高三数学第二次周练试题(文科)

合集下载

安徽省六校教育研究会2020届高三数学第二次素质测试试题 文(含答案)

安徽省六校教育研究会2020届高三数学第二次素质测试试题 文(含答案)

安徽省六校教育研究会2020届高三数学第二次素质测试试题 文一、选择题:本大题共12小题,每题5分.满分60分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1.己知集合A={x|-2≤x<1或2<x ≤3},集合B={-2,-1,1,2,3},则集合A ∩B 中的元素个数为A .2B .3C .4D .52.已知复数z 满足:zi=3+4i (i 为虚数单位),则z = A. 4+3i B.4- 3i C.-4+3i D. -4-3i 3.已知命题p: ,1log 2,12≥-≥∀x x x 则p ⌝为A. 1log 2,12<-<∀x x x B .1log 2,12<-≥∀x x x C .1log 2,12<-<∃x x x D .1log 2,12<-≥∃x x x4.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占2019年贫困户总数的比)及该项目的脱贫率见下表:那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )倍A .57 B .3548 C. 3547 D .2837 5.已知首项为正数的等比数列{a n }中,149744229,29=⋅=⋅a a a a 则a 13=A .923 B. 1223 C .923± D .1223±6.已知函数)3sin(π+=x y 的定义域为[a ,b],值域为]1,21[,则b-a 的值可能为A .3πB .πC .23π D.2π7.已知双曲线C: 2222by a x -=l (a>0,b>0)的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线交于点O 及点A )23,23(,则双曲线C 的方程为 A .1322=-y x B .1322=-y x C .12622=-y x D. 16222=-y x8.《易经>包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深, 对今天的几何学和其它学科仍有深刻的影响,下图就是《易经》中记载的几何图形一一八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,图中八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为l0m ,代表阴阳太极图的圆的半径为4m ,则每块八卦田的面积约为A .114 m2B. 57m2C .54 m2D .48 m 29.锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若0)cos(2)4sin(=+++C B A π13,6+==c b ,则角C 的大小为A .12πB .6πC .3πD .125π 10.函数y=sin|x|+x 在x ∈[-2π,2π ]上的大致图象是11.若定义在R 上的增函数y=f(x-l)的图象关于点(1,0)对称,且f(2)=2,令g(x)==f(x)-l ,则下列结论不一定成立的是A .g(1)=0B .g(0)= -1C .g(-1)+g(1)<0D .g(-1)+g(2)> -212.如图所示,棱长为l 的正方体ABCD - A 1B 1C 1D 1中,P 为线段AB 1的中点,M ,N 分别 为体对角线AC 1和棱C 1D,上任意一点,则MN PM 22+的最小值为A.42 B .22 C .1 D .2 二、填空题:本题共4小题,每题5分,共20分。

2021年高三第二次统练(数学文含答案)

2021年高三第二次统练(数学文含答案)

顺义区xx届高三第二次统练数学试卷(文科)审核:贾玉雷本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。

考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.考生务必将答案答在答题卡上,在试卷上作答无效。

2.答题前考生务必用黑色字迹的签字笔在答题卡上填写姓名、准考证号,然后再用2B铅笔将与准考证号对应的信息点涂黑。

3.答题卡上第Ⅰ卷必须用2B铅笔作答,将选中项涂满涂黑,黑度以盖住框内字母为准,修改时用橡皮擦除干净。

第Ⅱ卷必须用黑色字迹的签字笔按照题号顺序在各题目的答题区域内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合,集合,则( )A. B. C. D.2. 已知复数,则( )A. B. C. D.3. 已知等比数列中,,,,则( )A. 5B. 6C. 7D. 84.已知向量,,且,则锐角等于()A. B. C. D.5.“”是“直线与圆相交”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.阅读下面的程序框图,执行相应的程序,则输出的结果是()n=n+1s=s+(-1)n n n=1, s=0n ≤ 10 ?开始是否A. 4B. 5C. 6D. 77. 以双曲线的中心为顶点,左焦点为焦点的抛物线方程是()A. B. C. D.8.在圆内,过点作条弦(),它们的长构成等差数列,若为过该点最短的弦,为过该点最长的弦,且公差,则的值为()A. B. C. D.2021年高三第二次统练(数学文含答案)二、填空题:本大题共6小题,每小题5分,共30分.二.填空题(本大题共6个小题,每小题5分,共30分,把答案填在题中横线上)9. 在总体为的一批零件中,抽取一个容量为的样本,若每个零件被抽取的可能性为25%,则的值为_________.10.已知向量与向量,则与的夹角为_________.11.已知、满足约束条件,则的最小值为______________.12.函数,则不等式的解集是____________.13.如图所示,墙上挂有一长为宽为2的矩形木板,它的阴影部分是由,的图象和直线围成的图形,某人向此板投飞镖,假设每次都能击中木板,且击中木板上每一点的可能性相同,则他击中阴影部分的概率是______________.14.某同学在研究函数时,分别给出下面几个结论:(1)函数是奇函数(2)函数的值域为(3)函数在上是增函数(4)函数(为常数,)必有一个零点其中正确结论的序号为___________(把所有正确结论的序号都填上)三.解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15.(本小题共12分)已知函数,.(Ⅰ)求的值;(Ⅱ)如果函数,求函数的最小正周期和最大值.16.(本小题共13分)甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,绘制成茎叶图如下Ⅰ.从甲、乙两人的成绩中各随机抽取一个,用列举法计算甲的成绩比乙高的概率;Ⅱ.现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由. 17.(本小题共14分)一个直三棱柱的直观图及三视图如图所示,(其中为的中点) Ⅰ.求证:平面Ⅱ.当点在棱上的什么位置时,有平面, 请证明你的结论 Ⅲ.对(2)中确定的点,求三棱锥的体积. 18.(本小题共14分) 已知函数 (为常数,) Ⅰ若时,函数取得极大值,求实数的值;Ⅱ.若不等式在函数定义域上恒成立,(其中为的导函数)求的取值范围.19. (本小题共14分)已知:椭圆 过点,离心率;直线与圆:相切,并与椭圆交于不同的两点、,(为坐标原点). Ⅰ.求椭圆的方程及与的关系式; Ⅱ.设,且满足,, 求直线的方程;Ⅲ.在Ⅱ.的条件下,求三角形的面积. 20.(本小题共13分)设数列的前项和为,点在直线上,其中为常数,且. Ⅰ.求证:是等比数列,并求其通项; Ⅱ若数列的公比,数列满足,, , ),求证:是等差数列,并求;Ⅲ.设数列满足,为数列的前项和,且存在实数满足,求的最大值.俯视图侧视图主视图21112DC 1B 1A 1BC A高三数学试题(文科)参考答案及评分标准二.填空题(本大题共6个小题,每小题5分,共30分)其它答案参考给分 9. ;10.; 11. ;12.;13.;14.;(注:14题少解给2分,有错解不给分) 三.解答题(本大题共6小题,共80分) 15. (本小题共12分) 解:(Ⅰ)._______4分(Ⅱ)()()()(sin cos )[sin()cos()]g x f x f x x x x x =-=+-+- _______6分_______8分,的最小正周期为._______10分 ,因此,函数的最大值是._______12分16.(本小题共13分)解: Ⅰ.由茎叶图知甲乙两同学的成绩分别为: 甲:82 81 79 88 80乙:85 77 83 80 85 ______2分 记从甲、乙两人的成绩中各随机抽取一个为, 用列举法表示如下:______4分甲的成绩比乙高的概率为 ______7分Ⅱ.本小题的结论唯一但理由不唯一,只要考生从统计学的角度给出其合理解答即可得分. (1)派乙参赛比较合适, ______9分 . 理由如下: 甲的平均分,乙的平均分,甲乙平均分相同;又甲的标准差的平方(即方差),乙的标准差的平方(即方差),______11分甲乙平均分相同,但乙的成绩比甲稳定,派乙去比较合适;______13分(2)派乙去比较合适,理由如下:从统计学的角度看,甲获得分以上(含85分)的概率乙获得分以上(含85分)的概率,甲的平均分,乙的平均分,平均分相同;派乙去比较合适.若学生或从得分以上(含82分)去分析:甲获得分以上(含82分)的概率,乙获得分以上(含82分)的概率,甲的平均分,乙的平均分,平均分相同;派乙去比较合适.(同样给此问的分).17.(本小题共14分)证明:由三视图知该多面体为底面为直角三角形的直三棱柱,,棱平面,,,;______2分Ⅰ. 为的中点,,平面平面,,,平面______5分Ⅱ. 当点在棱上的中点时,有平面______7分证明:连结,,,,四边形为正方形,,,由Ⅰ知,平面______10分Ⅲ.设,为三棱锥的高,,______12分可求得,体积.______14分18.(本小题共14分)解:定义域,______2分Ⅰ在处取得极值,______4分,令,解得在上单调递增,在上单调递减,满足在处取得极大值,.______7分Ⅱ. 方法1:若不等式在函数定义域上恒成立______9分俯视图侧视图主视图21112DC1B1 A1B CA即在上恒成立,在上恒成立 ,“”当且仅当时取到,______12分 (不验证“=”成立扣1分) .______14分方法2:令 ,,易知在递减,在递增;有最小值(即极小值)为, . 19.(本小题共14分) 解:Ⅰ.椭圆,过点,,______1分,______2分椭圆方程为:;______3分 直线与圆相切,,,即 ______5分 Ⅱ.方法1:消去得, , ______6分 设,,则,,2||||cos 3OA OB OA OB θ⋅=⋅==又211221212212(,)(,)213k OA OB x y x y x x y y k +⋅==+=⋅⋅⋅==+ ______8分 ,;,直线的方程为:或 ______10分Ⅲ.由Ⅱ.知;消去得,,由弦长公式:, ______14分 方法2: 直线过点 <> ,且 , :,与联立解得:, 或, 即,,由两点得的方程为:,由前面解知:为三角形的底边,为三角形的高, , 20.(本小题共13分) 解:解:Ⅰ.点在直线 上, * ______1分 当时,,, , ______2分当时,由*式知**,两式相减得 , ,又当时也适合,是等比数列,通项;____5分 Ⅱ.由Ⅰ知, ,即,又也适合,成等差数列,______7分其通项,______9分Ⅲ. 满足为数列的前项和,递增;______11分,要满足对任意都成立,. 的最大值为. ______13分32789 8015 耕30556 775C 睜R6?28939 710B 焋#34659 8763 蝣5B(39486 9A3E 騾。

