八模数学理试题

合集下载

中考数学模拟试题及答案8

中考数学模拟试题及答案8

2011年中考模拟题数 学 试 卷(八)*考试时间120分钟 试卷满分120分一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac <2.一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是( )A .AB=CDB .AB ≤CDC .CD AB > D .AB ≥CD3.如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点 C ,则AB 的长为( ) A .4cm B .5cm C .6cm D .8cm4.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是 双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时, OAB △的面积将会A .逐渐增大B .不变C .逐渐减小D7.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )A . 甲B . 乙C . 丙AD.不能确定8.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A833m B.4 mC.43D.8 m9.在同一直角坐标系中,函数y mx m=+和函数222y mx x=-++(m是常数,且0m≠)的图象可能..是()10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是()A.20 B.22C.24 D.2611.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()12.小强从如图所示的二次函数2y ax bx c=++的图象中,观察得出了下面五条信息:(1)0a<;(2)1c>;(3)0b>;(4)0a b c++>;(5)0a c-+>.你认为其中正确信息的个数有()A.2个 B.3个C.4个D.5个xOyx-2- 4A DCBO42yO 2- 4yxO4- 2yx取相反数×2+4输入x输出yC D150°hx1y21O-1二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.比较大小:-6 -8.(填“<”、“=”或“>”)14.矩形内有一点P 到各边的距离分别为1、3、5、7,则该矩形的最大面积为 平方单位.15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:体温(℃) 36.1 36.2 36.3 36.4 36.5 36.6 36.7 次 数2346312则这些体温的中位数是 ℃.16.观察下列等式: 221.4135-=⨯;222.5237-=⨯; 223.6339-=⨯ 224.74311-=⨯;…………则第n (n 是正整数)个等式为________.17.如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _.三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分) 先化简,再求值:232224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.AB CDE A ′电视机月销量扇形统计图第一个月 15%第二个月 30%第三个月 25%第四个月图11-120.(本小题满分8分)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是 ; (2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.22.(本小题满分9分)月图11-2第一 第二 第三 第四电视机月销量折线统计图某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB 、OB 分别表示父、子俩送票、取票过程中,离体育馆的路程.......S (米)与所用时间t (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变): (1)求点B 的坐标和AB 所在直线的函数关系式; (2)小明能否在比赛开始前到达体育馆?23.(本小题满分10分)已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 上的点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D .(1)求证:BC =CD ; (2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长.•ABCD EO24.(本小题满分10分)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE 的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM = MH,FM⊥MH;(2)将图-1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)图1AHC(M) D E BF G(N)G图2AHCDEBF NMAHCD图3BF GMN25.(本小题满分12分)如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,26.(本小题满分12分)如图,平行四边形ABCD 中,AB =5,BC =10,BC 边上的高AM =4,E 为BC 边上的一个动点(不与B 、C 重合).过E 作直线AB 的垂线,垂足为F . FE 与DC 的延长线相交于点G ,连结DE ,DF . (1) 求证:ΔBEF ∽ΔCEG . (2)当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之间有什么关系?并说明你的理由. (3)设BE =x ,△DEF 的面积为y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少?MBDCEF Gx A2011年中考模拟题(八) 数学试题参考答案及评分标准一、选择题二、填空题13.>; 14.64; 15.36.4; 16.22(3)3(23)n n n +-=⨯+; 17.3; 18. 三、解答题 19.解:322xx x x ⎛⎫-⎪-+⎝⎭÷224x x -=()()()()()()32222222x x x x x x x x x +---+-+. ······················· 3分 =x +4 ·························································································· 5分 当x =3时,原式=3+4 =7 ······························································································· 8分20.解:抽中一等奖的概率为161, ···································································· 3分抽中二等奖的概率为163, ·········································································· 5分抽中三等奖的概率为43. ··········································································· 8分21.解:(1)30%; (2)如图1; (3)8021203=; (4)由于月销量的平均水平相同,从折线的走势看, A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势. 所以该商店应经销B 品牌电视机.22.解:(1)解法一:从图象可以看出:父子俩从出发到相遇时花费了15分钟 1分电视机月销量折线统计图设小明步行的速度为x 米/分,则小明父亲骑车的速度为3x 米/分 依题意得:15x+45x =3600. ·························· 2分 解得:x =60.所以两人相遇处离体育馆的距离为 60×15=900米.所以点B 的坐标为(15,900). ···················· 3分 设直线AB 的函数关系式为s =kt+b (k ≠0). ······· 4分由题意,直线AB 经过点A (0,3600)、B (15,900)得:360015900b k b =⎧⎨+=⎩,解之,得1803600k b =-⎧⎨=⎩,.∴直线AB 的函数关系式为:1803600S t =-+. ·········································· 6分 解法二:从图象可以看出:父子俩从出发到相遇花费了15分钟. ·································· 1分 设父子俩相遇时,小明走过的路程为x 米. 依题意得:360031515x x-=····································································· 2分 解得x =900,所以点B 的坐标为(15,900) ·················································· 3分以下同解法一.(2)解法一:小明取票后,赶往体育馆的时间为:9005603=⨯ ·································· 7分 小明取票花费的时间为:15+5=20分钟. ∵20<25∴小明能在比赛开始前到达体育馆.················································ 9分解法二:在1803600S t =-+中,令S =0,得01803600t =-+. 解得:t =20.即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟. ∵20<25,∴小明能在比赛开始前到达体育馆. ··································· 9分23.解:(1)∵∠ABC =90°,∴OB ⊥BC . ·················································· 1分 ∵OB 是⊙O 的半径,∴CB 为⊙O 的切线. ········································ 2分 又∵CD 切⊙O 于点D ,∴BC =CD ; ·················································· 3分 (2)∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠ADE +∠CDB =90°. ································ 4分 又∵∠ABC =90°,∴∠ABD +∠CBD =90°. ································································ 5分 由(1)得BC =CD ,∴∠CDB =∠CBD .∴∠ADE =∠ABD ; ······································································· 6分 (3)由(2)得,∠ADE =∠ABD ,∠A =∠A .•ABCD EO∴△ADE ∽△ABD . ······································································· 7分 ∴AD AB =AEAD . ············································································· 8分 ∴21BE +=12,∴BE =3,······························································· 9分 ∴所求⊙O 的直径长为3. ······························································ 10分24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形.(3)是.25.解:(1) M (12,0),P (6,6). ····································································· 2分 (2) 设抛物线解析式为:6)6(2+-=x a y . ························································· 3分∵抛物线6)6(2+-=x a y 经过点(0,0), ∴6)60(02+-=a ,即61-=a 4分 ∴抛物线解析式为:x x y x y 261,6)6(6122+-=+--=即 . 5分(3)设A (m ,0),则B (12-m ,0),)261,12(2m m mC +--,)261,(2m m m D +-. ······························ 7分 ∴“支撑架”总长AD+DC+CB = )261()212()261(22m m m m m +-+-++-图2AHCDEBFG N MP=15)3(311223122+--=++-m m m . ·························································· 10分 ∵ 此二次函数的图象开口向下.∴ 当m = 3米时,AD+DC+CB 有最大值为15米. ··················································· 12分 26. (1) 因为四边形ABCD 是平行四边形, 所以AB DG ································ 1分 所以,B GCE G BFE ∠=∠∠=∠所以BEF CEG △∽△ ················································································· 3分 (2)BEF CEG △与△的周长之和为定值.······················································ 4分 理由一:过点C 作FG 的平行线交直线AB 于H ,因为GF ⊥AB ,所以四边形FHCG 为矩形.所以 FH =CG ,FG =CH 因此,BEF CEG △与△的周长之和等于BC +CH +BH由 BC =10,AB =5,AM =4,可得CH =8,BH =6, 所以BC +CH +BH =24 ·················································································· 6分 理由二:由AB =5,AM =4,可知在Rt △BEF 与Rt △GCE 中,有:4343,,,5555EF BE BF BE GE EC GC CE ====,所以,△BEF 的周长是125BE , △ECG 的周长是125CE又BE +CE =10,因此BEF CEG 与的周长之和是24. ······································ 6分(3)设BE =x ,则43,(10)55EF x GC x ==- 所以21143622[(10)5]2255255y EF DG x x x x ==-+=-- ································ 8分 配方得:2655121()2566y x =--+. 所以,当556x =时,y 有最大值. ·································································· 10分最大值为1216.····························································································· 12分A M xH GFED CB。

