工程热力学第四章lm——工程热力学课件PPT
合集下载
工程热力学幻灯片(3、4、5章上) (2)

2
第二节
系统储存能
一、内能:储存于系统内部的能量
内能
说明:
分子动能(直线移动、 转动、振动) (温度的函数) 分子位能(内位能)(比容的函数) 核能 u f (T , v) 化学能
理气 u f (T )
内能是状态量。理气的内能是温度的单值函数 U : 广延参数 [ kJ ] u : 比参数 [kJ/kg] 内能总以变化量出现,内能零点人为定
第三章 热力学第一定律
1
第一节 热力学第一定律的实质
本质:能量转换及ห้องสมุดไป่ตู้恒定律在热过程中的应用
能量既不可能创造,也不可能消灭, 只能从一种形式转换成另一种形式。在转 换中,能的总量不变。
第一类永动机是不可能制成的。它是 一种不供给能量而能永远对外作功的机器。 基本能量方程式: 进入系统的能量 - 离开系统的能量 = 系统储存能的变化量
36
2、动、位 能变化量 0
三、换热设备
h1
热流体 冷流体
蒸发器、冷凝器 锅炉、凝汽器
h2 没有作功部件:
h1’
h2’
热流体放热量:
焓变
冷流体吸热量:
37
四、绝热节流
管道阀门
膨胀阀、毛细管
没有作功部件: 绝热:
h1
h2
绝热节流过程前后h不变,但h不是处处相等 38
蒸汽轮机静叶 五、喷管和扩压管 压气机静叶 喷管目的: 压力降低,速度提高 扩压管目的: 速度降低,压力升高
q = du + pdv q = u + pdv
Q = dU + pdV Q = U + pdV
11
二、循环过程
T
2
第二节
系统储存能
一、内能:储存于系统内部的能量
内能
说明:
分子动能(直线移动、 转动、振动) (温度的函数) 分子位能(内位能)(比容的函数) 核能 u f (T , v) 化学能
理气 u f (T )
内能是状态量。理气的内能是温度的单值函数 U : 广延参数 [ kJ ] u : 比参数 [kJ/kg] 内能总以变化量出现,内能零点人为定
第三章 热力学第一定律
1
第一节 热力学第一定律的实质
本质:能量转换及ห้องสมุดไป่ตู้恒定律在热过程中的应用
能量既不可能创造,也不可能消灭, 只能从一种形式转换成另一种形式。在转 换中,能的总量不变。
第一类永动机是不可能制成的。它是 一种不供给能量而能永远对外作功的机器。 基本能量方程式: 进入系统的能量 - 离开系统的能量 = 系统储存能的变化量
36
2、动、位 能变化量 0
三、换热设备
h1
热流体 冷流体
蒸发器、冷凝器 锅炉、凝汽器
h2 没有作功部件:
h1’
h2’
热流体放热量:
焓变
冷流体吸热量:
37
四、绝热节流
管道阀门
膨胀阀、毛细管
没有作功部件: 绝热:
h1
h2
绝热节流过程前后h不变,但h不是处处相等 38
蒸汽轮机静叶 五、喷管和扩压管 压气机静叶 喷管目的: 压力降低,速度提高 扩压管目的: 速度降低,压力升高
q = du + pdv q = u + pdv
Q = dU + pdV Q = U + pdV
11
二、循环过程
T
2
工程热力学与传热学_第4章_热力学第二定律(1)

0 T T1 T2 0
1 2
v
0
T T1 T2
1 2
v
4 Δs
3
4
3
s
0
Δs
s
卡诺循环
逆向卡诺循环
卡诺制冷循环的制冷系数:
q2 w net q2 q 1 q 2 T
2 2
T 1 T
高温热源 T1
q1 wnet=q1-q2
制冷机 热泵
卡诺热泵循环的供热系数:
q1 w net q1 q 1 q 2 T
2 1
整理:
Q2 T2
Q1 T
1
Q1,Q2 改为代数值:
Q1 T1
Q T
2 2
0
对任意不可逆循环:
p
1
s
a
用一组可逆绝热线分割成 许多个微元不可逆循环。
对微元不可逆循环abcda:
Q1
T1
b
A
2
B 0
d
c v
Q
T
2
2
0
对全部不可逆循环积分:
Q1
T1
1A2
Q 2
4-3-3 闭口系统的熵方程
不可逆过程中的熵变:
dS dS
dS
Q
T
Q
T
Q
T
dS
g
令: 因此:
说明
dS
f
Q
T
f
dS dS
dS g
——闭口系统的熵方程。 适用:闭口系统的各种过程和循环。
熵流 dS
ห้องสมุดไป่ตู้
(精品)工程热力学(全套467页PPT课件)