广州市高三二模数学试题及答案(文科)

广州市高三二模数学试题及答案(文科)

试卷类型:A2010年广州市普通高中毕业班综合测试(二)数 学(文科)2010.4 本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集{}1,2,3,4,5U =,集合{}2,3,4A =,{}2,5B =,则()U BA =A.{}5B. {}125,,C. {}12345,,,,D.∅2. 已知i 为虚数单位,若复数()()211a a -++i 为实数,则实数a A .1- B .0 C .13. 在长为3m 的线段AB 上任取一点P , 则点P 与线段两 端点A 、B 的距离都大于1m 的概率是A.14 B.13 C. 12 D.234. 如图1的算法流程图, 若()()32,xf xg x x ==,则()2h 的值为(注:框图中的赋值符号“=”也可以写成“←” 或“:=”)A. 9B. 8C. 6D. 4 图15. 命题“若,x y 都是偶数,则x y +也是偶数”的逆否命题是A .若x y +是偶数,则x 与y 不都是偶数B .若x y +是偶数,则x 与y 都不是偶数C .若x y +不是偶数,则x 与y 不都是偶数D .若x y +不是偶数,则x 与y 都不是偶数6. 设变量,x y 满足约束条件2,, 2.x y x x y ≤⎧⎪≤⎨⎪+≥⎩则目标函数2z x y =+的最小值为A. 6B. 4C. 3D. 2 7. 若0x <且1xxa b >>, 则下列不等式成立的是A. 01b a <<<B. 01a b <<<C. 1b a <<D. 1a b << 8. 函数()cos sin 44f x x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭12-是 A. 最小正周期为2π的偶函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为π的奇函数9. 高8m 和4m 的两根旗杆笔直地竖在水平地面上, 且相距10m , 则地面上观察两旗杆顶端仰角相等的点的轨迹为A. 圆B. 椭圆C. 双曲线D. 抛物线 10. 已知函数()sin f x x x =-,若12,,22x x ππ⎡⎤∈-⎢⎥⎣⎦且()()120f x f x +>,则下列不等式中 正确的是A. 12x x >B. 12x x <C. 120x x +>D. 120x x +< 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.已知向量a ,b 满足1=a ,b =2, a b 1=, 则a 与b 的夹角大小是 .12. 已知双曲线C :()2222100x y a ,b a b-=>>的离心率2e =, 且它的一个顶点到相应焦点的距离为1, 则双曲线C 的方程为 . 13.图2是一个有n 层()2n ≥的六边形点阵.它的中心是一个点,算作第一层, 第2层每边有2个点,第3层每边有3个点 ,…,第n 层每边有n 个点,则这个点阵的点数共有 个图3(二)选做题(14~ 15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知直线l 的参数方程为1,42.x t y t =+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2,2sin .x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈),则直线l 被圆C 所截得的弦长为 .15.(几何证明选讲选做题)如图3, 半径为5的圆O 的两条弦 AD 和BC 相交于点P , ,OD BC P ⊥为AD 的中点, 6BC =, 则弦AD 的长度为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤,16. (本小题满分12分)已知1sin 0,,tan 523⎛⎫=∈= ⎪⎝⎭πααβ. (1) 求tan α的值; (2) 求()tan 2+αβ的值.某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:若单科成绩85分以上(含85分),则该科成绩为优秀. (1)根据上表完成下面的2×2列联表(单位:人):数学成绩优秀数学成绩不优秀合 计物理成绩优秀 物理成绩不优秀合 计20 关系?(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门 不优秀的概率. 参考数据:① 假设有两个分类变量X 和Y ,它们的值域分别为{}12,x x 和{}12,y y ,其样本频数列联表(称 为22⨯列联表)为:则随机变量()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++为样本容量;②独立检验随机变量2K 的临界值参考表:序号12345678910 11 12 13 14 15 16 17 18 19 20 数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83 物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 861y 2y合计1x a b a b +2xcd c d + 合计a c +b d +a b c d +++()20P K k ≥ 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.0010k0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828NMB 1C 1D 1A 1DCBA在长方体1111ABCD A B C D -中, 11,2AB BC AA ===, 点M 是BC 的中点,点N 是1AA 的中点. (1) 求证: //MN 平面1A CD ;(2) 过,,N C D 三点的平面把长方体1111ABCD A B C D -截成 两部分几何体, 求所截成的两部分几何体的体积的比值.19. (本小题满分14分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a元;②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;③每户每月的定额损耗费a不超过5元.(1) 求每户每月水费y(元)与月用水量x(立方米)的函数关系;(2) 该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:试分析该家庭今年一、二、三各月份的用水量是否超过最低限量,并求m,n,a的值.20. (本小题满分14分)已知椭圆22122:1(0)x y C a b a b+=>>的右焦点2F 与抛物线22:4C y x =的焦点重合,椭圆1C 与抛物线2C 在第一象限的交点为P ,25||3PF =.圆3C 的圆心T 是抛物线2C 上的动点, 圆3C 与y 轴交于,M N 两点,且||4MN =. (1)求椭圆1C 的方程;(2)证明:无论点T 运动到何处,圆3C 恒经过椭圆1C 上一定点.21. (本小题满分14分)已知数列{}n a 和{}n b 满足11a b =,且对任意n ∈N *都有1n n a b +=,121n n n na ba a +=-. (1) 判断数列1n a ⎧⎫⎨⎬⎩⎭是否为等差数列, 并说明理由; (2) 证明: ()111n nn n a b ++>.2010年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如 果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数. 2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容 和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半; 如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分, 满分20分.其中14~15题是选做题,考生只能选做一题.11.3π12. 2213y x -=13. 2331n n -+ 14. 515.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查同角三角函数的基本关系、两角和与差的正切等知识, 考查化归与转化的数学思想方法 和运算求解能力) (1) 解:∵sin 0,,52⎛⎫=∈ ⎪⎝⎭παα ∴ cos ===α. …2分 ∴sin 1tan cos 25===ααα. …4分(2)解法1:∵1tan 3=β, ∴22tan tan 21tan βββ=- …6分2123113⨯=⎛⎫- ⎪⎝⎭34=. …8分 ∴()tan tan 2tan 21tan tan 2++=-αβαβαβ…10分132413124+=-⨯ 2=. …12分 解法2: ∵1tan 3=β, ∴()tan tan tan 1tan tan ++=-αβαβαβ…6分112311123+=-⨯1=. …8分 ∴()()()tan tan tan 21tan tan +++=-+αββαβαββ …10分1131113+=-⨯2=. …12分P NMB 1C 1D 1A 1DCBA17.(本小题满分12分)(本小题主要考查独立性检验的基本思想、方法及其简单应用和概率等知识, 考查或然与必然的数学思想方法, 以及数据处理能力、运算求解能力和应用意识) (1)解:2×2列联表为(单位:人):…4分 (2)解:提出假设0H :学生数学成绩与物理成绩之间没有关系.根据列联表可以求得22121214720(5)8.8027.879136K ⨯-⨯⨯⨯⨯⨯=≈>. …6分当0H 成立时,2(7.879)0.005P K >=.所以我们有99.5%的把握认为:学生的数学成绩与物理成绩之间有关系. …8分 (3)解:由(1)可知数学成绩与物理成绩都优秀的学生的人数为5人,则数学成绩与物理成绩至少有一门不优秀的学生人数为15人. …10分 故从20名学生中抽出1名,抽到的学生数学成绩与物理成绩至少有一门不优秀的概率为153204=. …12分 18. (本小题满分14分)(本小题主要考查空间线面关系、几何体的体积等知识, 考查数形结合、化归与转化的数学思想方法, 以及空间想象能力、推理论证能力和运算求解能力) (1)证法1:设点P 为AD 的中点,连接,MP NP .∵ 点M 是BC 的中点, ∴ //MP CD .∵ CD ⊂平面1A CD ,MP ⊄平面1A CD , ∴ //MP 平面1A CD . …2分 ∵ 点N 是1AA 的中点, ∴ 1//NP A D .∵ 1A D ⊂平面1A CD ,NP ⊄平面1A CD ,∴ //NP 平面1A CD . …4分PNMB 1C 1D 1A 1DCBAQN MB 1C 1D 1A 1DCB A∵ MP NP P =,MP ⊂平面MNP ,NP ⊂平面MNP ,∴ 平面//MNP 平面1A CD . ∵ MN ⊂平面MNP ,∴//MN 平面1A CD . …6分 证法2: 连接AM 并延长AM 与DC 的延长线交于点P , 连接1A P , ∵ 点M 是BC 的中点, ∴ BM MC =.∵ BMA CMP ∠=∠, 90MBA MCP ︒∠=∠=, ∴ Rt MBA ≅Rt MCP . …2分∴ AM MP =. ∵ 点N 是1AA 的中点,∴ 1MN //A P . …4分∵ 1A P ⊂平面1A CD ,MN ⊄平面1A CD ,∴ //MN 平面1A CD . …6分(2) 解: 取1BB 的中点Q , 连接NQ ,CQ , ∵ 点N 是1AA 的中点, ∴ //NQ AB . ∵ //AB CD , ∴ //NQ CD .∴ 过,,N C D 三点的平面NQCD 把长方体1111ABCD A B C D -截成两部分几何体,其中一部分几何体为直三棱柱QBC -NAD , 另一部分几何体为直四棱柱1111B QCC A NDD -. …8分 ∴ 11111222QBC S QB BC ∆==⨯⨯=, ∴ 直三棱柱QBC -NAD 的体积112QBC V S AB ∆==, …10分 ∵ 长方体1111ABCD A B C D -的体积112V =⨯⨯2=, ∴直四棱柱1111B QCC A NDD -体积2132V V V =-=. …12分∴ 12V V =1232=13.∴ 所截成的两部分几何体的体积的比值为13. …14分(说明:213V V =也给分) 19.(本小题满分14分)(本小题主要考查函数和方程、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象 概括能力、推理论证能力、运算求解能力和应用意识)(1)解:依题意,得()()()909a,x m,y n x m a,x m.+<≤*⎧⎪=⎨+-+>**⎪⎩其中05a <≤. …2分(2)解:∵05a <≤,∴9914a <+≤.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米. …4分 将417x ,y =⎧⎨=⎩和523x ,y =⎧⎨=⎩分别代入()**,得()()1794,2395.n m a n m a =+-+⎧⎪⎨=+-+⎪⎩…6分两式相减, 得6n =.代入()1794n m a,=+-+得616a m =-. …8分 又三月份用水量为2.5立方米,若25m .<,将2511x .,y =⎧⎨=⎩代入()**,得613a m =-,这与616a m =-矛盾. …10分 ∴25m .≥,即该家庭三月份用水量2.5立方米没有超最低限量.将 2.5,11x y =⎧⎨=⎩代入()*,得119a =+,由616119a m ,a.=-⎧⎨=+⎩ 解得23a ,m .=⎧⎨=⎩ …13分答:该家庭今年一、二月份用水超过最低限量,三月份用水没有超过最低限量,且362m ,n ,a ===. …14分 20.(本小题满分14分)(本小题主要考查直线、圆、抛物线、椭圆等知识, 考查数形结合、化归与转化、特殊与一般、函数 与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识)(1)解法1:∵抛物线22:4C y x =的焦点坐标为(1,0), …1分∴点2F 的坐标为(1,0).∴椭圆1C 的左焦点1F 的坐标为1(1,0)F -,抛物线2C 的准线方程为1x =-. 设点P 的坐标为11(,)x y ,由抛物线的定义可知211PF x =+,∵253PF =, ∴1513x +=,解得123x =.由211843y x ==,且10y >,得1y =∴点P 的坐标为23,⎛⎝. …3分 在椭圆1C :22221(0)x y a b a b+=>>中,1c =.122||||4a PF PF =+=+=.∴2,a b === ∴椭圆1C 的方程为22143x y +=. …6分 解法2:∵抛物线22:4C y x =的焦点坐标为(1,0), …1分∴点2F 的坐标为(1,0).∴ 抛物线2C 的准线方程为1x =-.设点P 的坐标为11(,)x y ,由抛物线的定义可知211PF x =+, ∵253PF =,∴1513x +=,解得123x =. 由211843y x ==,且10y >得1y = ∴点P的坐标为2(3. …3分在椭圆1C :22221(0)x y a b a b+=>>中,1c =.由222221424199c ,a b c ,.ab ⎧⎪=⎪=+⎨⎪⎪+=⎩解得2,a b == ∴椭圆1C 的方程为22143x y +=. …6分 (2)证法1: 设点T 的坐标为00(,)x y ,圆3C 的半径为r , ∵ 圆3C 与y 轴交于,M N 两点,且||4MN =, ∴||4MN ==.∴r =∴圆3C 的方程为222000()()4x x y y x -+-=+. ()* …8分∵ 点T 是抛物线22:4C y x =上的动点, ∴ 2004y x =(00x ≥).∴20014x y =. 把20014x y =代入()* 消去0x 整理得:22200(1)2()024x y yy x y +---+=.()** …10分方程()**对任意实数0y 恒成立,∴2210,220,40.xy x y ⎧-=⎪⎪-=⎨⎪+-=⎪⎩解得2,0.x y =⎧⎨=⎩ …12分∵点(2,0)在椭圆1C :22143x y +=上, ∴无论点T 运动到何处,圆3C 恒经过椭圆1C 上一定点()2,0. …14分 证法2: 设点T 的坐标为00(,)x y ,圆3C 的半径为r ,∵ 点T 是抛物线22:4C y x =上的动点,∴ 2004y x =(00x ≥). …7分∵ 圆3C 与y 轴交于,M N 两点,且||4MN =, ∴||4MN ==. ∴r =∴ 圆3C 的方程为222000()()4x x y y x -+-=+.()*** …9分令00x =,则2004y x =0=,得00y =.此时圆3C 的方程为224x y +=. …10分由22224,1,43x y x y⎧+=⎪⎨+=⎪⎩解得2,0.x y =±⎧⎨=⎩ ∴圆3C :224x y +=与椭圆1C 的两个交点为()2,0、()2,0-. …12分分别把点()2,0、()2,0-代入方程()***进行检验,可知点()2,0恒符合方程()***,点()2,0-不恒符合方程()***.∴无论点T 运动到何处,圆3C 恒经过椭圆1C 上一定点()2,0. …14分 21.(本小题满分14分)(本小题主要考查导数及其应用、数列、不等式等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1) 解: 数列1n a ⎧⎫⎨⎬⎩⎭为等差数列. …1分理由如下:∵对任意n ∈N *都有1n n a b +=,121n n n na ba a +=-, ∴12211111n n n n n n na b a a a a a +-===--+. ∴1111n na a +=+,即1111n n a a +-=. …3分 ∴数列1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公差为1的等差数列. …4分 (2) 证明: ∵11a b =, 且111a b +=, ∴11a b =12=. 由(1)知()1211nn n a =+-=+. ∴ 11n a n =+, 11n n n b a n =-=+. …6分 所证不等式()111n nn n a b ++>,即111111n nn n n +⎛⎫⎛⎫+> ⎪⎪++⎝⎭⎝⎭, 也即证明111111n nn n +⎛⎫⎛⎫+>+ ⎪⎪+⎝⎭⎝⎭. 令()()ln 11xf x x x =>-, 则()'21ln (1)x xx f x x --=-. 再令()1ln x g x x x-=-, 则()'211g x x x =-21x x-=. …8分当1x >时, ()'0g x <,∴函数()g x 在[)1,+∞上单调递减. ∴当1x >时,()()10g x g <=,即1ln 0x x x--<.∴当1x >时, ()'21ln (1)x xx f x x --=-0<.∴函数()ln 1xf x x =-在()1,+∞上单调递减. …10分 ∵111111n n<+<++,∴11111f f n n ⎛⎫⎛⎫+>+ ⎪ ⎪+⎝⎭⎝⎭. ∴11ln 1ln 111111111n n n n⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭>+-+-+. …12分∴111ln 1ln 11n nn n +⎛⎫⎛⎫+>+ ⎪⎪+⎝⎭⎝⎭.∴111111n nn n +⎛⎫⎛⎫+>+ ⎪ ⎪+⎝⎭⎝⎭. ∴()111n n n n a b ++>成立. …14分。

