分10分)如图,一个圆形喷水池的中央安装了一个柱形喷水装置OA,A处的喷头向外喷水,水流沿抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系满足:2y x bx c=-++,且喷水柱OA的高度为74米,落点B距离喷水柱底端O处3.5米.(1)求抛物线的函数关系式.(2)若圆形水池的半径改为3米,在保证抛物线水流形状不变的前提下,调整喷水柱OA的高度,使水流的最高点数值下降1米,此时能否保证喷出的水流不落在池外?23.(本小题满分10分)(n矩形.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为1BD.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF矩形.证明:设正方形ABCD 的边长为1,则BD =. 由折叠性质可知1BG BC ==,∵90CFE BFE C ∠=∠=∠=︒,则四边形BCEF 为矩形. ∴90A BFE ∠=∠=︒. ∴EF AD ∥. ∴BG BFBD AB =1BF =. ∴BF =∴:BC BF ==.∴四边形BCEF 矩形. 阅读以上内容,回答下列问题:(1)已知四边形BCEF 矩形,沿用上述操作方式,得到四边形BCMN ,如图②,求证:四边形BCMN (2)在图②中,求2tan D BC ∠的值.(3m k 和1tan k D BC -∠的值.(用含m 和n 的代数式表示,直接写出结论即可)24.(本小题满分12分)已知:如图,在等边ABC △中,6cm Ab =,AD BC ⊥于点D ,动点F 从点B 出发,沿BC 方向以1cm/s 的速度向点D 运动;同时,动点P 也从B 出发,沿BA 方向以3cm/s 的速度向点A 运动,过点P 作PE BC ∥,与边AC 交于点E ,与AD 交于点G ,连结ED ,PF .设运动的时间为(s)(02)t t <<.(1)当t 为何值时,四边形PEDF 为平行四边形?(2)设四边形PEDF 面积为y ,求y 与t 之间的函数关系式.(3)是否存在某一时刻t ,使得四边形PEDF 面积最大?若存在,请求出t 的值;若不存在,请说明理由.(4)连结PD 、EF ,当t 为何值时,PD EF ⊥?2016-2017学年度第一学期期末数学考试九年级数学模拟试题(B 卷)一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.如图,空心圆柱的主视图是( ).2.某村耕地总面积为50公顷,且该村人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( ).F ECBA PG DA .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积y 与总人口x 成正比例C .若该村人均耕地面积为2公顷,则总人口有100人D .当该村总人口为50人时,人均耕地面积为1公顷3.在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m ,则斜坡上相邻两树间的坡面距离是( )m . A .3B.C.D .44.抛物线2(2)3y x =+-可以由抛物线2y x =通过平移得到,平移过程正确的是( ). A .先向左平移2个单位,再向上平移3个单位 B .先向左平移2个单位,再向下平移3个单位 C .先向右平移2个单位,再向下平移3个单位 D .先向右平移2个单位,再向上平移3个单位5.如图,ABC △中,78A ∠=︒,4AB =,6AC =.将ABC △沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的个数为( ).)y 公顷(6.输入一组数据,按下列程序进行计算,输出结果如下表:分析表格中的数据,估计方程2(8)8260x +-=的一个正数解x 的大致范围为( ).A .20.520.6x <<B .20.620.7x <<C .20.720.8x <<D .20.820.9x <<7.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为(1,0)-,其部分图象如图所示,则下列结论中正确的有( )个.①24ac b <;②当0x <时,y 随x 增大而增大;③当0x =或2x =时,3y =;④0a b c ++>.A .4个B .3个C .2个D .1个8.如图,正方形ABCD 中,E 、F 分别为BC 、CD 中点,连接AE ,BF 交于点G ,将BCF △沿BF 对折,得到BPF △,延长FP 交BA 延长线于点Q ,下列结论正确的有( )个.①AE BF =;②AE BF ⊥;③4sin 5BQP ∠=;④2BGE ECFG S S =四边形△. A .4B .3C .2D .1二、填空题(本题满分18分,共有6道小题,每小题3分)92cos45︒-︒=__________.10.