第四章傅里叶变换和系统的频域(a)

合集下载

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

信号与系统 吴大正 第四章 傅立叶变换和系统的频域分析

4.2 傅里叶级数
3 .f(t)为奇谐函数—f(t) = –f(t±T/2) 此时 其傅里叶级数中只含奇次谐波分量,而不含偶 次谐波分量即 a0=a2=…=b2=b4=…=0
f(t) 0 T/2 T t
4.3 周期信号(Periodic Signal)的频谱
周期信号的频谱 周期矩形脉冲的频谱 从广义上说,信号的某种特征量随信号频率变化的关 系,称为信号的频谱,所画出的图形称为信号的频谱图。 周期信号的频谱是指周期信号中各次谐波幅值、相位 随频率的变化关系,即将An~ω和n~ω的关系分别画在以ω 为横轴的平面上得到的两个图,分别称为振幅频谱图和相 位频谱图。因为n≥0,所以称这种频谱为单边谱。 也可画|Fn|~ω和n~ω的关系,称为双边谱。若Fn为实 数,也可直接画Fn 。
“非周期信号都可用正弦信号的加权积分表示”
——傅里叶的第二个主要论点
4.2 傅里叶级数
周期信号展开的无穷级数成为傅里叶级数,分“三角型傅里 叶级数”和“指数型傅里叶级数”,只有当周期信号满足狄 里赫利条件时,才能展开成傅里叶级数。 狄利赫利条件(Dirichlet condition)

t 0 T
2 T bn 2T f (t )sin(nt ) d t T 2
任意函数f(t)都可分解为奇函数和偶函数两部分, 由于f(-t) = -fod(t) + fev(t) ,所以 f (t ) f (t ) f (t ) f (t ) f e v (t ) f od (t ) 2 2
4.2 傅里叶级数
三角形式 指数形式 奇偶函数的傅里叶级数
e jx e jx 由于 cos x 2
A0 f (t ) An cos( n t n ) 2 n 1

傅里叶变换和系统的频域

傅里叶变换和系统的频域
通过傅里叶变换将信号分解到不同的频率分量上,然后分配到不 同的频带进行传输。
频分复用应用
广泛应用于无线通信、有线电视等领域,提高信号传输的效率和 可靠性。
05
傅里叶变换的局限性
频域混叠现象
频域混叠现象是指由于采样频 率不足或信号频率超出采样频 率的一半,导致频谱出现重叠
的现象。
频域混叠会导致信号失真, 使得信号的频谱分析变得困
调频(FM)、调相(PM)、调相调频 (PM/FM)等。
调制解调器设计原理
利用傅里叶变换将信号从时域转换到频域,实 现信号的调制和解调。
调制解调器应用
用于无线通信、卫星通信等领域,实现信号的传输和接收。
频分复用技术
频分复用原理
将多个信号分配到不同的频率通道上,实现多路信号同时传输。
频分复用技术实现
线性时不变系统的频域分析
线性时不变系统
01
在频域中,线性时不变系统可以用频率响应函数来描述,该函
数将输入信号的频率映射到输出信号的频率。
频域表示
02
通过傅里叶变换,将系统的时域表示转换为频域表示,从而可
以分析系统在不同频率下的行为。
系统特性分析
03
通过分析频率响应函数,可以了解系统的带宽、稳定性、阻尼
定义:对于任何时间函数f(t),其傅里叶变换F(ω)定义为: F(ω)=∫−∞∞f(t)e−iωtdtF(omega) = int_{-infty}^{infty} f(t) e^{-iomega t} dtF(ω)=∫−∞∞f(t)e−iωtdt
傅里叶变换的性质
线性性质
如果f1(t)和f2(t)分别是两个函数的傅里叶变换,那么对于任意常数a和b,有 aF1(ω)+bF2(ω)=af1(t)+bf2(t)aF_1(omega) + bF_2(omega) = a f_1(t) + b f_2(t)aF1(ω)+bF2(ω)=af1(t)+bf2(t)