高三数学二轮复习文科系列周考卷一 试题

高三数学二轮复习文科系列周考卷一 试题

2021届高三数学二轮复习文科系列周考卷一制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日第一卷(选择题 一共50分)一、选择题:本大题一一共10小题,每一小题5分,一共50分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1.函数y=lg(1-x ) (x <0) 的反函数是 ( )A .y=101-x(x <0) B .y=101-x(x >0)C .y=1-10x(x <0)D .y=1-10x(x >0)2.“1>a 〞是“11<a〞的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数)4(sin )4(cos 22ππ+-+=x x y 是 ( )A .周期为π的奇函数B .周期为π的偶函数C .周期2π的奇函数D .周期为2π的偶函数4.设函数f (x )是定义在R 上以3为周期的奇函数,假设f (1)<1,f (2)=2a -3a +1,那么〔 〕A .a <23B .a <23且a ≠-1C .a >23或者a <-1D .1<a <235.由0,1,2,…,9这十个数字组成的、无重复数字的四位数中,个位数字与百位之差的绝对值等于8的个数为 〔 〕 A.180 B.196 C6.在△ABC 中,cotA 是等差数列{a n }的公差,且B a a cot ,4,473=-=是等比数列{b n }的公比,且9,3163==b b ,那么这个三角形是 ( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形7.正方形ABCD ,沿对角线BD 折成直二面角后不会成立的结论是 〔 〕 A .AC ⊥BDB .△ADC 为等边三角形 C .AB 、CD 所成角为60°D .AB 与平面BCD 所成角为60°8.如图,目的函数y ax P -=仅在闭区域OACB 的点 )54,32(C 处获得最小值,那么a 的取值范围是 〔 〕 〔A 〕)125,310(-- 〔B 〕)103,512(--〔C 〕)512,103(〔D 〕)103,512(- 9.棱长为3的正方体ABCD —A 1B 1C 1D 1中,长为2的线段MN 的一个端点M 在DD 1 上运动,另一个端 点 N 在底面 ABCD 上运动。