不透明的箱子里装有大小一样、黑白两种颜色的塑料球共3000个,为了估计两种颜色的球各有多少个,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的频率在0.7附近较稳定的波动,据此可以估计箱子里黑球个数约是__________个.11.如图,在菱形ABCD 中,60A ∠=︒,对角线6BD =,则菱形ABCD 的面积是D GA B C E FPQ__________.12.要在—块长16m ,宽12m 的矩形荒地上建一个花园,使花园所占面积为荒地面积的一半,小明的设计方案如图所示,根据题意可得方程__________.13.如图所示是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的半径为0.6m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为__________2m (结果保留π).14.如图,在平面直角坐标系中,矩形AOCB 的两边OA 、OC 分别在x 轴和y 轴上,且2OA =,1OC =.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形111AOC B ,再将矩形111AOC B 以原点O 为位似中心放大32倍,得到矩形222A OC B ,以此类推,得到的矩形n n n A OC B 的对角线交点的坐标为__________.DAC m三、作图题(本题满分4分)15.如图,已知线段a .求作:ABC △,使得AB a =,30A ∠=︒,90C ∠=︒.要求:尺规作图,不写作法,保留作图痕迹.四、解答题(本题共有9道小题,满分74分)16.解方程(本题满分8分,共2道小题,每小题4分)(1)3(1)22x x x -=-.(2)23250x x +-=.17.(本题满分6分)小文和小颖做游戏,连续掷两枚质地均匀的硬币,如果两枚正面朝上,则小文胜,如果两枚反面朝上,则小颖胜,你认为这是个公平的游戏吗?请通过列表格或画树状图说明理由.18.(本题满分6分)如图1是一副创意卡通圆规,图2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯端点B 可绕点A 旋转作出圆.己知10cm OA OB ==.当18AOB ∠=︒.求所作圆的半径(结果精确到0.01cm ).(参考数据:sin90.1564︒≈,cos90.9877︒≈,sin180.3090︒≈,cos180.9511︒≈)19.(本题满分6分)a某厂从2012年起开始投入技术改进资金,经技术改进后,某产品的生产成本不断降低,具体数据如下表所示:(1)请认真分析表中数据,从所学习过的一次函数、二次函数和反比例函数中,确定哪种函数能表示其变化规律?说明你确定的理由,并求出y 与x 之间的关系式. (2)按照这种变化规律,若2017年将投入技改资金5万元,预计届时生产成本每件比2015年降低多少万元?20.(本题满分8分)某数学兴趣小组同学进行测量大厦CD 高度的综合实践活动,如图,AB 是直通大厦二楼露天平台BD 的楼梯.测量得知,楼梯AB 的坡角为37︒,且楼梯AB 的长为10m ,平台BD 的长为8m ,在B 处测得楼顶C 的仰角为65︒,那么大楼CD 的高度约为多少米?(结果保留整数).(参考数据:3sin375︒≈,3tan374︒≈,9sin 6510︒≈,15tan657︒≈)21.(本题满分8分)已知:四边形ABCD 是矩形,它的对角线AC 、BD 交于点O ,过C 作CE BD ∥,过D 作DE AC ∥,DE 、CE 交于E .37°65°DA B C E(1)求证:四边形OCED 是菱形.(2)四边形ABCD 满足什么条件时,四边形OCED 是正方形?证明你的结论.22.(本题满分10分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以50元的价格销售,平均每天可销售90箱;价格每提高1元,平均每天少销售3箱.假定每天销售价为y (箱)与销售价x (元/箱)之间满足一次函数关系式.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式. (2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(本题满分10分)【提出问题】如果要从1、2、3M ,连续的M 天中选择相连的N 天去参加N 日游,有多少种不同的选择方法?【探究问题】这里影响选择方法的变量有两个——总天数M 、相连天数N ,采用控制变量的方法去研究,如果固定相连数N ,变化总天数M ,会发现怎样的规律?