2022年陕西省西安市雁塔区高新一中中考数学八模试题及参考答案

2022年陕西省西安市雁塔区高新一中中考数学八模试题及参考答案

2022年陕西省西安市雁塔区高新一中中考数学八模试卷一、选择题(本大题共7小题,共21.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如图,数轴上点A所表示的数的相反数是( )A. −2B. 2C. 12D. −122. 如图是一个正方体的平面展开图,把展开图折叠成正方体后,“我”字一面相对面上的字是( )A. 了B. 我C. 的D. 国3. 面积为4的正方形的边长是( )A. 4开平方的结果B. 4的平方根C. 4的立方根D. 4的算术平方根4. 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A. 60°B. 65°C. 75°D. 85°5. 将正比例函数y=kx向右平移2个单位,再向下平移4个单位,平移后依然是正比例函数,则k的值为( )A. −4B. −2C. 2D. 46. 如图,⊙O是△ABC的外接圆,AD为⊙O直径,交BC于点E,若点C为半圆AD的中点,弦AB=√3DO,则∠BED的度数为( )A. 60°B. 65°C. 70°D. 75°7. 在同一平面直角坐标系中,有两条抛物线关于y轴对称,且它们的顶点与原点的连线互相垂直,若其中一条抛物线的表达式为y=x2−4x+m,则m的值为( )A. 2或−6B. −2或6C. 2或6D. −2或−6二、填空题(本大题共6小题,共18.0分)8. 分解因式:2ab2−8a=.9. 若正多边形的一个外角等于45°,则这个多边形是正______边形.10. 如图,点P是▱ABCD的对角线AC上一点,过点P作EF//BC,分别交AB,CD于点E,F,连接PB,PD.若AE=2,PF=8,∠ABC=60°,则图中阴影部分面积为______.11. 已知:点P(m,n)在直线y=−x+2上,也在双曲线y=−1x上,则m2+n2的值为______。

文海-黄冈八模2025届数学高三上期末达标检测模拟试题含解析

文海-黄冈八模2025届数学高三上期末达标检测模拟试题含解析

文海-黄冈八模2025届数学高三上期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π2.已知曲线cos(2)||2C y x πϕϕ⎛⎫=+<⎪⎝⎭:的一条对称轴方程为3x π=,曲线C 向左平移(0)θθ>个单位长度,得到曲线E 的一个对称中心的坐标为,04π⎛⎫⎪⎝⎭,则θ的最小值是( )A .6π B .4π C .3π D .12π3.已知抛物线C :214y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于A ,B 两点,若2PA AF =,则AB 为( )A .409B .40C .16D .1634.已知函数()ln f x x =,()()23g x m x n =++,若对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,记()23m n +的最小值为(),f m n ,则(),f m n 最大值为( )A .1B .1eC .21e D .1e5.已知{}n a 为等差数列,若2321a a =+,4327a a =+,则5a =( ) A .1 B .2C .3D .66.已知()()()sin cos sin cos k k A k παπααα++=+∈Z ,则A 的值构成的集合是( )A .{1,1,2,2}--B .{1,1}-C .{2,2}-D .{}1,1,0,2,2--7.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形8.已知定义在R 上的函数()f x 在区间[)0,+∞上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()12log 2f a f ⎛⎫<- ⎪⎝⎭,则a 的取值范围是( ) A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞⎪⎝⎭C .1,44⎛⎫⎪⎝⎭D .()4,+∞9.下列函数中,值域为R 的偶函数是( ) A .21y x =+B .x x y e e -=-C .lg y x =D .2y x =10.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入115x =,216x =,318x =,420x =,522x =,624x =,725x =,则图中空白框中应填入( )A .6i >,7SS =B .6i 7S S =C .6i >,7S S =D .6i ,7S S =11.函数sin ln ||2y x x π⎛⎫=-⋅ ⎪⎝⎭图像可能是( )A .B .C .D .12.设1,0(){2,0xx x f x x -≥=<,则((2))f f -=( )A .1-B .14C .12D .32二、填空题:本题共4小题,每小题5分,共20分。