四川省内江市第六中学2022-2023学年高三上学期第二次月考《文科》数学(解析版)

四川省内江市第六中学2022-2023学年高三上学期第二次月考《文科》数学(解析版)

内江六中2022—2023学年(上)高2023第二次月考文科数学试题第Ⅰ卷 选择题(满分60分)一、选择题(每题5分,共60分)1. 已知向量()1,2a =r ,()1,1b = ,若c a kb =+ ,且b c ⊥ ,则实数k =( )A. 32B. 53-C. 53D. 32-【答案】D 【解析】【分析】根据平面向量坐标的线性运算得c得坐标,在根据向量垂直的坐标关系,即可得实数k 的值.【详解】解:因为向量()1,2a =r ,()1,1b = ,所以()1,2c a kb k k =+=++ ,又b c ⊥,所以120b c k k ⋅=+++= ,解得32k =-.故选:D.2. 复数13i2iz -=+的虚部为( )A. 75-B. 7i 5-C. 73-D. 7i 3-【答案】A 【解析】【分析】利用复数的除法运算化简,即可得复数的虚部.【详解】解:复数13i (13i)(2i)17i 17i 2i (2i)(2i)555z -----====--++-故z 的虚部为75-.故选:A .3. 若集合{1A =-,0,1},2{|1B y y x ==-,}x A ∈,则A B = ( )A. {0} B. {1}C. {0,1}D. {0,1}-【答案】D 【解析】【分析】把A 中元素代入B 中解析式求出y 的值,确定出B ,找出两集合的交集即可.【详解】解:把A 中=1x -,0,1代入B 中得:0y =,1,即{0B =,1},则{0A B = ,1}-,故选:D .4. 若变量x 、y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =+取最大值时的最优解是( )A. 5,03⎛⎫ ⎪⎝⎭B. 1,12⎛⎫-- ⎪⎝⎭C. 12,33⎛⎫⎪⎝⎭D. ()2,1-【答案】C 【解析】【分析】作出满足约束条件的可行域,平移直线20x y +=,即可得出结果.【详解】作出满足约束条件的可行域(如图中阴影部分所示).2z x y =+可化为20x y z +-=,平移直线20x y +=,当其经过点C 时,目标函数2z x y =+取得最大值,联立21y x x y =⎧⎨+=⎩,解得13x =,23y =,故最优解是12,33⎛⎫⎪⎝⎭,故选:C.5. 若a ,b 均为实数,则“ln ln a b >”是“e e a b >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据函数ln y x =与e x y =解不等式,即可判断.【详解】解:因为ln ln a b >,由函数ln y x =在()0,+∞上单调递增得:0a b >>又e e a b >,由于函数e x y =在R 上单调递增得:a b >由“0a b >>”是“a b >”的充分不必要条件可得“ln ln a b >”是“e e a b >”的充分不必要条件.故选:A.6. 如图是函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的图象的一部分,则函数()f x 的解析式为( )A. ()2sin 26f x x π⎛⎫=+⎪⎝⎭B. ()2sin 23f x x π⎛⎫=+⎪⎝⎭C. ()sin 3f x x π⎛⎫=+ ⎪⎝⎭D. ()2sin 23f x x π⎛⎫=-⎪⎝⎭【答案】B 【解析】【分析】由图象可确定()f x 最小正周期T ,由此可得ω;根据712f A π⎛⎫=- ⎪⎝⎭可求得ϕ;由()0f =可求得A ,由此可得()f x .【详解】由图象可知:()f x 最小正周期23471T πππ⎛⎫-=⎪⎝⎭=⨯,22T πω∴==;又77sin 126f A A ππϕ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭,()73262k k ππϕπ∴+=+∈Z ,解得:()23k k πϕπ=+∈Z ,又02πϕ<<,3πϕ∴=,()sin 23f x A x π⎛⎫∴=+⎪⎝⎭,()0sin 3f A A π=== ,2A ∴=,()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭.故选:B.7. 已知向量,a b 的夹角为4π,且1||4,(23)122a a b a b ⎛⎫=+⋅-= ⎪⎝⎭,则向量b 在向量a 方向上的投影是( )A.B. 3C. D. 1【答案】D 【解析】【分析】由题意,根据数量积的运算,化简等式,解得模长,结合投影的计算公式,可得答案.【详解】由()123122a b a b ⎛⎫+⋅-= ⎪⎝⎭,22323122a a b a b b -⋅+⋅-= ,2213122a a b b +⋅-= ,21164cos 31224b b π+⨯⋅-=,230b -= ,(30b += ,解得b = b 在向量a 方向上的投影为cos 14b π= ,故选:D.8. 蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系.用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法,现设计一个实验计算圆周率的近似值,向两直角边长分别为6和8的直角三角形中均匀投点40个.落入其内切圆中的点有22个,则圆周率π≈( )A.6320B.3310C.7825D.9429【答案】B 【解析】【分析】根据几何概型的计算公式和题意即可求出结果.【详解】直角三角形内切圆的直径等于两直角边的和与斜边的差,即268104r =+-=,由几何概型得2222140682π⨯≈⨯⨯,从而3310π≈.故选:B.9. 双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量C (单位:A·h ),放电时间t (单位:h )与放电电流I (单位:A )之间关系的经验公式n C I t =⋅,其中32log 2n =为Peukert 常数.在电池容量不变的条件下,当放电电流10A I =时,放电时间57h t =,则当放电电流15A I =,放电时间为( )A. 28h B. 28.5hC. 29hD. 29.5h【答案】B 【解析】【分析】根据题意求出蓄电池的容量C ,再把15A I =代入,结合指数与对数的运算性质即可得解.【详解】解:根据题意可得5710n C =⋅,则当15A I =时,571015n n t ⋅=⋅,所以32231log 2log 222257575728.5h 333nt ⎛⎫⎛⎫⎛⎫=⋅=⋅=⋅= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即当放电电流15A I =,放电时间为28.5h.故选:B .10. 已知函数()32e ,0461,0x x f x x x x ⎧<=⎨-+≥⎩,则函数()()()2232g x f x f x =--⎡⎤⎣⎦的零点个数为( ).A. 2 B. 3 C. 4 D. 5【答案】B 【解析】【分析】首先根据()()22320f x f x --=⎡⎤⎣⎦,得到()2f x =或1()2f x =-,然后利用导数分析0x ≥时函数的单调性,结合单调性画出函数的图象,通过图象即可观察出函数零点的个数.【详解】由()()()22320g x f x f x =--=⎡⎤⎣⎦,得()2f x =或1()2f x =-.当0x ≥时,2()121212(1)f x x x x x '=-=-,所以当(0,1)x ∈,()0,()'<f x f x 单调递减;当()1,x ∈+∞,()0,()'>f x f x 单调递增,所以1x =时,()f x 有极小值(1)4611f =-+=-.又0x <时,()x f x e =,画出函数()f x 的图象如图所示,由图可知:函数()()()2232g x f x f x =--⎡⎤⎣⎦的零点个数为3.故选:B .11. 已知()f x 是定义在R 上的函数满足(4)()f x f x -=-,且满足(31)f x -为奇函数,则下列说法一定正确的是( )A. 函数()f x 图象关于直线=2x 对称B. 函数()f x 的周期为2C. 函数()f x 关于点1,03⎛⎫- ⎪⎝⎭中心对称 D. (2023)0f =【答案】D 【解析】【分析】对于A.令2x x =+代入(4)()f x f x -=-即可判断.对于C.可考虑图像平移或者将3x 换元进行判断.对于BD.通过AB对称轴和对称中心即可判断出函数周期,继而计算出(2023)f 【详解】因为函数()f x 关于直线2x =-对称,不能确定()f x 是否关于直线2x =对称,A 错误;因为(31)f x -为奇函数,所以(31)(31)f x f x -=---,所以(1)(1)f x f x -=---,所以()(2)f x f x =---,所以函数()f x 关于点(1,0)-中心对称,故C 错误;由()(4)f x f x =--与()(2)f x f x =---得(4)(2)f x f x --=---,即(4)(2)f x f x -=--,故(4)()f x f x -=,所以函数()f x 的周期为4,故B 错误;(2023)(50641)(1)0f f f =⨯-=-=,故D 正确.故选:D的的12. 已知关于x 的不等式(e )e ->x x x x m m 有且仅有两个正整数解(其中e 2.71828= 为自然对数的底数),则实数m 的取值范围是( )A. 43169(,]5e 4eB. 3294(,4e 3eC. 43169[,5e 4eD. 3294[,e 3e 4【答案】D 【解析】【分析】问题转化为2(1)e x x m x +<(0x >)有且仅有两个正整数解,讨论0m ≤、0m >并构造()(1)f x m x =+、2()ex x g x =,利用导数研究单调性,进而数形结合列出不等式组求参数范围.【详解】当0x >时,由2e e 0xxx mx m -->,可得2(1)ex x m x +<(0x >),显然当0m ≤时,不等式2(1)ex x m x +<在(0,)+∞恒成立,不合题意;当0m >时,令()(1)f x m x =+,则()f x 在(0,)+∞上单调递增,令2()ex x g x =,则(2)()e xx x g x '-=,故(0,2)上()0g x '>,(2,)+∞上()0g x '<,∴()g x 在(0,2)上递增,在(2,)+∞上递减,又(0)(0)0f m g =>=且x 趋向正无穷时()g x 趋向0,故()240,e g x ⎛⎤∈ ⎥⎝⎦,综上,(),()f x g x 图象如下:由图知:要使()()f x g x <有两个正整数解,则()()()()()()11{2233f g f g f g <<≥,即2312e 43e 94e m m m ⎧<⎪⎪⎪<⎨⎪⎪≥⎪⎩,解得32944e 3e m ≤<.故选:D【点睛】关键点点睛:问题转化为2(1)ex x m x +<(0x >)有且仅有两个正整数解,根据不等式两边的单调性及正整数解个数列不等式组求范围.第Ⅱ卷非选择题(满分90分)二、填空题(每题5分,共20分)13. 1289log 24⎛⎫+= ⎪⎝⎭______ .【答案】116##516【解析】【分析】利用指数幂与对数运算即可求解.【详解】112388893111log 2log 8log 84236⎛⎫+=+=+= ⎪⎝⎭.故答案为:116.14. 曲线123x y x -=+在点()1,2--处的切线方程为________.(用一般式表示)【答案】530x y -+=【解析】【分析】利用导数的几何意义即得.【详解】由123x y x -=+,得22(23)2(1)5(23)(23)x x y x x +--'==++,所以切线的斜率为255(23)k ==-+,所以所求的切线方程为(2)5[(1)]y x --=--,即530x y -+=.故答案为:530x y -+=.15. 已知π4sin 35α⎛⎫+= ⎪⎝⎭,则πsin 26α⎛⎫+= ⎪⎝⎭___________.【答案】725##0.28【解析】分析】利用倍角余弦公式求得2π7cos(2)325α+=-,由诱导公式π2πsin(2cos(263αα+=-+,即可求值.【详解】22ππ167cos(212sin 12332525αα⎛⎫+=-+=-⨯=- ⎪⎝⎭,而πππ2π7sin(2cos(2)cos(2)662325ααα+=-++=-+=.故答案为:72516. 已知函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭(ω>0),若()f x 在20,3π⎡⎤⎢⎥⎣⎦上恰有两个零点,且在,424ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围是________.【答案】510,23⎡⎤⎢⎥⎣⎦【解析】【分析】由()f x 在20,3π⎡⎤⎢⎥⎣⎦上恰有两个零点,令3x k πωπ+=,Z k ∈,可得52338233ππωππω⎧≤⎪⎪⎨⎪>⎪⎩,令22232k x k ππππωπ-+≤+≤+,Z k ∈,可得f (x )在5,66ππωω⎡⎤-⎢⎥⎣⎦上单调递增,从而有5646240ππωππωω⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,联立求解即可得答案.