如果固定总天数M ,变化相连数N ,会发现怎样的规律?让我们先从简单的问题开始研究,再把复杂问题转化为已解决的问题去求解.探究一:如果要从连续的2、3、4、5天中选择相连的2天,会有多少种不同的选择方法? D AB C E O我们把相连的天数用N 表示,可以使用下面的框图,令3M =、4、5各自尝试探究,归纳出探究一的结论.2N =时,令3M =、4、5结论:从连续的M 天中选择相连的2天有__________种不同的选择方法. 探究二:如果要从100天中选择相连的2天、3天,有多少种不同的选择方法? 我们把相连的天数用N 表示,可以使用下面的框图尝试探究,发现规律并应用规律完成填空.结论:如果要从1、2、3100,连续的100天中选择相连的8天去参加八日游,有__________种不同的选择方法.【问题解决】如果要从1、2、3M ,连续的M 天中选择相连N 天去参加N 日游,有__________种不同的选择方法.【实际应用】我们运用或拓展上述得到的探究结论,可以解决生活中的很多问题. 要在浴室的一面墙上贴瓷砖,将这块22⨯的花砖贴在这面墙的任意位置,有多少种不同的贴法呢?123451234123如图所示,设长有M个格子,宽有N个格子,每个格子都是11⨯的正方形,则有__________种不同的贴法选择.24.(本题满分12分)已知:如图,在矩形ABCD中,6cmBC=,对角线AC,BD交于点O.点AB=,8cmP从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC 方向匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动.连接PO 并延长.交BC于点E.连接PQ与BD相交于点F,连接EQ.设运动时间为t t<<,解答下列问题:(s)(03)∠是直角?若存在,求出t的值;(1)在运动过程中,是否存在某一时刻t,使PQE若不存在,请说明理由.(2)设四边形PECQ的面积为2S,请确定S与t的函数关系式.(cm)(3)连接CF,设四边形CFPO的面积是y,在运动过程中,是否存在某一时刻t,y s=?若存在,求出t的值;若不存在,请说明理由.使:1:2。
20172018第一学期期末测试九年级数学试题及答案

2017—2018学年第一学期期末学业水平测试九年级数学试题:温馨提示分钟。
考试结束后,只分。
考试用时100本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。
满分为1201. 上交答题卡。
毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写答卷前,考生务必用0.52. 铅笔填涂相应位置。
在答题卡规定的位置上,并用2B把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦2B铅笔3.第Ⅰ卷每小题选出答案后,用干净后,再选涂其他答案标号。
答案不能答在试题卷上。
毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能第Ⅱ卷必须用0.54. 写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)分,在每小题给出的四个选项中,只有一项是正确的,请把正确的小题,共36一、选择题:本大题共12. 3分,选错、不选或选出的答案超过一个均记零分选项选出来.每小题选对得22m的值是x+5x+m-3m+2=0的一个根是0,则1.若关于x的一元二次方程(m-1) 2 D.无解.2 C.1或A.1 B206?x?4?x 2.若把方程的左边配成完全平方的形式,则正确的变形是222253)?9??3)(x(((x?3)?5x?3)?13x? B. C.. A. D张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形、圆,在看不见在63.张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是图形的情况下随机摸出12111 A. D C.. B.623322?3)?2(x?y个单位后,所得图象的函数表达式个单位,再向下平移2二次函数4.6图象向左平移是2212???2x6x?yxy?2?12x A. B.2218?6x?y??12x?y2?x182?x C. D .三通管的立体图如图所示,则这个几何体的主视图是5.B. A.D. C.下列命题中,假命题的是6. 等弧所对的圆周角相等 A.两条弧的长度相等,它们是等弧 B.位似图形一定有位似中心 C.所有的等边三角形都相似 D. 两点恰好B、C的菱形ABCD绕点A旋转,当7.如图,边长为2A的长度等于AEF落在扇形的弧EF上时,弧BC DEF????23 D. A. B. C.B3324C 1=∠2,那么添加下列任何一个条件:8.