广东省深圳市福田区2023-2024学年八年级上学期期末数学模考试题

广东省深圳市福田区2023-2024学年八年级上学期期末数学模考试题

广东省深圳市福田区2023-2024学年八年级上学期期末数学模考试题一、单选题1.9的平方根是( )A .3B .3-C .3±D .2.在平面直角坐标系中,点()3,4P -到原点的距离是( )A .5B .3C .4D .73.某企业车间有20名工人,某一天他们生产的机器零件个数统计如表:表中表示零件个数的数据中,众数、中位数分别是( )A .7个,7个B .6个,7个C .12个,12个D .8个,6个4.已知()11,A x y ,()22,B x y 是关于x 的函数(1)y m x =-图象上的两点,当12x x <时,12y y <,则m 的取值范围是( )A .0m >B .0m <C .1m >D .1m <5.已知方程组242x y x y k +=⎧⎨+=⎩的解满足1x y +=,则k 的值为( ) A .7 B .7- C .1 D .1-6.如图,在△ABC 中,AB =AC ,MN 是AB 的垂直平分线,△BNC 的周长是24cm ,BC =10cm ,则AB 的长是( )A .17cmB .12cmC .14cmD .34cm7.《九章算术》中记载一题目,译文如下,今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩8.函数y bx =与y ax b =+(0a ≠,0b ≠)在同一坐标系中的图象可能是( ) A . B . C . D . 9.如图,在ABC V 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,ABC V 面积为10,则BM +MD 长度的最小值为( )A .52B .3C .4D .510.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,54t =或154. 其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题11.点()2,3A 与点B 关于y 轴对称,则点B 的坐标是.12.人数相同的甲乙两班学生在同一次数学单元测试中,班级平均分和方差如下:=x x 甲乙=85,s 甲2=25,s 乙2=16,则成绩较为稳定的班级是.13.如图,已知函数y ax b =+和y kx =的图象交于点P ,关于,x y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是.14.有一个数值转换器,流程如下:当输入的x 值为64时,输出的y 值是 .15.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,若CD =1,则BD 的长是 .三、解答题16.(1)化简)22(2)解方程组238 46x yx y+=⎧⎨-=-⎩17.如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:AB∥DE.18.某校开展了以“追梦新时代”为主题的读书活动,并对本校八年级学生12月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示.根据以上信息,解答下列问题;(1)求出随机被抽查的学生总数,并补全不完整的条形统计图;(2)填写本次所抽取学生12月份“读书量”的中位数为本,众数为本;(3)求本次所抽取学生12月份“读书量”的平均数.19.甲、乙两人参加从A 地到B 地的长跑比赛,两人在比赛时所跑的路程y (米)与时间x (分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)______先到达终点(填“甲”或“乙”);(2)根据图象,求出甲的函数表达式;(3)求何时甲乙相遇?(4)根据图象,直接写出何时甲与乙相距250米.20.五和超市购进A 、B 两种饮料共200箱,两种饮料的成本与销售价如下表:(1)若该超市花了6500元进货,求购进A 、B 两种饮料各多少箱? (2)设购进A 种饮料a 箱(50100≤≤a ),200箱饮料全部卖完可获利润W 元,求W 与a 的函数关系式,并求购进A 种饮料多少箱时,可获得最大利润,最大利润是多少? 21.如图1,ACB △和DCE △均为等边三角形,点A ,D ,E 在同一直线上,连接BE .(1)求证:AD BE =;(2)求AEB ∠的度数;(3)探究:如图2,ACB △和DCE △均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A ,D ,E 在同一直线上,CM DE ⊥于点M ,连接BE .①AEB ∠的度数为°;②线段DM AE BE ,,之间的数量关系为.(直接写出答案,不需要说明理由) 22.如图,直线L 1:2y x =-+ 与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线AB 上一点,另一直线L 2:4y kx =+经过点P .(1)求点A 、B 坐标;(2)求点P 坐标和k 的值;(3)若点C 是直线L 2与x 轴的交点,点Q 是x 轴上一点,当△CPQ 的面积等于3时,求出点Q 的坐标。

28直角三角形与勾股定理

28直角三角形与勾股定理

直角三角形与勾股定理一、选择题1、(2011浙江杭州模拟14)如图折叠直角三角形纸片的直角,使点C落在斜边AB 上的点E处. 已知AB=, ∠B=30°, 则DE的长是( ).A. 6B. 4C.D. 2答案:B2.(2011湖北崇阳县城关中学模拟)直角三角形两直角边和为7,面积为6,则斜边长为()A. 5B.C. 7D.答案:A3.(2011年杭州市上城区一模)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3 ,且S1 +S3 =4S2,则CD=()A. 2.5ABB. 3ABC. 3.5ABD. 4AB答案:B4.(2011年浙江省杭州市模2)直角三角形两直角边和为7,面积为6,则斜边长为()A. 5B.C. 7D.答案:A二、填空题1、(2011年北京四中三模)如图是一个艺术窗的一部分,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为5cm,则正方形A、B、C、D的面积和是.答案:25cm22.(2010-2011学年度河北省三河市九年级数学第一次教学质量检测试题)如图是两个全等的三角形纸片,其三边长之比为3:4:5,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在两边重合,记折叠后不重叠部分面积分别为SA,SB,已知SA+SB=13,则纸片的面积是 .答案:363、(2011浙江杭州模拟15)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连结CD.若AB=4cm. 则△BCD的面积为.答案:4.(2011年宁夏银川)将一副三角尺如图所示叠放在一起,若=14cm,则阴影部分的面积_________cm2.答案:5.(2011浙江省杭州市8模)如图1,是我国古代著名的“赵爽弦图”的示意图,它是由四全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是__________;(第5题图)答案:766、(2011年浙江杭州二模)如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米.答案:87、(2011年浙江杭州八模)如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_____米.答案:6第8题图8、(2011年浙江杭州八模)如图1,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是__________;答案:769. (浙江省杭州市党山镇中2011年中考数学模拟试卷)如图,将边长为的等边△ABC折叠,折痕为DE,点B与点F重合,EF和DF分别交于点M、N,DFAB,垂足为D,AD=1,则重叠部分的面积为 .答案:B组1.( 2011年杭州三月月考)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC和MD重合.已知AB=AC=8 cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是▲ cm2答案:2.(2011年重庆江津区七校联考一模)一元二次方程的两根恰好是一直角三角形的两边长,则该直角三角形的面积为。