【详解】解:由题意,令3x k πωπ+=,Z k ∈,得x =33k ππω-,Z k ∈,∴f (x )的第2个、第3个正零点分别为53πω,83πω,【∴52338233ππωππω⎧≤⎪⎪⎨⎪>⎪⎩,解得542ω≤<,令22232k x k ππππωπ-+≤+≤+,Z k ∈,∴52266k k x ππππωωωω-+≤≤+,Z k ∈,令k =0,f (x )在5,66ππωω⎡⎤-⎢⎥⎣⎦上单调递增,∴5,,42466ππππωω⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,∴5646240ππωππωω⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得1003ω<≤,综上,ω的取值范围是51023ω≤≤.故答案为:510,23⎡⎤⎢⎥⎣⎦.三、解答题(共70分)(一)必考题(共60分)17. 在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c,已知sin sin ,2A Ca b A b +==.(1)求角B 的大小;(2)求2a c -的取值范围.【答案】(1)3π(2)()0,6【解析】【分析】(1)结合A C B π+=-,以及诱导公式、二倍角公式、正弦定理化简原式,即得解;(2)利用正弦定理,辅助角公式可化简26a c A π⎛⎫-=-⎪⎝⎭,结合A 的范围即得解【小问1详解】A CB π+=- ,sinsin 2B a b A π-∴=cos sin 2B a b A ∴=sin cos sin sin 2B A B A ∴=cos sin 2sin cos 222B B B B ∴==1sin 22B ∴=,又B 为锐角,263B B ππ∴==【小问2详解】由正弦定理4sin sin sin a b c A B C ====,214sin ,4sin 4sin 4sin 2sin 32a A c C A A A A A π⎫⎛⎫∴===-=+=+⎪ ⎪⎪⎝⎭⎭,128sin 2sin 6sin cos 2a c A A A A A A A ⎫∴-=--=-=-⎪⎪⎭6A π⎛⎫=- ⎪⎝⎭由锐角ABC ,故20,0232A C A πππ<<<=-<故(),sin ,20,6626A A a c πππ⎛⎛⎫<<∴-∈∴-∈ ⎪ ⎝⎭⎝.18. 已知等差数列{}n a 的前n 项和为n S ,2512a a +=,424S S =.(1)求n a 及n S ;(2)若11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-,2n S n =(2)()2111n T n =-+【解析】【分析】(1)设出等差数列的首项和公差,利用等差数列的通项公式、前n 项和公式得到关于首项和公差的方程组求出1a 和d ,进而求出n a 及n S ;(2)利用(1)求出n b ,再利用裂项抵消法进行求和.【小问1详解】设等差数列{}n a 的公差为d ,则11125124344(2)2a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得112a d =⎧⎨=⎩,所以()12121n a n n =+-=-,()21212n n n S n n -⨯=⨯+=.【小问2详解】由(1)得:+121n a n =+,21(1)n S n +=+,则()()122221211111n n n n a n b S S n n n n +++===-⋅++,所以123n nT b b b b =+++⋅⋅⋅+()22222222111111122331114n n =-+-+-+⋅⋅-+⋅+()2111n =-+..19. 已知()2ex x a f x -=.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()1f x x ≤-对[)1,x ∞∈+恒成立,求a 的取值范围.【答案】(1)10x y --=(2)1a ≥【解析】【分析】(1)利用导数的几何意义以及直线方程的点斜式即可求解.(2)分离参数a ,转化成不等式恒成立问题,利用导数求最值即可.【小问1详解】当1a =时,()21ex x f x -=,()01f =-,()22(1)ex x x f x --'=,(0)1k f '∴==,所以切线方程为:11(0)y x +=⨯-,即10x y --=.【小问2详解】()1f x x ≤-恒成立,即2(1)e x a x x ≥--在[)1,x ∞∈+上恒成立,设2()(1)e x g x x x =--,()(2e )x g x x '=-,令()0g x '=,得120,ln 2x x ==,在[)1,+∞上,()0g x '<,所以函数2()(1)e x g x x x =--在[)1,+∞上单调递减,所以max ()(1)1g x g ==,max ()a g x ∴≥,故有1a ≥.20. 2022年2月4日北京冬奥运会正式开幕,“冰墩墩”作为冬奥会的吉祥物之一,受到各国运动员的“追捧”,成为新晋“网红”,尤其在我国,广大网友纷纷倡导“一户一墩”,为了了解人们对“冰墩墩”需求量,某电商平台采用预售的方式,预售时间段为2022年2月5日至2022年2月20日,该电商平台统计了2月5日至2月9日的相关数据,这5天的第x 天到该电商平台参与预售的人数y (单位:万人)的数据如下表:日期2月5日2月6日2月7日2月8日2月9日第x 天12345人数y (单位:万人)4556646872(1)依据表中的统计数据,请判断该电商平台的第x 天与到该电商平台参与预售的人数y (单位:万人)是否具有较高的线性相关程度?(参考:若0.300.75r <<,则线性相关程度一般,若0.75r ≥,则线性相关程度较高,计算r 时精确度为0.01)(2)求参与预售人数y 与预售的第x 天的线性回归方程;用样本估计总体,请预测2022年2月20日该电商平台的预售人数(单位:万人).参考数据:()()()55211460, 6.78i i i i i y y x x y y ==-=--=≈∑∑,附:相关系数()()()121ˆˆˆ,n i i i n i i x x y y r b ay bx x x ==--===--∑∑【答案】(1)具有较高的线性相关程度(2)ˆ 6.641.2yx =+,146.8万人【解析】【分析】(1)根据已知数据计算出相关系数r 可得;(2)由已知数据求出回归方程的系数得回归方程,然后在回归方程中令16x =代入计算可得估计值.【小问1详解】由表中数据可得1234545566468723,6155x y ++++++++====,所以()52110i i x x =-=∑又()()()55211460,66i i i i i y y x x y y ==-=--=∑∑所以0.970.75nx x y y r --==≈>所以该电商平台的第x 天与到该电商平台参与预售的人数y (单位:万人)具有较高的线性相关程度即可用线性回归模型拟合人数y 与天数x 之间的关系.【小问2详解】由表中数据可得()()()12166ˆ 6.610ni ii n i i x x y y b x x ==--===-∑∑则ˆˆ61 6.6341.2a y bx=-=-⨯=所以ˆ 6.641.2yx =+令16x =,可得ˆ 6.61641.2146.8y=⨯+=(万人)故预测2022年2月20日该电商平台预售人数146.8万人21. 已知()()2e 2ln x f x x a x x =-+(1)当e a =时,求()f x 的单调性;(2)讨论()f x 的零点个数.【答案】(1)()f x 在()0,1上单调递减,在()1,+∞上单调递增; (2)当0e ≤<a ,0个零点;当e a =或a<0,1个零点;e a >,2个零点【解析】【分析】(1)求出函数的导函数()()e 2e x f x x x x ⎛⎫'=+- ⎪⎝⎭,可得()10f '=,令()e e x g x x x =-,利用导数说明()g x 的单调性,即可求出()f x 的单调区间;(2)依题意可得()()2ln e 2ln 0x x f x a x x +=-+=,令2ln t x x =+,则问题转化为e t at =,R t ∈,利用零点存在定理结合单调性可判断方程的解的个数.【小问1详解】解:因为e a =,0x >,()()2e e 2ln x f x x x x =-+所以()()()()()2e 22e 2e e 12e 2e x x x x f x x x x x x x x x x +⎛⎫⎛⎫'=+-+=+-=+- ⎪ ⎪⎝⎭⎝⎭,()10f '=令()e e xg x x x =-,()()2e 1e 0x g x x x '=++>,所以()g x 在()0,+∞单增,且()10g =,当()0,1∈x 时()e e 0x g x x x =-<,当()1,x ∈+∞时()e e 0x g x x x =->,所以当()0,1∈x 时()0f x ¢<,当()1,x ∈+∞时()0f x ¢>,所以()f x 在()0,1单调递减,在()1,+∞单调递增【小问2详解】解:因为()()()2ln 2ln e e 2ln e 2ln 0x x x x f x a x x a x x +=⋅-+=-+=令2ln t x x =+,易知2ln t x x =+在()0,+∞上单调递增,且R t ∈,故()f x 零点转化为()()2ln e 2ln e 0x x t f x a x x at +=-+=-=即e t at =,R t ∈,的设()e t g t at =-,则()e tg t a '=-,当0a =时,()e tg t =无零点;当a<0时,()e 0t g t a '=->,故()g t 为R 上的增函数,而()010g =>,11e 10a g a ⎛⎫=-< ⎪⎝⎭,故()g t 在R 上有且只有一个零点;当0a >时,若(),ln t a ∈-∞,则()0g t '<;()ln ,t a ∈+∞,则()0g t '>;故()()()min ln 1ln g t g a a a ==-,若e a =,则()min 0g t =,故()g t 在R 上有且只有一个零点;若0e a <<,则()min 0g t >,故()g t 在R 上无零点;若e a >,则()min 0g t <,此时ln 1a >,而()010g =>,()()22ln 2ln 2ln g a a a a a a a =-=-,设()2ln h a a a =-,e a >,则()20a h a a-'=>,故()h a 在()e,+∞上为增函数,故()()e e 20h a h >=->即()2ln 0g a >,故此时()g t 在R 上有且只有两个不同的零点;综上:当0e ≤<a 时,0个零点;当e a =或a<0时,1个零点;e a >时,2个零点;【点睛】思路点睛:导数背景下的零点问题,注意利用零点存在定理结合函数单调性来讨论.(二)选考题(10分)请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22. 已知曲线1C 的参数方程为e e e e t tt t x y --⎧=+⎨=-⎩(t 为参数),以直角坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线2C 的极坐标方程4cos ρθ=.(1)求1C 的极坐标方程;(2)若曲线π(0)6θρ=>与曲线1C 、曲线2C 分别交于两点A ,B ,点(40)P , ,求△PAB 的面积.【答案】(1)24ππ(cos 244ρθθ=-<<(2)【解析】【分析】(1)将1C 的参数方程化为普通方程,再根据极坐标与直角坐标的转化公式即可得答案;(2)联立方程,分别求得点A ,B 的极坐标,根据三角形面积公式即可求得答案.【小问1详解】由e e e et tt t x y --⎧=+⎨=-⎩消去参数t ,得224x y -=,因为e e 2t t -+≥,所以曲线1C 的直角坐标方程为224(2)x y x -=≥,因为cos sin x y ρθρθ=⎧⎨=⎩,所以曲线1C 的极坐标方程为24ππ()cos 244ρθθ=-<< ;【小问2详解】由2π64cos2θρθ⎧=⎪⎪⎨⎪=⎪⎩得:A ρ=所以曲线π(0)6θρ=>与曲线1C 交于点A π)6,由π64cos θρθ⎧=⎪⎨⎪=⎩,得:B ρ=, 所以曲线π(0)6θρ=>与曲线2C :4cos ρθ=交于点B π6,则PAB S =△PA PBS S -△O △O 1π4()sin 26B A ρρ=⨯⨯-=选修4-5:不等式选讲23. 己知函数()221f x x a x a =+++-.(1)当0a =时,求不等式()2f x ≥的解集;(2)若对于任意x ∈R ,都有()2f x ≥,求实数a 的取值范围.【答案】(1)()1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭(2)32a ≤-或1a ≥.【解析】【分析】(1)分0x ≥,102x -≤<,12x <-三种情况打开绝对值,求解即可;(2)打开绝对值,将函数()f x 写成分段函数,结合单调性求解即可【小问1详解】()21f x x x=++当0x ≥时,()312f x x =+≥,解得13x ≥,当102x -≤<时,()12f x x =+≥,解得x ∈∅,当12x <-时,()312f x x =--≥,解得1x ≤-,所以不等式()2f x >的解集为()1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭.【小问2详解】因为222172()12148(0222a a a a a +++++--==>,故212a a +>-所以()2222231,11,2131,2x a a x a a f x x a a x a a x a a x ⎧⎪++-≥⎪+⎪=+++-≤<⎨⎪+⎪---+<-⎪⎩所以函数()f x 在1,2a +⎛⎤-∞- ⎥⎝⎦上递减,在1,2a +⎡⎫-+∞⎪⎢⎣⎭上递增,所以函数()f x 在R 上的最小值为21122a a f a ++⎛⎫-=+ ⎪⎝⎭.所以2122a a ++≥,即223(23)(1)0a a a a +-=+-≥解得32a ≤-或1a ≥。