信号与线性系统分析第四章

信号与线性系统分析第四章

A0 An j ( nt n ) j ( nt n ) [e e ] 2 n 1 2
A0 1 j n jnt 1 An e e An e j n e jnt 2 2 n 1 2 n 1 第
23 页
指数形式的傅里叶形式
2 an T 2 bn T

T 2 T 2
f ( t ) cos(nt )dt f ( t ) sin ( nt )dt
第 11 页
T 2 T 2
例题1
an 0 n 2,4,6, 0, bn 4 , n 1,3,5, n
• 信号的傅里叶级数展开式为:
上式中第三项的n用–n代换,A– n=An、 – n= – n
A0 1 j n jnt 1 上式写为: An e e An e j n e jnt 2 2 n 1 2 n 1
令A0=A0ej0ej0t ,0=0 1 所以 f ( t ) An e j n e j nt 2 n
f (t )
n
F e
n

jnt
1 j cos(n )e jnt n n
第 19 页

四、周期信号的功率 —— Parseval 等式 A
f (t )
0
2
An cos(nt n )
n 1
周期信号一般是功率信号,其平均功率为
1 T
2
2
a0 f ( t ) an cos(nt ) bn sin( nt ) 2 n 1 n 1
2 .f(t)为奇函数——对称于原点
f (t ) f ( t )
4 an =0, bn T

第4章拉普拉斯变换

第4章拉普拉斯变换

j



0 收 敛 域
0收



《 信号与系统》
10
第四章 连续系统的复频域分析
例:求下列各单边函数拉氏变换的收敛域(即求收敛坐标 0)
1 f t t ;
2 f t ut;
3 f t e2tu t ; 4 f t e2tu t ;
5 f t cos0tu t
《 信号与系统》
11
f t
1
2 j
j
j
F (s)est ds
LT
1
F
s
原函数
《 信号与系统》
3
第四章 连续系统的复频域分析
傅氏变换建立了信号在时域和频域间的关系,而拉氏变换 则建立了在时域和复频域间的关系。同时我们发现,在拉氏变
换中,当变量s中的实部σ=0时,拉氏变换就变成了傅氏变换,
也就是说,傅氏变换是拉氏变换的一个特例。
由于s=σ+jω,因此上式中括号内第二项可写为
lim e-(s- )t lim e e -( - )t -jt
t
t
只要选择σ>α,随着时间t的增大,e-(σ-α)t将会衰减。故有
lim e-(s- )t 0
t
从而使f(t)的象函数为
F(s) 1
s
若σ<α,e-(σ-α)t将随着时间t的增大而增大。当t→∞时, 结果 将趋于无穷大, 从而使积分不收敛, f(t)的象函数不存在。
LT tn
tn est dt0ຫໍສະໝຸດ n! s n 1n
1时,
f
t
t,
LT
t
1 s2
7.单边衰减正弦信号e-t sin 0t u t

第四章-傅里叶变换

第四章-傅里叶变换
~ x(t)X(kΩ 0)ejΩ k0t, Ω 02π/T k
X(kΩ0)T 1T~ x(t)ejkΩ0tdt
其中 T 为~x(t) 的周期,<T>表示长度为 T 的任意区间。此即连续 傅里叶级数(Continuous Fourier Series, CFS)。从上述公式可 以看出,连续时间周期信号 ~x(t) 可以表示为与其重复频率 Ω0 成 谐波关系的一系列复正弦信号 ejΩ0t 的线性组合,每个 ejΩ0t 的复 数幅度就是傅里叶级数的系数 X(kΩ0)。
第四章 傅里叶变换
1. 连续和离散傅里叶级数 2. 连续和离散傅里叶变换 3. 傅里叶级数与傅里叶变换的比较 4. 有限长序列的离散傅里叶变换
傅里叶,1768-1830
1. 连续和离散傅里叶级数
任何连续时间周期信号 ~x(t) ,只要它满足狄里赫利(Dirichlet) 条件(后面介绍),都可以展开为复正弦形式的傅里叶级数:
(2N1+1)