2023年3月河北省普通高中学业水平合格性考试模拟(八)数学试题

2023年3月河北省普通高中学业水平合格性考试模拟(八)数学试题

2023年3月河北省普通高中学业水平合格性考试模拟(八)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}|3213A x x =-≤-<,{}|21,B x x k k Z ==+∈,则A B =I ( ) A .{}|12x x -≤<B .{}|12x x -<≤C .{}1,1-D .{}1,0,1-2.已知复数z 在复平面内对应的点为()2,1,z 是z 的共轭复数,则zz=( )A .34i 55-+B .34i 55--C .34i 55+D .34i 55-3.新中国成立至今,我国一共进行了7次全国人口普查,历次普查得到的全国人口总数如图1所示,城镇人口比重如图2所示.下列结论不正确的是( )A .与前一次全国人口普查对比,第五次总人数增长量高于第四次总人数增长量B .对比这7次全国人口普查的结果,我国城镇人口数量逐次递增C .第三次全国人口普查城镇人口数量低于2亿D .第七次全国人口普查城镇人口数量超过第二次全国人口普查总人口数4.如图,某几何体的平面展开图为6个小正方形组合而成的图形,则在原几何体中AB 与CD 所成角的大小为( )A .6π B .4π C .3π D .2π 5.复数z 满足||1z =,则|1i |z --的最大值为( )A 1B .1C D 16.已知111333332,,555a b c -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系为( ) A .a b c << B .b<c<a C .c<a<b D .a c b <<7.已知向量a r ,b r 满足||2||2b a ==r r ,|2|2a b -=rr ,则向量a r ,b r 的夹角为( )A .30︒B .45︒C .60︒D .90︒8.“12x x >”是“3312x x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知集合{}1,2A =,{}2,3B a a =+,若{}1A B =I ,则实数a 的值为( )A .0B .1C .2D .310.已知向量()1,1a =-r ,()2,b x =r,若()2a a b ⊥+r r r ,则x 的值为( ) A .2 B .-2 C .6 D .-611.从2022年北京冬奥会、冬残奥会志愿者的30000人中随机抽取10人,测得他们的身高分别为(单位:cm ):162、153、148、154、165、168、172、171、170、150,根据样本频率分布估计总体分布的原理,在所有志愿者中任抽取一人身高在155.5cm -170.5cm 之间的人数约为( ) A .18000B .15000C .12000D .1000012.已知2x >,则函数42y x x =+-的最小值是( ) A .8B .6C .4D .213.设集合{|04}A x x =<<,{2,3,4,5,6}B =,则A B =I ( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}14.已知ln 2a =,ln 22b -=,()lg ln 2c =,则( ) A .a c b >>B .b c a >>C .b a c >>D .a b c >>15.若3π4sin 25α⎛⎫-= ⎪⎝⎭,则cos2=α( )A .2425-B .725 C .725-D .242516.向量0a b ⋅=r r 是a b ⊥r r的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要17.在四边形ABCD 中,若AC AB AD =+u u u r u u u r u u u r ,且0A C B D ⋅=u u u r u u u r,则四边形ABCD 一定是( ) A .正方形B .平行四边形C .矩形D .菱形18.已知a ∈R ,若复数22i z a a a =++是纯虚数,则=a ( ) A .0B .2C .1-D .2-19.设复数12ω=-+,其中i 为虚数单位,则231ωωω+++=( )A .0B .1C .iD .1-20.设向量a r ,b r的模分别为2和3,且夹角为120°,则a b +r r 等于( )A B .13 C .7 D 21.已知实数a ,b ,c 满足1ln b a e c==,则下列不等式中不可能成立的是( ) A .a b c >>B .a c b >>C .c a b >>D .c b a >>22.将函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象向左平移ϕ个单位后,得到的函数图象关于y 轴对称,则ϕ的可能取值为( ) A .3πB .6π C .23π D .2π 23.已知复数21i 1z =+-,则=z ( )A .0B .1C D .224.已知向量a r ,b r满足1a =r ,2b =r ,a b -=r r ,则2a b -r r等于( )A .BCD .25.若复数z 满足()2i z ⋅+=i 是虚数单位,则z z ⋅的值为( )AB .2C D .326.下表为随机数表的一部分:08015 17727 45318 22374 21115 78253 77214 77402 43236 00210 45521 64237已知甲班有60位同学,编号为00~59号,规定:利用上面的随机数表,从第1行第4列的数开始,从左向右依次读取2个数,则抽到的第8位同学的编号是( ) A .11B .15C .25D .3727.已知R 是实数集,集合{314},{10}A xx B x x =-<+≤=->∣∣,则下图中阴影部分表示的集合是( )A .{43}xx -<≤∣ B .{41}xx -<<∣ C .{13}xx <≤∣ D .{}4xx ≤-∣ 28.函数1()sin 22f x x x =的单调递增区间为( ) A .52,2()66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦ZB .5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦ZC .511,(Z)1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦D .,()36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z29.设复数i1iz =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限30.已知三棱锥-P ABC 的棱AB ,AC ,AP两两互相垂直,AB AC AP ===顶点A 为球心,1为半径作一个球,球面与该三棱锥的表面相交得到的交线最长为( )A .π2BC.3D二、解答题31.已知函数()1010ax x f x x x-≥⎧⎪=⎨<⎪⎩,,且()20f =.(1)求()()1f f ;(2)若()f m m =-,求实数m 的值.。

重庆市綦江区2020-2021学年第一学期义务教育质量监测八年级数学试题(图片版、含WORD版)

重庆市綦江区2020-2021学年第一学期义务教育质量监测八年级数学试题(图片版、含WORD版)