河北省唐山市届高三下学期第二次模拟考试数学(文)试题

河北省唐山市届高三下学期第二次模拟考试数学(文)试题

河北省唐山市2011—2012学年度高三年级第二次模拟考试数学(文)试题说明:一、本试卷共4页,包括三道大题,24道小题,共150分,其中1.~(21)小题为必做题,(22)~(24)小题为选做题.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项"的规定答题.三、做选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案,四、考试结束后,将本试卷与原答题卡一并交回, 参考公式:样本数据n x xx ,,,21的标准差;x x x x x x x ns n 其中],)()()[(122221-+-+-=为样本平均数; 柱体体积公式:为底面面积其中S Sh V ,=、h 为高; 锥体体积公式:h S Sh V ,,31为底面面积其中=为高;球的表面积、体积公式:,34,432R V RS ππ==其中R 为球的半径。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.1.已知1zi-=2+i ,则复数z 的共轭复数为A .3+iB .3-iC .-3-iD .—3+i2.己知集合A={l ,2,3),集合B=(2,3,4),则A()N C B =A .{l }B .f0,1}C .{1,2,3}D .(2,3,4)3.己知命题p :“a>b”是“2a >2b ”的充要条件;q :x ∃∈R,lx+l l≤x,则A .⌝p ∨q 为真命题B .p ∨q 为真命题C .p ∧q 为真命题D .p ∧⌝q 为假命题4.已知α是第三象限的角,且tan α=2,则sin(α+4π)=A .1010-B .1010C .31010-D .310105.设变量x 、y满足1,0,220,x y x y x y +≥⎧⎪-≥⎨⎪--≥⎩则目标函数z=2x+y 的最小值为A .32B .2C .4D .66.把函数y=sin (2x —6π)的图象向左平移6π个单位后,所得函数图象的一条对称轴为A .x=0B .x=2π C .x=6π D .x=—12π7.执行如图所示的算法,若输出的结果y≥2,则输入的x 满足A .x≥4B .x≤-lC .—1≤x≤4D .x≤一l 或x≥48.已知某几何体的三视图如图所示,则其体积为 A .2 B .lC .43D .539.曲线y=11x x -+在点(0,一1)处的切线与两坐标轴围成的封闭图形的面积为A .1B .-12C .43D .1810.奇函数f (x )、偶函数g (x )的图象分别如图1、2所示,方程f (g(x))=0、g (f(x ))=0 的实根个数分别为a 、b ,则a+b=A .3B .7C.10D .1411.直线l 与双曲线C :22221(0,0)x y a b a b-=>>交于A 、B 两点,M 是线段AB 的中 点,若l 与OM (O 是原点)的斜率的乘积等于1,则此双曲线的离心率为A .2B 2C .3D 312.把一个皮球放入如图所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为A .3B .10 cmC .2cmD .30cm二、填空题:本大题共4小题,每小题5分,共20分13.函数y=1102x-的定义域为 .14.向圆(x 一2)2+(y —23=4内随机掷一点,则该点落在x 轴下方的概率为 。

安徽省合肥市2021届高三二模数学试题及答案(文科)

安徽省合肥市2021届高三二模数学试题及答案(文科)