─N
0
N
k
1.连续和离散傅里叶级数
周期信号频谱的特点: 1. 连续时间和离散时间周期信号的频谱都是离散频谱,两条
谱线之间的间隔等于重复频率( Ω0 =2π/T 或 ω0 =2π/N)。 2. 连续时间周期信号包含无穷多条谱线,即有无穷多个成谐
波关系的复正弦分量组成;离散时间周期信号的谱线具有 周期性,在频域上为 2π,在 k 域上为 N。
连续傅里叶级数的收敛条件:
条件1
~ x(t)X(kΩ 0)ejΩ k0t, Ω 02π/T
k
X(kΩ0)T 1T~ x(t)ejkΩ0tdt
在任何一个周期内必须模可积,即
~x(t)dt T
X (k Ω 0 ) T 1 T ~ x (t)e jΩ k 0 td T t 1 T ~ x (t)d t

第四章-傅里叶变换

第四章-傅里叶变换
nN
离散傅里叶级数涉及到的都是有限项求和,因此只要 ~x(n) 是有 界的,即对所有的 n,都有 |~ x(n)|,则 DFS 的收敛不存在任 何问题。或者说,只要在一个周期内 ~x(n) 的能量是有限的,即
则 DFS 一定收敛。
|~x(n)|2
nN
1. 连续和离散傅里叶级数
周期信号用截短了的傅里叶级数近似:
如果把周期信号 ~x(t)和 ~x(n) 分别展成它们的 CFS 和 DFS,并把
无限项的 CFS 和有限项的 DFS 在某一处截断,分别得到:
~xM(t)
M
X(kΩ0)ejkΩ0t
kM
~ x M (n )2 M 1 1 k M M X ~ (k0 )ej k 0 n , (2 M 1 ) N
nN
这两个公式表明,任意周期序列 ~x(n)都可以表示为与其重复频率 ω0 成谐波关系的一系列复正弦序列 ejω0n 的线性组合,每个 ejω0n 的复数幅度就是离散傅里叶级数的系数 X(kω0)。 CFS 与 DFS 的区别: CFS 是一个无穷级数,而周期为 N 的周 期序列的 DFS 却是一个有限级数,它只有 N 项,即:
(2N1+1)


─N
0
N
k
1.连续和离散傅里叶级数
周期信号频谱的特点: 1. 连续时间和离散时间周期信号的频谱都是离散频谱,两条
谱线之间的间隔等于重复频率( Ω0 =2π/T 或 ω0 =2π/N)。 2. 连续时间周期信号包含无穷多条谱线,即有无穷多个成谐
波关系的复正弦分量组成;离散时间周期信号的谱线具有 周期性,在频域上为 2π,在 k 域上为 N。
x(t) akejkt
k
x(n) akejkn

傅里叶级数-变换

傅里叶级数-变换
频率的函数,而与时间t无关,用于系统分析的独立变 量为,故称之为频域分析。
Y j H jF j
4.1 信号分解为正交函数
信号分解为正交函数的原理与矢量分解为正交矢量的
概念相似。
y
A C1vx C2v y
C2v y
A
v x , v y 为各相应方向的正交单位矢量。 C1vx
x
它们组成一个二维正交矢量集。
t2
t1
i
2
(
t
)dt
如果分解的项数越多则误差愈小。即 n ,均
方误差 2 0 ,即 f (t) 在区间 (t1 , t2)内分解为无穷多项 之和。
4.2 傅里叶级数
将周期信号 f (t) f (t mT) 在区间t0 , t0 T 内展开成完
备正交信号空间中的无穷级数。如果完备的正交函数集 是三角函数集或指数函数集,那么,周期信号所展开的 无穷级数就分别称为“三角形傅里叶级数”或“指数形傅
里叶级数”,统称为傅里叶级数。
1 , cos t , cos2 t , ..., cos(m t) , ...
sin t , sin2 t , ...,
sin(n t)
,...
{e jnt } (n 0 , 1 , 2 , ....)
一、周期信号的分解
设有一个周期信号 f (t) ,它的周期是 T ,角频率
2F 2 ,它可分解为:
T
f
(t)
a0 2
a1
cos(t)
a2
cos (2t )
......
b1 sin(t ) b2 sin(2t ) .....
a0 2
an
n 1
cos(nt)
bn

第4章 快速傅里叶变换(FFT)