从能源结构来看,2004年一次能源消费中,煤炭占 67.7%,石油占22.7%,天然气占2.6%,水电等占 7.0%;一次能源生产总量中,煤炭占75.6%,石油 占13.5%,天然气占3.0%,水电等占7.9%。
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科
工
工程热力学
程
传热学 Heat Transfer
热
流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式
一
次 能
热能
源
电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能
燃
水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变
热
生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科
工
工程热力学
程
传热学 Heat Transfer
热
流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式
一
次 能
热能
源
电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能
燃
水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变
热
生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa
工程热力学与传热学 第四章对流换热

从公式可知,要计算热流量,温度及面积比较容易得到,
主要是如何求得对流换热系数α,这是研究对流换热的主要任
务之一。
确定α;
➢对流换热的任务 揭示α与其影响因素的内在关系;
增强换热的措施。
➢研究对流换热的方法 ➢ 分析法 ➢ 实验法
➢ 比拟法 ➢ 数值法
➢ 分析法:对描写某一类对流换热问题的偏微分方程及相应的定 解条件进行数学求解,从而获得速度场和温度场的分析解的方法。
➢关于速度边界层的几个要点
(1) 边界层厚度 与壁的定型尺寸L相比极小, << L
(2) 边界层内存在较大的速度梯度
(3) 边界层流态分层流与紊流;紊流边界层紧靠壁 面处仍有层流特征,粘性底层(层流底层)
(4) 流场可以划分为边界层区与主流区,主流区 的流体当作理想流体处理
热边界层
➢定义
当流体流过平板而平板的 温度tw与来流流体的温度t∞不相 等时,在壁面上方也能形成温 度发生显著变化的薄层,常称 0 为热边界层。
:流动边界层厚度 u 0.99u
t∞ u
δt δ
tw
x
l 如,空气外掠平
板u=10m/s:
x100mm 1.8mm; x200mm 2.5mm
➢速度边界层的形成及发展过程
紊流核心
临界距边离界xc层:从层流开始向紊流过渡的距离。其大小取决
于流体的物性、固体壁面的粗糙度等几何因素以及来流的稳定
相变换热:凝结、沸腾、升华、凝固、融化等
4、流体的物理性质
流体内部和流体与壁面间导热热阻小 c 单位体积流体能携带更多能量
有碍流体流动,不利于热对流
自然对流换热增强
体胀系数:
1
(
《工程热力学》教学课件第4-5章

工程热力学 Thermodynamics 二、摩尔气体常数及其他形式
由阿伏伽德罗定律知:在同温同压下任何气体的摩尔
体积都相等。
pVm 常数 R T
pVm RT
摩尔气体常数R,与气体种类和气体状态无关。
R 8.31431J/(mol K)
其他形式还有 pV mRgT 或 pV nRT
Rg
c t2
c
t2 0C
t2
c
t1 0C
t1
t1
t2 t1
工程热力学 Thermodynamics
(3)平均比热容的直线关系式:
c t2 t1
a bt
a b(t2
t1)
(4)定值比热容:
定值比热容表
工程热力学 Thermodynamics
三、理想气体的热力学能和焓及熵
du cVdT
;u
T2 T1
cV
dT
dh cpdT ;h
T2 T1
c
p
dT
真实比热容 平均比热容
u
T2 T1
cV
dT
u
cV
t2 t1
(t2
t1)
平均比热容(表)
u
cV
t2 0C
t2
cV
t1 0C
t1
定值比热容
u cV T cV t
h
T2 T1
c
p dThcpt2 t1(t2
t1 )