如图,若果∠(第7题图)BCABABAC =),)=,(21 (DEADAEAD AED ,(,4)∠C=∠(3)∠B=∠DADE的个数为其中能判定△ABC∽△题图)8(第 A.1 B.2 C.3D.4AB=8是△ABC的边BC上一点,,AD=4,9.如图,点D 的面积为30,那么△ACD的面积为∠∠DAC=B.如果△ABD15 .5 A. B.7.5 C10 D.(第9题图)k的值10.k的图象没有交点,=y=与一次函数若反比例函数yx-3则x可以是-3.-2DB.-1C. A.121?6x?2x?y?xx,上,且<<都在抛物线11.若点、0)y)(Bx,A(x,y212211yy的大小关系为则与21yyyyyy A. C.< D. B.≠>不能判定 2 211126?yy?x?bA(m,n),利用图象的对称性可知它们的另一与一次函数的图象交于点12.若反比例函数x个交点是)n?n)(?m,(((n,m)?n,?m)?m, C. B. A. D.第Ⅱ卷(非选择题)6小题,共24分,只要求填写最后结果,每小题填对得4分.二、填空题:本大题共. 的圆中,垂直平分半径的弦长为13.半径等于823x?y?x?2二次函数的图象如图所示,14. . 0 当y<时,自变量x的取值范围是 15.如图,在同一平面内,将△逆时针绕点AABC 14题图)(第 AB,∥°到△旋转40AED的位置,恰好使得DC.则∠CAB的大小为 . = °°cos30-sin30°tan45计算:16. tan60°2?y的图象上,若,17.点都在,)),(xy,(x)y,(xy321321x yyyx?0?x?x 的大小关系(用“<,,则”连接),321312题图)(第15是 .∠AMN?30,B为弧AN的中点, P上,在⊙,点的直径,是⊙如图,18. MNOOM=2AO是直径MN 上一动点,则PA+PB的最小值为 .三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题5分,本大题满分10分)20?x?93x?12. (1)用配方法解方程:204?x?9x?3. )用公式法解方程:(2 8分)20.(本大题满分据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情ABD处有一探测仪,的上方,在一条笔直公路境中的速度不得超过B点匀速如平面几何图,,第一次探测到一辆轿车从CD得点,测驶,测得秒后到达向点行,结果精确到)求B,C的距离.(1)通过计算,判断此轿车是否超速.(2 (本大题满分12分) 21.24??2x?8xy?已知二次函数,完成下列各题:2+ky=a(x+h)形式,并写出它的顶点坐标、(1)将函数关系式用配方法化为对称轴. ABC的面积.轴交于)若它的图象与xA、B两点,顶点为C,求△(2 分)22.(本大题满分10 ,的直线互相垂直,垂足为D ADCAB如图,为⊙O的直径,为⊙O上一点,和过C点.DAB且AC 平分∠ 1()求证:DC为⊙的切线;O 3O2()若⊙的半径为,CDAD=4,求的长.10分)23.(本大题满分kmx?y??y xA、CBxy(-1 如图,已知直线,与双曲线)分别交于点轴分别交于点(与,轴、<012x D、).,2)1(a 1)分别求出直线及双曲线的解析式;(y?y x.2)利用图象直接写出,当在什么范围内取值时,(21y?ymx?y?. 时的部分用黑色笔描粗一些3)请把直线上(211y k y?x?m?y12x B C D x OA题图)(第2324.(本大题满分10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?学年第一学期期末学业水平测试2017—2018九年级数学试题参考答案分)个小题,每小题3分,满分36一、选择题(本大题1212 11 7 8 9 10 题号 1 2345 6CDD答案 CBBB A BCAD4分,满分24分)二、填空题(本大题共6个小题,每小题38 3; 15.70°;;14.-1<x13.<2y?y?; 18. 17.;16.1312个小题,共60分)三、解答题(本大题6分,满分10分)19.(每小题520?x?4x?3解:(1)两边同除以3分. ,得……………………………123?4?x?x.移项,得2222?3?x?4x?2?…………………………2配方,得分,21?(x?2) 3. ……………………………分1x?2??,…………………………4分∵ 5分,x=1. ………………………………∴原方程的解为x=321cba………………………………2 ()∵ 1=3,,=-9分=4.a c b,3×4=33>0 ……………………2分=∴⊿)22-4 =(-9-4×∴方程有两个不相等的实数根……………………………4分333333333?x??x??.…………………,即 5分, =21262626(本大题满分8分) 20.