重庆市綦江区2020-2021学年上期义务教育质量监测八年级数学试题(含提示答案)21F E D C B A ED C B A 图4图3图2图1一、选择题(本大题12个小题,每小题4分,共48分)1.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是( )A B C D提示:根据轴对称图形的概念.答案:B.2.若分式1x+1有意义,则x 的取值范围是( )A.x ≠0B.x=-1C.x ≠1D.x≠-1提示:根据分式有意义的条件.答案:D.3.下列运算正确的是( )A.a 3∙a 4=a 12B.(a 3)2=a 5C.(3a 2)3=9a 6D.a 6÷a 3=a 3提示:根据幂的运算性质.答案:D.4.已知点B 、C 、F 、E 共线,∠1=∠2,AF=CD ,要使△ABF ≌△DEC ,还需补充一个条件,下列选项中不能满足要求的是( )A.AB=DEB.∠A=∠DC.AB ∥DED.BC=EF 提示:根据三角形全等的判定.答案:A. 5.等腰三角形的两边分别为3和6,则它的周长等于( )A.12B.12或15C.15或18D.15提示:根据等腰三角形的意义及三角形三边关系.答案:D.6.如图,△ABC 中,AB=AC=10,DE 是AB 的中垂线,△BDC 的周长为16,则BC 长为( )A.5B.6C.8D.10提示:线段的中垂线就是线段的垂直平分线根据线段垂直平分线性质及周长计算.答案:B . 7.已知x m =2,x n =3,则x 2m+n =( ) A.12 B.108 C.18 D.36提示:逆用幂的运算性质.答案:A.8.下列各选项中,因式分解正确的是( )A.a 2+b 2=(a+b)2B.x 2-4=(x+2)(x-2)C.m 2-4m+4=(m-2)2D.-2y 2+6y=-2y(y+3) 提示:根据因式分解的意义.答案:C.9.方程12x 2−1−6x−1=1x+1的增根为( )A.1B.1和-1C.-1D.0提示:增根就是分式方程无解时,未知数的值.将原方程化为整式方程解得x=1.答案:A.10.下列图形都是由同样大小的矩形按一定的规律组成,其中第1个图形中一共有6个矩形,第2个图形中一共有11个矩形,第3个图形中一共有16个矩形,⋯,按此规律,第7个图形中矩形的个数为( )A.30B.36C.41D.45F E D CB A提示:矩形就是长方形,第n 个图形中有5n+1个矩形.答案:B.11.若数a 关于x 的不等式组{x 2−1≤13(x −2) 3x −a ≥−2(1+x)恰有三个整数解,且使关于y 的分式方程1−3y y−1−2a 1−y =−2的解为正数,则所有满足条件的整数a 的值之和是( )A.2B.3C.4D.5提示:由不等式组恰有三个整数解得-3<a ≤2;由分式方程的解为正数得a>0.5且a ≠1.所以整数a=2.答案:A.12.如图,在△ABC 中,△ABC 的面积为10,AB=4,BD 平分∠ABC ,E 、F 分别为BC 、BD 上的动点,则CF+EF 的最小值是( )A.2B.3C.4D.5 提示:设D 是E 关于AD 的对称点,则CF+EF=CF+DF ≥CD.当CD 最短即可,此时CD 为△ABC 的高.答案:D. 二、选择题(本大题6个小题,每小题4分,共24分)13.冬季流感病毒爆发的高峰期,流行性感冒病简称流感病毒,流感病毒可引起人、禽、猪、马、蝙蝠等多种动物感染和发病,是人流感、禽流感、猪流感、马流感等人与动物疫病的病原,“綦江少年,健康少年”,请綦江少年们注意保暖,多喝热水,开窗通风,防范流感病,以免生病,已知流感病毒的直径为0.00000009米,请将0.00000009米用科学记数法表示为 米.提示:根据科学记数法的意义.答案:9×10-8.14.因式分解:3m 2-6m= ;a 3+2a 2+a= .提示:根据因式分解的知识方法.答案:3m(m-2);a(a+1)2.15.若a 2+ka+16是一个完全平方式,则k 等于 .提示:根据完全平方式的意义.±8.16.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 .提示:利用时间关系列方程.答案:48x+4+48x−4=9.17.如图所示,小明从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,⋯A 点时,左转了 次,一共走了 米.提示:由题意知,最后形成一个正多边形.答案:11,120. 18.金秋十月,丹桂飘香,重庆市綦江区某中学举行了创新科技大赛,该校初二年级某班共有18人报名参加航海组、航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于5人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6939元,则其中购买无人机模型的费用是 .提示:设无人机组有x 人,则航海组有(2x-3)人,航空组有(21-3x)人.由题意得5≤21-3x ≤9.其整数解为x=4或x=5.当x=4时,航海有5人,费用为5×2×75=750元,航空有9人,费用为9×3×98=2646元,无人机费用为6939-750-2646=3543元.当x=5时,航海有7人,费用为7×2×75=1050元,航空有6人,费用为6×3×98=1764元,无人机费用为F E D C B A F E D C B A GF E D C BA 6939-1050-1764=4125元.因为无人机的费用必是5的倍数.所以3543应舍去.答案:4125元.三、解答题(本大题7个小题,每小题10分,共70分)19.计算:(1)(13)−1+(−2)3×(π−2)0+5;(2)(√5−√2)(√5+√2)+(√3−1)2. 提示:根据负整数指数幂,零指数幂,实数运算,乘法公式.答案:(1)0;(2)7−2√3.20.计算:(1)(x-2)(x+2)-4(2x-1);(2)(1+2a−1)÷a 2+2a+1a−1.提示:根据整式乘法,乘法公式,分式运算的知识.答案:(1)x 2-8x ;(2)1a+1.21.如图,△ABC 在平面直角坐标系中,点A 的坐标为(1)请在图中作出与△ABC 关于x 轴对称的△A /B /C /;(2)写出点A /、B /、C /的坐标;(3)求出△ABC 的面积.提示:根据轴对称作图的知识.答案: (1)如图所示:(2)A /(-3,-1)、B /(4,-2)、C /(3)△ABC 的面积 为1322.如图,AD=CB ,AB=CD ,BE ⊥AC ,垂足为E ,DF ⊥AC ,垂足为F. 求证:(1)△ABC ≌△CDA ;(2)BE=DF. 提示:(1)利用“SSS ”证;(2)证△ADF ≌△CBE. 23.有一个三位数,其百位数字为a ,十位数字为b ,个位数字为c.若这个三位数百位数字的4倍加上十位数字的2倍,再加上个位数字的和能被8整除,则称这个三位数是“航天数”.如:232,2×4+3×2+2=16=2×8,故232是“航天数”.(1)请你写出最小的三位的“航天数” ;并判断448是否是“航天数”;(2)请证明任何一个三位“航天数”能被8整除.提示:(1)百位,十位,个位应最小.答案:最小的三位“航天数”是104.因为4×4+4×2+8=32=4×8,所以448是“航天数”.(2)若三位数100a+10b+c 是“航天数”,则4a+2b+c 能被8整除.又100a+10b+c=96a+8b+c+4a+2b+c=8(12a+b)+(4a+2b+c). ∴三位数100a+10b+c 能被8整除.24.如图,在△ABC 中,∠A=60°,∠ABC 、∠ACB 的平分线分别交AC 、 AB 于点D 、E ,CE 、BD 相交于点F ,连接DE.(1)若AC=BC=7,求DE 的长; (2)求证:BE+CD=BC.提示:(1)若AC=BC=7,则△ABC 是等边三角形,D 、E 分别是AB 、AC 的中点.答案:DE=3.5.(2)在BC 上截取BG ,连接FG ,如图.易证△BFE ≌△BFG.注意由题设条件易得∠BFC=120°,所以∠BFE=∠CFD=60°,图3图2图1E D D D C C C B BB A A A E 图2DC B A E G 图3DC BA 再证△CFD ≌△CFG.25.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲、乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完工.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.提示:(1)设完成这项工程的规定时间为x 天,由题意得4(1x +1x+5)+x−4x+5=1.答案:x=20. 即完成这项工程的规定时间是20天.(2)方案一:所需工程款为20×2.1=42万元;方案二超过了规定时间;方案三:所需工程款为4×2.1+20×1.5=38.4万元.答案:选择方案三.四、解答题(本大题1个小题,共8分)26.请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1,如图1,在等腰直角三角形ABC 中,∠ACB=90°,BC=5,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作BC 边上的高DE ,则DE 与BC 的数量关系是 ,△BCD 的面积为 ;(2)探究2,如图2,在一般的Rt △ABC 中,∠ACB=90°,BC=(m+n)2-(m -n)2 (m>0,n>0),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,请用含m,n 的式子表示△BCD 的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC 中,AB=AC ,BC=a+b+c (a>0,b>0,c>0),将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,试探究用含a,b,c 的式子表示△BCD 的面积,要有探究过程.提示:(1)易得△ABC ≌△BDE ,答案:DE=BC ;△BCD 的面积为12.5;(2)过点D 作BC 边上的高DE ,如图,易证△ACB ≌△BED , BC=DE ,又BC=4mn.答案:△BCD 的面积为8m 2n 2.(3)作AG ⊥BC 于G ,过点D 作BC 边上的高DE ,如图,易证△AGB ≌△BED ,BG=DE ,又BC=a+b+c ,BG=12(a +b +c).答案:△BCD 的面积为14(a +b +c)2。