第4章  快速傅里叶变换(FFT)
DIF-FFT)。
第4章 快速傅里叶变换(FFT)
4.2.2 时域抽取法基2FFT基本原理
先设序列点数为N=2M,M为整数。如果不满足这个条 件,可以人为地加上若干零值点,使之达到这一要求。 这种N为2的整数幂的FFT称基-2 FFT。
(一)N/2点DFT
按n的奇偶把x(n)分解为两个N/2点的子序列
第4章 快速傅里叶变换(FFT)
(3)对X1(k)和X 2 (k)进行蝶形运算,前半部为
X(0)~X(3),后半部分为 X(4) ~ X(7) 整个过程如图4.2.2 所示:
x(0 )
X1(0 )
X(0 )
x(2 )
N/2点 X1(1 )
X(1 )
x(4 )
X1(2 )
X(2 )
DFT
x(6 )
X1(3 )
WNk
X2(k)
X(N 2

k)

X1(k) WNk
X 2 (k )
(后一半)
计算X(k)包含N/2个蝶形运算和两个N/2点DFT运算
计算工作量分析
第4章 快速傅里叶变换(FFT)
(1)1个N/2点的DFT运算量:
复乘次数: ( N )2 N 2 复加次数: N ( N 1)
24
22
(2)两个N/2点的DFT运算量:
例如,N=8时的DFT可分解为四个N/4的DFT, 具体步骤如下:
(1) 将原序列x(n)的“偶中偶”部分:
x3(l) x1(r) x(n) x3(0) x1(0) x(0) x3(1) x1(2) x(4)
第4章 快速傅里叶变换(FFT)
第4章 快速傅里叶变换(FFT)
4.1 引言 4.2 基2FFT算法 4.3 进一步减少运算量的措施
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 傅里叶变换
引言
§4.1 信号分解为正交函数
§4.2 周期信号的频谱分析 §4.3 典型周期信号的频谱
§4.4 非周期信号的频谱分析
§4.5 典型非周期信号的频谱
2020/8/9
1
频域分析
从本章开始由时域转入变换域分析,首先讨论傅里叶变换。 傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产生的, 这方面的问题也称为傅里叶分析(频域分析)。将信号进行正交 分解,即分解为三角函数或复指数函数的组合。
2020/8/9
4
傅里叶生平
1768年生于法国
1807年提出“任何周 期信号都可用正弦函数 级数表示”
1829年狄里赫利第一 个给出收敛条件
拉格朗日反对发表
1822年首次发表在 “热的分析理论”一书 中
2020/8/9
5
傅里叶 ( Jean Baptise Joseph Fourier 1768~1830 )
法国数学家。1768年3月21日生于奥塞 尔,1830年5月16日卒于巴黎。1795年曾在巴 黎综合工科学校任讲师。 1798年随拿破仑远 征埃及,当过埃及学院的秘书。1801年回法 国,又任伊泽尔地区的行政长官。1817年傅 里叶被选为科学院院士,并于1822年成为科 学院的终身秘书。1827年又当选为法兰西学 院院士。
宣布了任一函数都能够展成三角函数的无穷级数。这篇论文经 J.-
L.拉格朗日, P.-S.拉普拉斯, A.-M.勒让德等著名数学家审查,由于 文中初始温度展开为三角级数的提法与拉格朗日关于三角级数的 观点相矛盾,而遭拒绝。由于拉格朗日的强烈反对,傅里叶的论文 从未公开露面过。为了使他的研究成果能让法兰西研究院接受并 发表,在经过了几次其他的尝试以后,傅里叶才把他的成果以另一种 方式出现在"热的分析理论"这本书中。这本书出版于1822年,也即 比他首次在法兰西研究院宣读他的研究成果时晚十五年。这本书
“非周期信号都可用正弦信号的 加权积分表示” ——傅里叶的第二个主要论点
2020/8/9
9
变换域分析:
频域分析:--傅里叶变换
自变量为 Байду номын сангаас
复频域分析:--拉氏变换
自变量为 S = +j
Z域分析:--Z 变换 自变量为z
z e sT e( j)T
2020/8/9
10
§4.1 信号分解为正交函数
扩及纯粹数学的其他领域。
傅里叶深信数学是解决实际问题的最卓越的工具, 并且认
为“对自然界的深刻研究是数学最富饶的源泉。” 这一见解已
成为数学史上强调通过实际应用发展数学的一种代表性的观点