2021年安徽省合肥市高考数学第二次教学质量检测试卷(文科)一、选择题(每小题5分).1.复数(i是虚数单位)的模等于()A.2B.2C.D.2.已知A={x|x2<4x},B={x|y=lg(x﹣2)},则A∩B=()A.(0,2]B.(﹣∞,2]C.(2,+∞)D.(2,4)3.下列双曲线中,焦点在y轴上,且渐近线互相垂直的是()A.x2﹣y2=﹣4B.﹣y2=1C.﹣x2=1D.x2﹣y2=14.声强级(单位:dB)由公式L I=10lg给出,其中I为声强(单位:W/m2).某班级为规范同学在公共场所说话的文明礼仪,开展了“不敢高声语,恐惊读书人”主题活动,要求课下同学之间交流时,每人的声强级不超过40dB.现已知4位同学课间交流时,每人的声强分别为10﹣7W/m2,2×10﹣9W/m2,5×10﹣10W/m2,9×10﹣11W/m2,则这4人中达到班级要求的有()A.1人B.2人C.3人D.4人5.设正项等比数列{a n}的前n项和为S n,若a2a6=16,2S3=a2+a3+a4,则a1=()A.B.2C.D.46.秦九韶是我国南宋时期的数学家,他在所著《数书九章》中提出的多项式求值算法,至今仍是比较先进的算法.如图是秦九韶算法的一个程序框图,执行该程序框图,若输入x =a,n=2,输出s=26,则输入的实数a的值为()A.﹣4或﹣3B.﹣3或4C.﹣4或3D.3或47.设抛物线C:y2=4x的焦点为F,点A是抛物线C的准线与x轴的交点.若抛物线C上的点M满足|MA|=|MF|,则|MF|=()A.B.2C.2D.48.函数f(x)=的图象大致是()A.B.C.D.9.在文明城市创建过程中,某市创建办公室对市区内从事小吃、衣帽、果蔬、玩具等6类商户数进行了统计并绘成如图所示的条形统计图,对商户进行了文明城市知识教育培训.2021年初,该市创建办公室计划从2000户商户中,按照商户类型进行分层抽样,随机抽取100户进行文明城市知识教育培训效果调查,则衣帽类和果蔬类商户抽取的户数分别为()A.50,15B.50,30C.30,25D.25,1510.若a,b是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若a⊥b,b⊥α,α⊥β,则a⊥βB.若α⊥β,a⊥α,b∥β,则a⊥bC.若a∥α,a∥β,α∩β=b,则a∥bD.若a∥b,a⊥α,b∥β,则α∥β11.如图,在△ABC中,D,E是AB边上两点,,且△BDM,△EDM,△AEM,△ACM的面积成等差数列.若在△ABC内随机取一点,则该点取自△AEM的概率是()A.B.C.D.12.在《通用技术》课上,某小组同学准备用一个棱长为6的正四面体坯料制作一个正三棱柱模型(其底面在正四面体一个面上),要求削去的材料尽可能少,则所制作的正三棱柱模型的高为()A.B.C.4D.2二、填空题(共4小题).13.已知向量=(x,1),=(1,﹣2),且⊥,则|﹣|=.14.若直线l:y=kx与圆C:(x﹣2)2+y2=3相交,则实数k的取值范围是.15.已知函数f(x)=lnx,g(x)=xlnx.若当x∈(0,+∞)时,f(x)≤kx+b≤g(x)恒成立,则实数k﹣b的值等于.16.如图数表,它的第一行数由正整数从小到大排列得到,此后下一行数由前一行每两个相邻的数的和写在这两个数正中间下方得到.依此类推,则该数表中,第n行第1个数是.三、解答题:本大题共5小题,满分60分.解答应写出文说明、证明过程或演算步骤。

2021届江西省南昌市高三二模文科数学试题扫描版附答案

2021届江西省南昌市高三二模文科数学试题扫描版附答案

NCS20210607项目第二次模拟测试卷「’ 文科数学木试卷共4页,23小题,满分150分.考试时间120分钟.注意事项:1. 答卷前,考生务必将自己的姓名、准•考证号填涂在答题卡上.并在相应位置贴好条形码.2•作答选择题时.选出每小題答案后,用2B铅笔把答题卡上对应题目的答案信息涂黑:如需改动,用橡皮擦干净后•再选涂其它答案.3•非选择题必须用黑色水笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液•不按以上要求作答无效.4•考生必须保证答题卡整洁.考试结束后,将试卷和答题卡一并交回.选择番本题共12小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数Z = l + V3i,则z2在复平面上所对应的点在A・第一彖限B・第二象限 C.第三象限 D.第四象限2. 己知集合/ = {(XJ)|(X + y + l)(2x_y + l) = 0},则集合/中元素个数是A.0个B.1个C.2个D无数个’3. 从编号依次为01,02,…,20的20人中选取5人,现从随机数表的第一行第3列和第4列数字开始,由左向右依次选取两个数字,则_______________________________5308 3395 5502^ 6215 2702 4369 3218826^ 099£_7846_i充莎刁?莎乙丽巧両亍9527 _肓匕_药方_而厂'A709B^of C^l'5 D. 184. 在平面直角坐标系x®中,若点/与点8(2,1)关于直线y = x对称,则血乙46等于A.15. 己知/⑴二竺二1,则5+勺=:0"是“/(州)+ /(兀)二0”的e” + 1A・充分不必要条件B.必要不充分条件C.充要条件D.坯不充分也不必要条件6 •函数/(x) = sin伽+讣⑺>0)部分图象如图所示, 若厶ABC的面积为?则血二7. 己知F是抛物线y2=4x的焦点,P是抛物线上的一个动点, 值为A. 2 + 275B. 4 +亦C. 3 + V?8. 直线l:y = k(x±2)上存在两个不同点到原点距离等丁1,则斤的取值范围是D.2龙川3,1),则AJPF周长的最小D・6+7勺A. (-2,2)B. (-73,73) 'C. (-1J)—高三文科数学(模拟二)第2页(共4页)一B9.已知/(x ) = F" ,"(()」),若/(x )= 1有两解,则a 的取值范圈是 log, AXE [L2) -A. (0,—)B.(0,才C.(1,2]D.(1,2)10・如图是默默无"蚊”的广告创意图,图中网格是单位正方形,阴影部分由若干个牡两迈首尾相连组成的图形.最外层的半圆弧与矩形相切• 从矩形屮任取一点,则落在阴影部分的概率是 TCB. 3rr28A.C.5TID ・71567H •如图,正四棱锥P —ABCD 的高为12, AB = 6近• 分别为PA 、PC 的中点,过点B.E.F二.填空题:本题共4小题,每小题5分■共20分.13. 已知7 = (—1、2),乙=(3,—1),则与a-b 同方向的单位向疑足 ________ • Y 2 1 14. 若曲线y = J — 在X = 处的切线的斜率为三,则勺二 ______________ ・‘ 4 215. 四面体 A BCD 中,Z.ABC = Z.BCD = 90°, AB = BC = CD = 2,AD= 2^3,则该四面体的 外接球表面积为 ________ •16. 如图,平面凹四边形A BCD ,其中力〃 =5, BC = &ZMBC = 60°, AZ.ADC = 120°则四边形A BCD 血积的最小值为―__・12. 将双曲线绕其对称中心旋转,会得到我们熟悉的函数图彖,例如将双曲线--^1 = 1的图象22绕原点逆时针旋转45°后,能得到反比例函数尹=丄的图象x(其渐近线分别为X 轴和y 轴):同样的,如图所示,常见 的“对勾函数° =加:+巴(加> 0〃 > 0)也能由双曲线的x 图象绕原点旋转得到(其渐近线分别为『=加兀和y 轴)・ 设m 二写小二屈・则此“对勾函数”所对应的双曲线的实轴长为A.価B. 4C. 2&D. 2^7的截面交PD 于点A/ , 将四棱锥分成上下两个部分, 规定丽为主视图方向,则几何体CDAB — FME 的俯视图为A B三.解答题:共70分.解答应写出文•字说明、证明过程或演算步骤.第17il21题为必考题,每个试题考生都必须作答;第22. 23题为选考题.考生根据要求作答.(一)必考题:共60分.17. (12 分〉己知数列何}中,=2,a2=l(we N*).(1 )求鸟,兔的值;(H)求{%}的前2021项和S?⑵.18. (12分)春节期间,防疫常态化要求减少人员聚集,某商场为了应对防疫要求,但又不影响群众购物.采取推广使用••某某到家'•线上购物APP,再由物流人员送货到家.下左图为从某区随机抽取100位年龄在卩0,70)的人口年龄段的频率分布直方图,下右图是该样本中使用了柱某某到家"线上购物APP人数占抽取总人数比的频率柱状图•(1 )从年龄段在[60,70)的样本中,随机抽取两人•估计都不使用••某某到家"线上购物APP的概率;:U1)若把年龄低于40岁(不含)的人称为^青年人S为确定是否有99.9%的把握认为••青年人” 更愿童使用"某某到家"线上购物APP,填写下列2x2联表,并作出判断.参考数据:-bc\(a 4 6)(c + 〃)(a + c)(b + 〃)其中n-a^b^c^d・19. (12分)如图,菱形ABCD 的边长为6,对角线交于点E, ZABC =芒~,将△/4DC 沿FC 折起得到三棱锥D - ABC ,点D 在底面ABC 的投影为点O ・20. (12分)已知椭圆E:-^- + ^- = l(a>6>0)的离心率,椭圆£与“轴交干人B 两点, 与夕轴交于C,D 两点,四边形ACBD 的面积为4.(I )求椭圆E 的方程;(H)若P 是椭圆E 上一点(不在坐标轴上),直线PC.PD 分别与乂轴相交于两点,设 PC,PD,OP 的斜率分别为人也扎,过点P 的直线/的斜率为且k& = kk 、,直线/与x 轴 交于点Q,求|M0 — |N0|的值.21. (】2分)已知函数f(x) = e\g(x) = x 9直线y = a(a> 0)分别与函数y = f(x).y = g(x)的 图象交于儿B 两点,O 为坐标原点. (I )求I FBI 长度的最小值;(H)求最大整数使得k<OA OB 对*(0,xo)恒成立.(二)选考题:共10分请考生在第22. 23题中任选一题作答.如果多做,则按所做的第一题计分. 22. (10分)选修4-4:坐标系与参数方程x = 2 cos 0r-在直角坐标系xOr 中,曲线G 的参数方程为彳 — a(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盂县一中高三第二次周练(文科)命题人:岳志义一、选择题(每题5分,共60分)1.含有三个实数的集合可表示为{a ,ab,1},也可表示为{a 2, a +b ,0},则a 2006+b 2006的值为 ( ) A .0 B .1 C .-1 D .±12.已知全集I ={0,1,2},满足C I (A ∪B )={2}的A 、B 共有的组数为 ( ) A .5 B .7 C .9 D .113.设集合M ={x |x =412+k ,k ∈Z },N ={x |x =214+k ,k ∈Z },则( )A .M =NB .M NC .M ND .M ∩N =∅4.对于任意的两个实数对(a ,b )和(c ,d ),规定(a ,b )=(c ,d )当且仅当a =c ,b=d ;运算“⊗”为:),(),(),(ad bc bd ac d c b a +-=⊗,运算“⊕”为:),(),(d c b a ⊕),(d b c a ++=,设R q p ∈,,若)0,5(),()2,1(=⊗q p 则=⊕),()2,1(q p ( )A .)0,4(B .)0,2(C .)2,0(D .)4,0(-5.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩ 是(,)-∞+∞上的增函数,那么 a 的取值范围是( )A .(0,1)B .(0,13)C.17⎡⎢⎣,13⎤⎥⎦ D .]1,17⎡⎢⎣ 6.函数2()lg(31)f x x ++的定义域( )A .1(,)3-+∞ B .1(,1)3-C .11(,)33-D .1(,)3-∞-7.已知函数)(x f y =,对任意的两个不相等的实数21,x x ,都有)()()(2121x f x f x x f ⋅=+成立,且0)0(≠f ,则)2006()2005(...........)2005()2006(f f f f ⋅⋅-⋅-的值是( ) A .0 B .1 C .2006!D .(2006!)28.如图所示,f i (x )(i =1,2,3,4)是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的x 1和x 2,任意λ∈[0,1],f [λx 1+(1-λ)x 2]≤λf (x 1)+(1-λ)f (x 2)恒成立”的只有 ( )f 1(x ) f 2(x ) f 3(x ) f 4(x )A .f 1(x ),f 3(x )B .f 2(x )C .f 2(x ),f 3(x )D .f 4(x ) 9.不等式|x 2-x -6|>3-x 的解集是( )(A )(3,+∞) (B )(-∞,-3)∪(3,+∞) (C )(-∞,-3)∪(-1,+∞) (D )(-∞,-3)∪(-1,3)∪(3,+∞)10、设2()lg 2x f x x +=-,则2()()2x f f x +的定义域为A .(4,0)(0,4)-B .(4,1)(1,4)--C .(2,1)(1,2)--D .(4,2)(2,4)--11、若不等式x 2+ax +1≥0对于一切x ∈(0,12〕成立,则a 的取值范围是( ) A .0 B. –2 C.-52D.-312、若关于x 的不等式x k )1(2+≤4k +4的解集是M ,则对任意实常数k ,总有( ) (A )2∈M ,0∈M ; (B )2∉M ,0∉M ; (C )2∈M ,0∉M ; (D )2∉M ,0∈M .二、填空题(每题4分,共16分)13、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________.14、设不等式2x -1>m(x 2-1)对满足|m|≤2的一切实数m 的取值都成立,x 的取值范围为 15、设函数y =f (x )是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图14所示的线段AB ,则在区间[1,2]上f (x )= .16、已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于BA 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 .三、解答题17、(12分)已知向量)23sin 23(cos x x ,=a ,)2sin 2(cos xx -=,b ,)13(-=,c ,其中R ∈x .(1)当b a ⊥时,求x 值的集合; (2)求||c a -的最大值.18.(12分)设A B a x a x x B x x x A ⊆=-+++==+=若},01)1(2{},04{222,求实数a 的取值范围。