2020-2021学年陕西省西安市中考数学八模试卷(及答案解析)

2020-2021学年陕西省西安市中考数学八模试卷(及答案解析)

陕西省中考数学八模试卷一、选择题1.5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A.﹣3吨B.+3吨C.﹣5吨D.+5吨2.下面几个几何体,主视图是圆的是()A.B.C.D.3.下列计算中,不正确的是()A.a2•a5=a10B.a2﹣2ab+b2=(a﹣b)2C.﹣(a﹣b)=b﹣a D.3a3b2÷a2b2=3a4.如图,AB∥CD,AD=CD,∠1=70°30',则∠2的度数是()A.40°30' B.39°30' C.40°D.39°5.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=()A.πB.2πC.D.π6.若正比例函数y=(1﹣2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD 于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:18.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.9.如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为()A.16 B.20 C.18 D.2210.在平面直角坐标系中,二次函数图象交x轴于(﹣5,0)、(1,0)两点,将此二次函数图象向右平移m个单位,再向下平移n个单位后,发现新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,则m的值为()A.3 B.2 C.1 D.0二、填空题11.在四个实数,0,﹣1,中,最大的是.请从12,13两个小题中任选一个作答,若多选,则按第12题计分.12.正多边形的一个外角是72°,则这个多边形的内角和的度数是.13.等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为.(用科学计算器计算,结果精确到0.1°)14.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C 在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.15.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.三、解答题16.计算:•3tan60°++.17.先化简,再求值:﹣(1﹣),其中,x=﹣1.18.如图,请用尺规作出圆O的内接正方形(保留作图痕迹,不写作法)19.某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练后都进行了测训练后篮球定点投篮测试进行球赛进球统计表进球数(个)876543人数214782请你根据图表中信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为多少个?(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加蓝球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.20.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.21.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)22.如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤22a剩余部分a+1.1(1)某用户1月用水10立方米,共交水费23元,则a= 元/m3;(2)若该用户2月用水25立方米,则需交水费元;(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?23.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.24.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C 两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)判断△ADC的形状,并说明理由;(3)若点P是第四象限抛物线上的一点,是否存在一点P使以P、A、D、C为顶点的四边形面积最大?若存在,求点P的坐标及四边形的最大面积,若不存在,说明理由.26.问题探究:(1)如图①,△ABC为等腰三角形,AB=AC=a,∠BAC=120°,则△ABC的面积为(用含a的代数式表示)(2)如图②,△AOD与△BOC为两个等腰直角三角形,两个直角顶点O重合,OA=OB=OC=OD=a.若△AOD与△BOC不重合,连接AB,CD,求四边形ABCD面积最大值.问题解决:如图③,点O为某电视台所在位置,现要在距离电视台5km的地方修建四个电视信号中转站,分别记为A、B、C、D.若要使OB与OC夹角为150°,OA与OD夹角为90°(∠AOD与∠BOC不重合且点O、A、B、C、D在同一平面内),则符合题意的四个中转站所围成的四边形面积有无最大值?如果有,求出最大值,如果没有,请说明理由.参考答案与试题解析一、选择题1.5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A.﹣3吨B.+3吨C.﹣5吨D.+5吨【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵+3吨表示运入仓库的樱桃吨数,∴运出5吨樱桃表示为﹣5吨.故选C.2.下面几个几何体,主视图是圆的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别判断A,B,C,D的主视图,即可解答.【解答】解:A、主视图为正方形,故错误;B、主视图为圆,正确;C、主视图为三角形,故错误;D、主视图为长方形,故错误;故选:B.3.下列计算中,不正确的是()A.a2•a5=a10B.a2﹣2ab+b2=(a﹣b)2C.﹣(a﹣b)=b﹣a D.3a3b2÷a2b2=3a【考点】整式的除法;合并同类项;去括号与添括号;同底数幂的乘法.【分析】根据同底数幂的乘法、完全平方公式、单项式的除法进行计算即可.【解答】解:A、a2•a5=a7,不合题意,故A正确;B、a2﹣2ab+b2=(a﹣b)2,符合题意,故B错误;C、﹣(a﹣b)=b﹣a,符合题意,故C错误;D、3a3b2÷a2b2=3a,符合题意,故D错误;故选A.4.如图,AB∥CD,AD=CD,∠1=70°30',则∠2的度数是()A.40°30' B.39°30' C.40°D.39°【考点】等腰三角形的性质;平行线的性质.【分析】先根据平行线的性质求出∠ACD的度数,再由AC=CD得出∠CAD的度数,根据三角形内角和定理即可得出结论.【解答】解:∵AB∥CD,∠1=70°30',∴∠ACD=∠1=70°30'.∵AD=CD,∴∠CAD=∠ACD=7030'°,∴∠2=180°﹣∠ACD﹣∠CAD=180°﹣7030'°﹣70°30'=39°.故选D.5.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=()A.πB.2πC.D.π【考点】扇形面积的计算;勾股定理;垂径定理.【分析】求出CE=DE,OE=BE=1,得出S△BED=S△OEC,所以S阴影=S扇形BOC.