解:,在中,,,即,在中,,即,,m20 6分;则的距离为…………………………………,根据题意得:分则此轿车没有超速.…………………………………8 分)21.(本大题满分122+8x-4y=-2x1)解:(21分 =-2(x-4x)-4 ……………………………=-2(x-4x+4-4)-4 ……………………………32 4分2分=-2(x-2)+4. …………………………… 6分),对称轴为直线x=2. ………………所以,抛物线的顶点坐标为(2,422分,,(x-2)=2 ………………………7令(2)y=0得-2(x-2)+4=022??2?22=…………………………=9x-2=分,x,所以x. 所以21222?2?,0),分B(……x 所以与轴的交点坐标为A10(0). ,122?22?24分= ∴S. ×[()] ×…………………)4=-(12ABC△2分)(本大题满分1022.OC(1)证明:连接OCA, OAC=∠∵OA=OC,∴∠OAC, DAC=∠∵AC平分∠DAB,∴∠AD, ∥∠DAC=OCA,∴OC∴∠,∵AD⊥,CDCD,⊥∴OC 5分…………………与⊙O相切于点C;∴直线CD °.,则∠2)解:连接BCACB=90(∠ACB=90°,,∠∵∠DAC=∠OACADC= ,∽△∴△ADCACB2 AC∴,∴=ADAB?,,AD=4,∴AB=6O∵⊙的半径为3,62,∴AC=22∴CD= ……………………………………10分23.(本大题满分10分)y?x?my?x?3C .-1,2)坐标代入……2分,所以,得1解:()把点m=3(1k2y??y?C)坐标代入2(,所以-1把点,.……………3分 2,得k= —2xx2??y D)把点(24(a,1)坐标代入………………………分,所以a=—2.xy?y1???2?x.…………………………利用图象可知,当时,7分21(3)略. ……………………10分24.(本大题满分10分)x元,根据题意,得解:设第二个月的降价应是80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000………………5分x-20x+100=0,2整理,得解这个方程得x=x=10,………………8分21当x=10时,80-x=70>50,符合题意.分1070答:第二个月的单价应是元. ………………注意:评分标准仅做参考,只要学生作答正确,均可得分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017------2018学年度上学期 九年级数学期末考试模拟试题AB 卷2017-2018学年度第一学期期末考试九年级数学模拟试题(A 卷)一、选择题(本题满分24分,共有8道小题,每小题3分) 1.一元二次方程230x x -=的根为( ).A .13x =,20x =B .1x =,2x =C .xD .3x =2.如图是一个用于防震的L 形的包装用泡沫塑料,则它的左视图是( ).3.如图在Rt ABC △中,90ACB ∠=︒,3BC =,5AB =,则下列结论正确的是( ). A .3sin 5A =B .3tan 4A =C .3tan 4B =D .3cos 4B =4.已知0234ab c ==≠,216a b +=,则c 的值为( ).A .1287B .645C .8D .25.某商场出售某种服装,平均每天可售出20件,每件盈利60元,为了扩大销售,若每件降价1元,则每天可多售出3件.若每天要盈利2000元,设每件应降价x 元,则可列出关于x 的方程为( ). A .60(203)2000x +=B .[](60)203(60)0x x -+-=C .(60)(203)2000x x -+=D .(60)(203)2000x x --=6.如图,矩形的中心为直角坐标系的原点O ,各边分别与坐标轴平行,其中一边AB 交x 轴于点C ,交反比例函数图像于点P ,且点P 是AC 的中点.已知图中阴影部分的面积为8,该反比例函数的表达式是( ).A.y = B .4y x=C.y =D .8y x=7.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF ,若3AB =,则菱形AECF 的面积是( ). AB.C.D .48.下面表格中的数据是二次函数2y ax bx c =++的几组对应值.根据表中的数据我们可以判断.当20y ax bx c =++>时,自变量x的取值范围是( ).A .1x > B .1x <-3x >5x >13x -<<二、填空题9.计算2cos60sin 45︒+︒=__________.10.已知两个等腰三角形相似,其中一个等腰三角形的腰长和底边长分别为8cm 和6cm ,若另一个等腰三角形的底边长为4cm ,则它的腰长为__________cm .11.