工程热力学 Thermodynamics
第四章 理想气体的热力性质
第一节 理想气体及其状态方程式 一、概述 二、状态方程:
pv RgT 称为克拉珀龙状态方程。
理想气体定义:凡是遵循克拉贝珀状态方程的气体
《工程热力学》课件

理想气体混合物
理想气体混合物的性质
理想气体混合物具有加和性、均匀性、 扩散性和完全互溶性等性质。
VS
理想气体混合物的计算
通过混合物的总压力、总温度和各组分的 摩尔数来计算混合物的各种物理量。
真实气体近似与修正
真实气体的近似
真实气体在一定条件下可以近似为理想气体。
真实气体的修正
由于真实气体分子间存在相互作用力,因此需要引入修正系数对理想气体状态方程进行 修正。
特点
工程热力学是一门理论性较强的学科 ,需要掌握热力学的基本概念、定律 和公式,同时还需要了解其在工程实 践中的应用。
工程热力学的应用领域
能源利用
工程热力学在能源利用领域中有 着广泛的应用,如火力发电、核 能发电、地热能利用等。
工业过程
工程热力学在工业过程中也发挥 着重要的作用,如化工、制冷、 空调、热泵等。
稳态导热问题
稳态导热是指物体内部温度分布不随时间变 化的导热过程,其特点是热量传递达到平衡 状态。
对流换热和辐射换热的基本规律
对流换热的基本规律
对流换热主要受牛顿冷却公式支配,即物体 表面通过对流方式传递的热量与物体表面温 度和周围流体温度之间的温差、物体表面积 以及流体性质有关。
辐射换热的基本规律
辐射换热主要遵循斯蒂芬-玻尔兹曼定律, 即物体发射的辐射能与物体温度的四次方成
正比,同时也与周围环境温度有关。
传热过程分析与计算方法简介
要点一
传热过程分析
要点二
计算方法简介
传热过程分析主要涉及热量传递的三种方式(导热、对流 和辐射)及其相互影响,需要综合考虑物性参数、几何形 状、操作条件等因素。
常用的传热计算方法包括分析法、实验法和数值模拟法。 分析法适用于简单几何形状和边界条件的传热问题;实验 法需要建立经验或半经验公式;数值模拟法则通过计算机 模拟传热过程,具有较高的灵活性和通用性。
工程热力学 第4章

v 1 1 t
2
2
p
dT,s
1
2
dq T
pdv,w
vdp q ,
Tds
5
二、四个基本热力过程
(一)、定容过程(dv=0)
工质在变化过程中容积保持不变的热力过程。 1.过程方程式: v = Const。 2.基本状态参数间的关系式:
p2 T2 v1 v2及 p1 T1
dq Tds
dq cn dT
T T T n s n cn cV
n 1
30
p
p p n v v n
(n 0)
0
T
( n 1) (n )
p v
T cp
s
v
p v
T T s n cn
p1v1 - p2 v2
nRg n 1
T1 T2
nw
25
5.理想气体 n q的计算
q u w cv T2 T1
Rg n 1
T2 T1
k - 1cv T T cv 2 1 n 1
q=
n cV T2 T1 n 1
n
ln p2 / p1 ln v1 / v2
cn c p n 等。 cV n 或由 cn n 1 cn cV
28
四、多变过程的能量关系w / q
w
Rg n 1
T1 T2
1
n 1
cV T1 T2
n q cV T2 T1 n 1
n
w 1 q n
1 0 n 1 0 n
2
2
p
dT,s
1
2
dq T
pdv,w
vdp q ,
Tds
5
二、四个基本热力过程
(一)、定容过程(dv=0)
工质在变化过程中容积保持不变的热力过程。 1.过程方程式: v = Const。 2.基本状态参数间的关系式:
p2 T2 v1 v2及 p1 T1
dq Tds
dq cn dT
T T T n s n cn cV
n 1
30
p
p p n v v n
(n 0)
0
T
( n 1) (n )
p v
T cp
s
v
p v
T T s n cn
p1v1 - p2 v2
nRg n 1
T1 T2
nw
25
5.理想气体 n q的计算
q u w cv T2 T1
Rg n 1
T2 T1
k - 1cv T T cv 2 1 n 1
q=
n cV T2 T1 n 1
n
ln p2 / p1 ln v1 / v2
cn c p n 等。 cV n 或由 cn n 1 cn cV
28
四、多变过程的能量关系w / q
w
Rg n 1
T1 T2
1
n 1