【解答】解:如图,CD⊥AB,交AB于点E,∵AB是直径,∴CE=DE=CD=,又∵∠CDB=30°∴∠COE=60°,∴OE=1,OC=2,∴BE=1,∴S△BED=S△OEC,∴S阴影=S扇形BOC==.故选:D.6.若正比例函数y=(1﹣2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>【考点】正比例函数的性质.【分析】根据正比例函数的大小变化规律判断k的符号.【解答】解:根据题意,知:y随x的增大而减小,则k<0,即1﹣2m<0,m>.故选D.7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD 于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.8.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.【考点】关于原点对称的点的坐标;在数轴上表示不等式的解集.【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,∴,解得:a<﹣1,则a的取值范围在数轴上表示为:.故选:C.9.如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为()A.16 B.20 C.18 D.22【考点】平行四边形的判定与性质;勾股定理;三角形中位线定理.【分析】根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而不难求得其周长.【解答】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=16.故选:A.10.在平面直角坐标系中,二次函数图象交x轴于(﹣5,0)、(1,0)两点,将此二次函数图象向右平移m个单位,再向下平移n个单位后,发现新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,则m的值为()A.3 B.2 C.1 D.0【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】根据平移前后抛物线对称轴的变化即可得出答案.【解答】解:∵二次函数图象交x轴于(﹣5,0)、(1,0)两点,∴原二次函数的对称轴为=﹣2,∵新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,∴原二次函数的对称轴为x==1,∴原抛物线向右平移了3个单位,即m=3,故选:A.二、填空题11.在四个实数,0,﹣1,中,最大的是.【考点】实数大小比较.【分析】根据实数的大小比较法则比较即可.【解答】解:四个实数,0,﹣1,中,最大的是;故答案为:.请从12,13两个小题中任选一个作答,若多选,则按第12题计分.12.正多边形的一个外角是72°,则这个多边形的内角和的度数是540°.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:多边形的边数:360°÷72°=5,正多边形的内角和的度数是:(5﹣2)•180°=540°.故答案为:540°.13.等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为49.5°.(用科学计算器计算,结果精确到0.1°)【考点】计算器—三角函数;近似数和有效数字;等腰三角形的性质.【分析】首先画出图形,再利用cosB==,结合计算器求出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵腰和底的长分别是10和13,∴BD=,∴cosB===,∴∠B≈49.5°.故答案为:49.5°.14.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C 在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为 2 .【考点】反比例函数图象上点的坐标特征;解一元二次方程﹣因式分解法.【分析】先确定B点坐标(1,6),根据反比例函数图象上点的坐标特征得到k=6,则反比例函数解析式为y=,设AD=t,则OD=1+t,所以E点坐标为(1+t,t),再利用根据反比例函数图象上点的坐标特征得(1+t)•t=6,利用因式分解法可求出t的值.【解答】解:∵OA=1,OC=6,∴B点坐标为(1,6),∴k=1×6=6,∴反比例函数解析式为y=,设AD=t,则OD=1+t,∴E点坐标为(1+t,t),∴(1+t)•t=6,整理为t2+t﹣6=0,解得t1=﹣3(舍去),t2=2,∴正方形ADEF的边长为2.故答案为:2.15.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.【考点】相似三角形的判定与性质;垂线段最短;勾股定理;平行四边形的性质.【分析】以PA,PC为邻边作平行四边形PAQC,由平行四边形的性质可知O是AC 中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,然后根据△P′OC和△ABC相似,利用相似三角形的性质即可求出PQ的最小值.【解答】解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故答案为:.三、解答题16.计算:•3tan60°++.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣3×3+1+2=1﹣7.17.先化简,再求值:﹣(1﹣),其中,x=﹣1.【考点】分式的化简求值.【分析】先化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:﹣(1﹣)====,当x=﹣1时,原式===.18.如图,请用尺规作出圆O的内接正方形(保留作图痕迹,不写作法)【考点】作图—应用与设计作图;正多边形和圆.【分析】先作直径AC,再作AC的垂直平分线交⊙O于B、D,则四边形ABCD为圆O 的内接正方形【解答】解:如图,正方形ABCD为所作.19.某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练后都进行了测训练后篮球定点投篮测试进行球赛进球统计表进球数(个)876543人数214782请你根据图表中信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为多少个?(2)选择长跑训练的人数占全班人数的百分比是10% ,该班共有同学40 人;(3)根据测试资料,参加蓝球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.【考点】扇形统计图;统计表.【分析】(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解.【解答】解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人).训练后篮球定时定点投篮人均进球数==5(个);(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,则全班同学的人数为24÷60%=40(人),故答案是:10%,40;(3)设参加训练之前的人均进球数为x个,则x(1+25%)=5,解得x=4.即参加训练之前的人均进球数是4个.20.