如图,用一个可以自由转动的转盘(转盘被平均分成面积相等的三部分)做游戏,转动转盘两次,两次所得数字之乘积大于5的概率为__________.12.二次函数263y kx x =-+的图像与x 轴有交点,则k 的取值范围是__________.13.如图所示是某种货号的直三棱柱零件的三视图,则它的表面积为__________平方厘米.14.如图,在平行四边形ABCD 中,6AB =,8AD =,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥,垂足为G,BG =则CEF △的周长为__________.三、作图题用尺规,直尺作图,不写作法,但要保留作图痕迹. 15.己知:矩形ABCD 内有一点P .求做:等腰直角PEF △,使它的直角顶点为P ,斜边EF 落在边CD 上.四、解答题16.(1)解方程:23210x x --=.2cm5cmFECBAGD(2)用配方法求二次函数241y x x =-+的顶点坐标.17.在研究“6个人中有2个人生肖相同的概率大约是多少?”是,小明所在的学习小组利用模拟实验的方法,即用大小相同、编号为1到12的小球代表12个生肖,将他们放入不透明的口袋中,从中随机摸出1个球,记下号码,放回去直至摸到第6个小球,记下6个号码,到此为一次模拟实验.小明他们重复了多次这样的模拟实验,并将试验结果制成统计表如下:(1)根据上表,完成折线统计图.(2)根据统计图表中所提供的消息,请你估计6个人中有2个人生肖相同的概率大约是多少?并简要说明你是怎样估计的?18.(本小题满分6分)如图,某学校教学楼AB 的后面有一建筑物CD ,在距离CD 正后方28米的观测点P 处,以22︒的仰角测得建筑物的顶端C 恰好挡住教学楼的顶端A ,而在建筑物CD 上距离地面2米高的E 处,测的教学楼的顶端A的仰实验总次数角为45 ,求教学楼AB 的高度(结果保留整数).19.(本小题满分6分)如图所示,旗杆AB 和竹竿CD 直立在太阳光下.已知,竹竿CD 的长为3米,它的影子有一部分落在墙上,且墙上部分的影子长度与落在地面的影子长度均为1米,同一时刻测得旗杆AB 影子长为8米,求旗杆AB 的实际长度.20.(本小题满分8分)挪威生理学家古德贝尔对闭眼转圈问题进行了深入研究,通过大量事例分析得出:长年累月养成的习惯,使每个人一只脚的步子,要比另一只脚的步子长出一段微乎其微的距离.正是这一小段步差x 毫米,导致这个人绕半径为y 米的圆转圈.更令人惊奇的是,y 与x 恰好满足反比例函数关系.已知,某迷路人的步差为0.2毫米,他绕半径为700米的圆转圈.(1)写出y 与x 之间的函数关系式.(2)若该迷路人绕周长为1800π米的圆转圈,则他的步差是多少? (3)若该迷路人的步差不小于0.1毫米,则他将在什么范围内转圈?E C BAPD21.(本小题满分8分)已知:如图在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过A 点作AG DB ∥交CB 的延长线于点G . (1)求证:DE BF ∥.(2)若90G ∠=︒,则四边形DEBF 是什么特殊图形?请说明理由.22.(本小题满分10分)如图,一个圆形喷水池的中央安装了一个柱形喷水装置OA ,A 处的喷头向外喷水,水流沿抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间的关系满足:2y x bx c =-++,且喷水柱OA 的高度为74米,落点B 距离喷水柱底端O 处3.5米. (1)求抛物线的函数关系式.(2)若圆形水池的半径改为3米,在保证抛物线水流形状不变的前提下,调整喷水柱OA 的高度,使水流的最高点数值下降1米,此时能否保证喷出的水流不落在池外?FEC BAGD23.(本小题满分10分)(n操作1:将正方形ABCD 沿过点B 的直线折叠,使折叠后的点C 落在对角线BD 上的点G 处,折痕为1BD .操作2:将AD 沿过点G 的直线折叠,使点A ,点D 分别落在边AB ,CD 上,折痕为EF .则四边形BCEF 矩形.证明:设正方形ABCD 的边长为1,则BD =. 由折叠性质可知1BG BC ==,∵90CFE BFE C ∠=∠=∠=︒,则四边形BCEF 为矩形. ∴90A BFE ∠=∠=︒. ∴EF AD ∥. ∴BG BFBD AB =1BF =. ∴BF =∴:BC BF ==.∴四边形BCEF 矩形. 阅读以上内容,回答下列问题:(1)已知四边形BCEF为矩形,沿用上述操作方式,得到四边形BCMN ,如图②,求证:四边形BCMN(2)在图②中,求2tan D BC ∠的值.(3mk 和1tan k D BC -∠的值.(用含m 和n 的代数式表示,直接写出结论即可)24.