cV T1 T2
n q cV T2 T1 n 1
n
w 1 q n
1 0 n 1 0 n
工程热力学 第四章

过程方程
p Const
初终态状态参数间的关系
v 2 v 1 T 2 T1
h 2 h1 u 2 u1
2
1 2
c p dT c v dT
1
s 2 s1
2
1
cp
dT T
理想气体的热力过程—定压过程
过程曲线
p 2’
放热
T 2 1
吸热
定容线
2
放热 吸热
定压线
1 v
2’
s
K), 解:由气体性质表查得: cp=0.837kJ/(kg· cv=0.653kJ/(kg· K),R=0.1889kJ/(kg· K), k=1.31
q 1400 5 280 kJ/kg
n
ln( p 2 / p 1 ) ln( v 2 / v 1 )
ln( 1 / 6 ) ln 10
km
cp cv
t2 t1
cp cv
t2 0 t2 0
t2 c p t2 cv
t1 0 t1 0
t1 t1
or
km k1 k 2 2
理想气体的热力过程—绝热过程
变值比热容绝热过程的计算
2)利用气体热力性质表计算(表6)
s 2 s1 s T s T R ln
p
(1)放热 耗功 升温 内能增加 u 0
2-(1)
T
(2)吸热 做功 升温 内能增加 u 0
2-(1)
定压n 0 定温
n 1
定压n 0
1 2-(2)
定温 n 1
2-(2)
n
定容
p Const
初终态状态参数间的关系
v 2 v 1 T 2 T1
h 2 h1 u 2 u1
2
1 2
c p dT c v dT
1
s 2 s1
2
1
cp
dT T
理想气体的热力过程—定压过程
过程曲线
p 2’
放热
T 2 1
吸热
定容线
2
放热 吸热
定压线
1 v
2’
s
K), 解:由气体性质表查得: cp=0.837kJ/(kg· cv=0.653kJ/(kg· K),R=0.1889kJ/(kg· K), k=1.31
q 1400 5 280 kJ/kg
n
ln( p 2 / p 1 ) ln( v 2 / v 1 )
ln( 1 / 6 ) ln 10
km
cp cv
t2 t1
cp cv
t2 0 t2 0
t2 c p t2 cv
t1 0 t1 0
t1 t1
or
km k1 k 2 2
理想气体的热力过程—绝热过程
变值比热容绝热过程的计算
2)利用气体热力性质表计算(表6)
s 2 s1 s T s T R ln
p
(1)放热 耗功 升温 内能增加 u 0
2-(1)
T
(2)吸热 做功 升温 内能增加 u 0
2-(1)
定压n 0 定温
n 1
定压n 0
1 2-(2)
定温 n 1
2-(2)
n
定容
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k 1 k
w
RT1 k 1
1
v1 v2
k 1
k
1( 1
p1v1
p2v2 )
k
R
1
(T1
T2 )
绝热过程中的能量转换
技术功 wt
绝热
稳态稳流: q h wt 0
wt h h1 h2
理想气体:
wt
cp (T1
T2 )
k
k
1
R(T1
p2v2 )
基本热 力过程
多变指数n
实际过程可用多段多变过程近似表示,其中每个多变 过程的多变指数n可由该多变过程的初终态求出。
p2 p1
v1 v2
n
ln p2 n ln v1
p1
v2
ln p2 n p1
ln v1 v2
多变过程的能量转换
w
pdv
R n 1 (T1
T2 )
pvn const
1 2
v
s
绝热过程中的能量转换
u , h , s 的计算
状态参数的变化与过程无关
内能变化 焓变化 熵变化
u cvdT h cpdT
s 0
绝热过程中的能量转换
w , wt , q 的计算
q0 q0
pvk Const
w
2 1
pdv
p1v1k
2 1
dv vk
w
RT1 k 1
1
p2 p1
工程热力学
Engineering Thermodynamics
北京航空航天大学
作业
习题4-6,4-7,4-15,4-16,4-18
第四章 理想气体的热力过程及气体压缩
分析热力过程的目的及一般方法 绝热过程 多变过程的综合分析 压气机的理论压缩轴功 活塞式压气机的余隙影响 多级压缩及中间冷却
是对实际过程的简化和抽象,又是实际过程的一种近似
什么样的过程可以抽象 为绝热过程?