2020/8/9
8
傅立叶的两个最主要的贡献——
“周期信号都可表示为谐波关系的 正弦信号的加权和” ——傅里叶的第一个主要论点
2020/8/9
3
主要内容
•本章从傅里叶级数正交函数展开问题开始讨论,引出傅 里叶变换,建立信号频谱的概念。 •通过典型信号频谱以及傅里叶变换性质的研究,初步掌 握傅里叶分析方法的应用。 •对于周期信号而言,在进行频谱分析时,可以利用傅里 叶级数,也可以利用傅里叶变换,傅里叶级数相当于傅 里叶变换的一种特殊表达形式。 •本章最后研究抽样信号的傅里叶变换,引入抽样定理。
在十八世纪中期,是否有用信号都能用复指数的线性组合来表 示这个问题曾是激烈争论的主题。1753年,D.伯努利曾声称一根弦 的实际运动都可以用正弦振荡模的线性组合来表示,但他没有继续 从数202学0/8/上9 深入探求下去;后来欧拉本人也抛弃了三角级数的想6 法。
在1759年拉格朗日(grange)表示不可能用三角级数来表 示一个具有间断点的函数,因此三角级数的应用非常有限。正是在 这种多少有些敌对和怀疑的处境下,傅里叶约于半个世纪后提出了 他自己的想法。傅里叶很早就开始并一生坚持不渝地从事热学研 究,1807年他在向法国科学院呈交一篇关于热传导问题的论文中
)都可以展开成三角级数,他列举大量函数并运用图形来说明函
数的这种级数表示的普遍性,但是没有给出明确的条件和完整
的证明。
傅里叶的创造性工作为偏微分方程的边值问题提供了基本
的求解方法-傅里叶级数法,从而极大地推动了微分方程理论的
发展,特别是数学物理等应用数学的发展; 其次,傅里叶级数
拓广了函数概念,从而极大地推动了函数论的研究,其影响还
已成为数学史上一部经典性的文献,其中基本上包括了他的数学 思想和数学成就。
2020/8/9
7
书中处理了各种边界条件下的热传导问题,以系统地运用
三角级数和三角积分而著称,他的学生以后把它们称为傅里叶
级数和傅里叶积分,这个名称一直沿用至今。傅里叶在书中断
言:“任意”函数(实际上要满足 一定的条件,例如分段单调
频域分析将时间变量变换成频率变量,揭示了信号内在的频 率特性以及信号时间特性与其频率特性之间的密切关系,从而导 出了信号的频谱、带宽以及滤波、调制和频分复用等重要概念。
2020/8/9
2
发展历史
•1822年,法国数学家傅里叶(J.Fourier,1768-1830)在研究热传导理论时发表了 “热的分析理论”,提出并证明了将周期函数展开为正弦级数的原理,奠定了 傅里叶级数的理论基础。 •泊松(Poisson)、高斯(Guass)等人把这一成果应用到电学中去,得到广泛应用。 •19世纪末,人们制造出用于工程实际的电容器。 •进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具体问题的解决为 正弦函数与傅里叶分析的进一步应用开辟了广阔的前景。 •在通信与控制系统的理论研究和工程实际应用中,傅里叶变换法具有很多的优 点。 •“FFT”快速傅里叶变换为傅里叶分析法赋予了新的生命力。
V1V2 cos
V2
V1.V2 V2
c12
V1.V2 V22
c12 表示 V1 和 V2 互相接近的程度
当V1 、 V2完全重合,则 0, c12 1
正交矢量 正交函数 正交函数集 用完备正交集表示信号
2020/8/9
11
一、正交矢量
矢量:V1 和 V2 参加如下运算, Ve 是它们的差, 如下式:
V1 c12V2 Ve
V1 Ve
V2
c12 V2
2020/8/9
V1 Ve
V2
c12 V2
V1 Ve
V2
c12 V2
12
c12V2
V1 cos
相关文档
最新文档