(本小题满分12分)已知:如图,在等边ABC △中,6cm Ab =,AD BC ⊥于点D ,动点F 从点B 出发,沿BC 方向以1cm/s 的速度向点D 运动;同时,动点P 也从B 出发,沿BA 方向以3cm/s 的速度向点A 运动,过点P 作PE BC ∥,与边AC 交于点E ,与AD 交于点G ,连结ED ,PF .设运动的时间为(s)(02)t t <<. (1)当t 为何值时,四边形PEDF 为平行四边形?(2)设四边形PEDF 面积为y ,求y 与t 之间的函数关系式. (3)是否存在某一时刻t ,使得四边形PEDF 面积最大?若存在,请求出t 的值;若不存在,请说明理由.(4)连结PD 、EF ,当t 为何值时,PD EF ⊥?2016-2017学年度第一学期期末数学考试九年级数学模拟试题(B 卷)F ECBA PG D一、选择题(本题满分24分,共有8道小题,每小题3分) 下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.如图,空心圆柱的主视图是( ).2.某村耕地总面积为50公顷,且该村人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( ).A .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积y 与总人口x 成正比例C .若该村人均耕地面积为2公顷,则总人口有100人D .当该村总人口为50人时,人均耕地面积为1公顷3.在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m ,则斜坡上相邻两树间的坡面距离是( )m .A .3 B. C.D .44.抛物线2(2)3y x =+-可以由抛物线2y x =通过平移得到,平移过程正)y (确的是( ).A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位5.如图,ABC △中,78A ∠=︒,4AB =,6AC =.将ABC △沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的个数为( ).6.输入一组数据,按下列程序进行计算,输出结果如下表:分析表格中的数据,估计方程2(8)8260x +-=的一个正数解x 的大致范围为( ). A .20.520.6x << B .20.620.7x << C .20.720.8x <<D .20.820.9x <<7.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为(1,0)-,其部分图象如图所示,则下列结论中正确的有( )个.①24ac b <;②当0x <时,y 随x 增大而增大;③当0x =或2x =时,3y =;④0a b c ++>.A .4个B .3个C .2个D .1个8.如图,正方形ABCD 中,E 、F 分别为BC 、CD 中点,连接AE ,BF 交于点G ,将B C F △沿BF 对折,得到BPF △,延长FP 交BA 延长线于点Q ,下列结论正确的有( )个.①AE BF =;②AE BF ⊥;③4sin 5BQP ∠=;④2BGE ECFG S S =四边形△.DGABC E FPQA .4B .3C .2D .1二、填空题(本题满分18分,共有6道小题,每小题3分) 92cos45︒-︒=__________.10.不透明的箱子里装有大小一样、黑白两种颜色的塑料球共3000个,为了估计两种颜色的球各有多少个,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的频率在0.7附近较稳定的波动,据此可以估计箱子里黑球个数约是__________个.11.如图,在菱形ABCD 中,60A ∠=︒,对角线6BD =,则菱形ABCD 的面积是__________.12.要在—块长16m ,宽12m 的矩形荒地上建一个花园,使花园所占面积为荒地面积的一半,小明的设计方案如图所示,根据题意可得方程__________.13.如图所示是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的半径为0.6m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为DAC m__________2m (结果保留π).14.如图,在平面直角坐标系中,矩形AOCB 的两边OA 、OC 分别在x 轴和y 轴上,且2OA =,1OC =.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形111AOC B ,再将矩形111AOC B 以原点O 为位似中心放大32倍,得到矩形222A OC B ,以此类推,得到的矩形n n n A OC B 的对角线交点的坐标为__________.三、作图题(本题满分4分) 15.如图,已知线段a .