1.过程进行的很快,来不及与外界交换热量 气体压缩 2.系统与外界的换热量很小,可以忽略不计 保温层
绝热过程的过程方程式
绝热: q du pdv cvdT pdv 0
pv RT
cv d
pv R
pdv
cv
2
u 1 cvdT
2
h 1 cpdT
s
2q
1T
2
1 cv
dT T
2 p dv 1T
2
1 cv
dT T
2 dv R 1v
q du pdv cvdT pdv
pv RT
按 q dh vdp cpdT vdp 进行计算,可得:
s
2q
1T
2
1 cp
dT T
Tvk 1 const
T2 ( v1 )k 1 T1 v2
pvk
pkvk p k 1
(RT )k pk 1
const
T
k 1
const
pk
T2
(
p2
)
k 1 k
T1 p1
过程在pv图和Ts图上的表示
pvk const
p
p v
s
k
p v
ds q 0 定熵过程
T
T
2’
1 2
2’ 可逆绝热
pdv R
vdp
pdv
0
(cv R) pdv cvvdp cp pdv cvvdp 0
cp dv dp 0 k Const ln pvk Const
cv v p
pvk Const
条件?
初、终态状态参数间的关系
pvk const
p2 ( v1 )k p1 v2
pvk ( pv)vk1 RTvk1 const
实施热力过程的目的
常见热力设备
动力机 压气机 热交换器 喷管(扩压器) 膨胀阀(毛细管)
实施热力过程的目的
使工质达到一定的热力状态 完成一定的能量转换
分析热力过程的目的和任务
目的:研究外部条件对热能和机械能转换的影响,通过 有利的外部条件,达到合理安排热力过程,提高 热能和机械能转换效率的目的。
wt nw
R q u w cv (T2 T1) n 1 (T2 T1)
(cv
n
R
1)(T2
T1)
n n
-k 1
3. 在pv图及Ts图上表示过程,使过程直观,便于分析。
4.计算过程中传递的热量和功量。
能量方程
计算 u , h , s
计算 w , wt , q
研究热力学过程的依据
热力学第一定律: q du w dh wt
稳态稳流:
q
h
1 2
c 2
gz
ws
理想气体:
pv RT cp cv R u f (T ) h f (T )
可逆过程:
wt
k k 1 RT1
1
p2 p1
k 1 k
多变过程的综合分析
多变过程:凡过程方程为 pvn Const 的过程称为多变 过程,其中n为多变指数。
n——对于某个指定的多变过程,n为常数
对于不同的多变过程,n有不同的值
n=0时,p=Const,表示定压过程 n=1时,pv=Const,表示定温过程 n=k时,pvk=Const,表示绝热过程 n=±∞时,v=Const,表示定容过程
2 v dp 1T
2
1 cp
dT T
2 R dp 1p
热力过程中传递的能量
2. w , wt , q的计算
能量方程 q u w
q h wt
闭口系统 开口稳态稳流
可逆过程的 w , wt , q
2
2
w pdv 1
wt 1 vdp
2
q 1 Tds
绝热过程
绝热过程:系统与外界在没有热量交换的情况下所进行 的状态变化过程。
任务:揭示状态变化规律与能量传递之间的关系,从而 计算热力过程中工质状态参数的变化以及与外界 交换的热量与功量。
利用外部条件, 合理安排过程,形成最佳循环 对已确定的过程,进行热力计算
分析热力过程的一般方法
1.简化
实际工质 实际过程 复杂,不易分析
简化抽象
理想工质 简单过程 简单,易于分析
归纳 分类
2.分析
基本过程
利用热力学第一定律、工质性质及过程方程进行分析
内容:状态参数的变化,热量与功量的交换
3.修正 实际过程不同于简单过程,需根据实际情况对结果进 行修正。
分析热力过程的一般步骤
1.依据热力过程特性建立过程方程式
p f (v) , T f ( p) , T f (v)
2.确定初、终状态的基本状态参数 根据已知参数及过程方程求未知参数
k cp cv
可逆过程: w pdv wt vdp
q Tds
热力过程中工质的状态参数
初、终态基本参数的计算
1.理想气体状态方程
pv RT
p1v1 p2v2
T1
T2
2.过程方程式:描述过程中状态变化的特征
p f (v) T f ( p) T f (v)
热力过程中传递的能量
1. u, h, s的计算