. 19、(本小题满分12分)如图3,四棱锥P —ABCD 的底面边长为1的正方形,PD ⊥BC ,且PD=1,PC=2. (Ⅰ)求证:PD ⊥平面ABCD ; (Ⅱ)求二面角A —PB —D 的大小. 20.(本小题满分12分)从4名男生和2名女生中任选3人参加演讲比赛,求: (Ⅰ)所选3人中恰有1名女生的概率; (Ⅱ)所选3人中至少有1名女生的概率.21、(12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值.(1) 求a 、b 的值及函数()f x 的单调区间;(2) 若对[]1,2x ∈-,不等式2()f x c <恒成立,求c 的取值范围.22.(14分)已知二次函数c bx ax x f ++=2)(.(1)若a>b >c , 且f (1)=0,证明f (x )的图象与x 轴有2个交点;(2)在(1)的条件下,是否存在m ∈R ,使池f (m )=- a 成立时,f (m +3)为正数,若 存在,证明你的结论,若不存在,说明理由;(3)若对)()(,,,212121x f x f x x R x x ≠<∈且,方程)]()([21)(21x f x f x f +=有2个不等实根,),(21x x 证明必有一个根属于答案一、1.B ;2.C ;3.B ;4.B 5.C ;6.B ;7.B ; 8.A .9、D 10、B 11、C 12、A二、13.51-14、213x 217+<<- 15、x 16、4 三、17、讲解 (1)由b a ⊥,得0=⋅b a ,即02sin 23sin 2cos 23cos =-xx x x .则 02cos =x , 得 )(4π2πZ ∈+=k k x . ∴ ⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,4π2π|为所求.(2)+-=-22)323(cos||x c a =+2)123(sin x )3π23sin(45-+x , 所以||c a -有最大值为3.18、解:由2{40}{04}{0,4}A x x x x x x =+====-=-或. ∵B A ⊆,∴{0}{4}{0,4}B B B B =∅==-=-或或或. 当B =∅时,即01)1(222=-+++a x a x 无实根,由0<∆,即0)1(4)1(422<--+a a ,解得1-<a ;当{0}B =时,由根与系数的关系:2002(1)0011a a a ++⨯-⇒=-=-,=; 当{4}B =-时,由根与系数的关系:2442(1)(4)1a a a --+⨯--⇒∈∅=-,(-4)=; 当{0,4}B =-时,由根与系数的关系:2042(1)0(4)11a a a -+⨯--⇒==-,=;综上所得11-≤=a a 或19、解答:(Ⅰ)∵PD=CD=1,PC=2 ∴PD 2+CD 2=PC 2,即PD ⊥CD.(3分) 又PD ⊥BC.BC ∩CD=C ∴PD ⊥平面ABCD(6分)(Ⅱ)如图,连结AC 交BD 于O ,则AC ⊥BD.∵PD ⊥平面ABCD , ∴PD ⊥AC.∴AC ⊥平面PBD.(8分)过O 点作OE ⊥PB 于E ,连结AE , 则AE ⊥PB ,故∠AEO 为二面角 A —PB —D 的平面 角.(10分)由Rt △OEB ∽Rt △PDB ,得OE=66=⋅PB OB PD . ∴tan ∠AEO=,3=OEAO即∠AEO=60° 20、解答:(I )设所选3人中恰有1名女生为事件A ,则532062)(362412=⨯=⋅=C C C A P 6分(II )设所选人中至少有1名女生为事件B ,则所选3人中没有女生为事件B . 8分51204)(3634===C C B P10分54)(1)(=-=∴B P B P 21、解答:322(1)(),()32,f x x ax bx c f x x ax b '=+++=++22124()0,(1)320,3931,2,2()32(32)(1),():f a b f a b a b f x x x x x f x ''-=-+==++==-=-'=--=+-由得函数的单调区间如下表所以函数()f x 的递增区间为2(,)3-∞-与(1,)+∞;递减区间为2(,1)3-.[][]32221(2)()222221,2,,(),327(2)2,(2)2.()(1,2),(2)2,1 2.f x x x x c x x f x c f c f c f x c x c f c c c =--+∈-=-=+=+=+∈-=+-当时为极大值而则为最大值要使恒成立只须解得或<> <>22、解: (1))(,04,00,0)1(2x f ac b c a c b a c b a f ∴>-=∆∴<>∴>>=++=且且 的图象与x轴有两个交点.(2)0)(1,0)1(=∴=x f f 为 的一个根,由韦达定理知另一根为a c ,,,10,00c abc b a acc a --=>><<∴<>∴又且 10)1)((<<∴<-=--m a c a m a c m a 则13233=+->+>+∴acm)(x f 在(1,+∞)单调递增,0)1()3(=>+∴f m f ,即存在这样的m 使 0)3(>+m f(3)令)]()([21)()(21x f x f x f x g +-=,则)(x g 是二次函数.0)]()([41]2)()()(][2)()()([)()(22121221121≤--=+-+-=⋅x f x f x f x f x f x f x f x f x g x g 0)(0)()(),()(2121=∴<⋅≠x g x g x g x f x f 又的根必有一个属于),(21x x .沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。

相关文档
最新文档