求作:ABC △,使得AB a =,30A ∠=︒,90C ∠=︒. 要求:尺规作图,不写作法,保留作图痕迹.四、解答题(本题共有9道小题,满分74分) 16.解方程(本题满分8分,共2道小题,每小题4分) (1)3(1)22x x x -=-. (2)23250x x +-=.a小文和小颖做游戏,连续掷两枚质地均匀的硬币,如果两枚正面朝上,则小文胜,如果两枚反面朝上,则小颖胜,你认为这是个公平的游戏吗?请通过列表格或画树状图说明理由.18.(本题满分6分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.己知10cmOA OBAOB∠=︒.求所作圆的半径(结果精确到0.01cm).==.当18(参考数据:sin90.1564︒≈)︒≈,cos180.9511︒≈,cos90.9877︒≈,sin180.309019.(本题满分6分)某厂从2012年起开始投入技术改进资金,经技术改进后,某产品的生产成本不断降低,具体数据如下表所示:(1)请认真分析表中数据,从所学习过的一次函数、二次函数和反比例函数中,确定哪种函数能表示其变化规律?说明你确定的理由,并求出y与x之间的关系式.(2)按照这种变化规律,若2017年将投入技改资金5万元,预计届时生产成本每件比2015年降低多少万元?某数学兴趣小组同学进行测量大厦CD 高度的综合实践活动,如图,AB 是直通大厦二楼露天平台BD 的楼梯.测量得知,楼梯AB 的坡角为37︒,且楼梯AB 的长为10m ,平台BD 的长为8m ,在B 处测得楼顶C 的仰角为65︒,那么大楼CD 的高度约为多少米?(结果保留整数).(参考数据:3sin375︒≈,3tan374︒≈,9sin 6510︒≈,15tan657︒≈)21.(本题满分8分)已知:四边形ABCD 是矩形,它的对角线AC 、BD 交于点O ,过C 作CE BD ∥,过D 作DE AC ∥,DE 、CE 交于E .(1)求证:四边形OCED 是菱形.(2)四边形ABCD 满足什么条件时,四边形OCED 是正方形?证明你的37°65°DAB CEDABC EO结论.22.(本题满分10分)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以50元的价格销售,平均每天可销售90箱;价格每提高1元,平均每天少销售3箱.假定每天销售价为y(箱)与销售价x(元/箱)之间满足一次函数关系式.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(本题满分10分)【提出问题】如果要从1、2、3M,连续的M天中选择相连的N天去参加N日游,有多少种不同的选择方法?【探究问题】这里影响选择方法的变量有两个——总天数M、相连天数N,采用控制变量的方法去研究,如果固定相连数N,变化总天数M,会发现怎样的规律?如果固定总天数M,变化相连数N,会发现怎样的规律?让我们先从简单的问题开始研究,再把复杂问题转化为已解决的问题去求解.探究一:如果要从连续的2、3、4、5天中选择相连的2天,会有多少种不同的选择方法?我们把相连的天数用N 表示,可以使用下面的框图,令3M =、4、5各自尝试探究,归纳出探究一的结论.2N =时,令3M =、4、5结论:从连续的M 天中选择相连的2天有__________种不同的选择方法.探究二:如果要从100天中选择相连的2天、3天,有多少种不同的选择方法?我们把相连的天数用N 表示,可以使用下面的框图尝试探究,发现规律并应用规律完成填空.结论:如果要从1、2、3100,连续的100天中选择相连的8天去参加八日游,有__________种不同的选择方法. 【问题解决】 如果要从1、2、3M ,连续的M 天中选择相连N 天去参加N 日游,有__________种不同的选择方法. 【实际应用】我们运用或拓展上述得到的探究结论,可以解决生活中的很多问题. 要在浴室的一面墙上贴瓷砖,将这块22⨯的花砖贴在这面墙的任意位置,123451234123有多少种不同的贴法呢?如图所示,设长有M个格子,宽有N个格子,每个格子都是11⨯的正方形,则有__________种不同的贴法选择.24.(本题满分12分)已知:如图,在矩形ABCD中,6cmBC=,对角线AC,BD交AB=,8cm于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长.交BC于点E.连接PQ与t t<<,解答下列问题:BD相交于点F,连接EQ.设运动时间为(s)(03)∠是直角?若存在,(1)在运动过程中,是否存在某一时刻t,使PQE求出t的值;若不存在,请说明理由.(2)设四边形PECQ的面积为2S,请确定S与t的函数关系式.(cm)(3)连接CF,设四边形CFPO的面积是y,在运动过程中,是否存在y s=?若存在,求出t的值;若不存在,请说明理由.某一时刻t,使:1:2。