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】根据在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证△AED≌△ACD,然后利用等量代换即可求的结论.【解答】证明:∵AD平分∠EDC,∴∠ADE=∠ADC,在△AED和△ACD中,∵∴△AED≌△ACD(SAS),∴∠C=∠E,又∵∠E=∠B.∴∠C=∠B,∴AB=AC.21.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据已知和余弦的概念求出DF的长,得到CG的长,根据正切的概念求出AG的长,求和得到答案.【解答】解:∵cos∠DBF=,∴BF=60×0.85=51,FH=DE=9,∴EG=HC=110﹣51﹣9=50,∵tan∠AEG=,∴AG=50×2.48=124,∵sin∠DBF=,∴DF=60×0.53=31.8,∴CG=31.8,∴AC=AG+CG=124+31.8=155.8米.22.如表为某市居民每月用水收费标准,(单位:元/m3).用水量单价0<x≤22a剩余部分a+1.1(1)某用户1月用水10立方米,共交水费23元,则a= 2.3 元/m3;(2)若该用户2月用水25立方米,则需交水费60.8 元;(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?【考点】一元一次方程的应用.【分析】(1)由单价=总价÷数量就可以得出结论;(2)设该用户2月份水费=0<x≤22的水费+x大于22部分的水费,列出算式计算即可求解;(3)设该用户3月份实际用水m吨,由70%的水量的水费为71元=单价×数量建立方程求出其解即可.【解答】解:(1)a=23÷10=2.3(元/m3);(2)2.3×22+(2.3+1.1)×(25﹣22)=50.6+3.4×3=50.6+10.2=60.8(元).答:需交水费60.8元;(3)设该用户实际用水m立方米,由题意,得2.3×22+(2.3+1.1)×(70%m﹣22)=71,解得:m=.故该用户实际用水立方米.故答案为:2.3;.23.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到10 元购物券,至多可得到50 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.【考点】列表法与树状图法.【分析】(1)如果摸到0元和10元的时候,得到的购物券是最少,一共10元.如果摸到20元和30元的时候,得到的购物券最多,一共是50元;(2)列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.【解答】解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=;解法二(列表法):第二次0102030第一次0﹣﹣1020301010﹣﹣3040202030﹣﹣5030304050﹣﹣(以下过程同“解法一”)24.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.【考点】相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;垂径定理;切线的性质.【分析】(1)连接OD,只要证明∠EFD=∠EDF即可解决问题.(2)先求得EF=1,设DE=EF=x,则OF=x+1,在Rt△ODE中,根据勾股定理求得DE=4,OE=5,根据切线的性质由AG为⊙O的切线得∠GAE=90°,再证明Rt△EOD∽Rt△EGA,根据相似三角形对应边成比例即可求得.【解答】(1)证明:连接OD,∵OC=OD,∴∠C=∠ODC,∵OC⊥AB,∴∠COF=90°,∴∠OCD+∠CFO=90°,∵GE为⊙O的切线,∴∠ODC+∠EDF=90°,∵∠EFD=∠CFO,∴∠EFD=∠EDF,∴EF=ED.(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠EFD=∠EDF,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=OE2,∴32+x2=(x+1)2,解得x=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴=,即=,∴AG=6.25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C 两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)判断△ADC的形状,并说明理由;(3)若点P是第四象限抛物线上的一点,是否存在一点P使以P、A、D、C为顶点的四边形面积最大?若存在,求点P的坐标及四边形的最大面积,若不存在,说明理由.【考点】二次函数综合题.【分析】(1)根据经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),可以求得抛物线的解析式,进而得到顶点D的坐标;(2)根据(1)中的函数解析式可以求得点A、D、C的坐标,从而可以求得AD、AC、CD的长,然后根据勾股定理的逆定理即可判断△ADC的形状;(3)先判断是否存在,然后再根据题意和题目中的数据,利用分类讨论的数学思想进行解答即可.【解答】解:(1)∵经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,∴,得,∴抛物线的解析式为:y=x2﹣2x﹣6,∵y=x2﹣2x﹣6=,∴顶点D的坐标为(2,﹣8),即抛物线的函数关系式为y=x2﹣2x﹣6,顶点D的坐标为(2,﹣8);(2)△ACD的形状是直角三角形,理由:∵抛物线的解析式为y=x2﹣2x﹣6,∴当y=0时,0=x2﹣2x﹣6,解得,x1=﹣2,x2=6,∴点C的坐标为(6,0),又∵点A(0,﹣6),点D(2,﹣8),∴AC=,AD=,CD=,∵,∴△ACD是直角三角形,AC⊥AD,即△ADC的形状是直角三角形;(3)存在一点P使以P、A、D、C为顶点的四边形面积最大,如右图所示,当点P1在AD之间时,设P1的坐标为(a,a2﹣2a﹣6),∵AC⊥AD,AC=6,AD=2,CD=4,∴△ACD的面积是:,设过点A(0,﹣6),点D(2,﹣8)的直线解析式为y=kx+b,,得,∴过点A(0,﹣6),点D(2,﹣8)的直线解析式为y=﹣x﹣6,∴△AP1D的面积为:=||,∴=12+||,∵0<a<2,∴当a=1时,四边形面积取得最大值,此时四边形的面积是18.5,当a=1时,y=a2﹣2a﹣6=,即P1的坐标为(1,﹣7.5);当点P2在DC之间时,设P2的坐标为(m,m2﹣2m﹣6),∵AC⊥AD,AC=6,AD=2,CD=4,∴△ACD的面积是:,设过点C(6,0),点D(2,﹣8)的直线解析式为y=cx+d,,得,∴过点C(6,0),点D(2,﹣8)的直线解析式为y=2x﹣12,∴△CP2D的面积为:=2||,∴=12+2||,∵2<m<6,∴当m=4时,四边形的面积最大,此时四边形的面积是16,当m=4时,y=m2﹣2m﹣6=﹣6,即点P2的坐标为(4,﹣6);由上可得,点P的坐标为(1,﹣7.5),四边形的最大面积是18.5.26.问题探究:(1)如图①,△ABC为等腰三角形,AB=AC=a,∠BAC=120°,则△ABC的面积为(用含a的代数式表示)(2)如图②,△AOD与△BOC为两个等腰直角三角形,两个直角顶点O重合,OA=OB=OC=OD=a.若△AOD与△BOC不重合,连接AB,CD,求四边形ABCD面积最大值.问题解决:如图③,点O为某电视台所在位置,现要在距离电视台5km的地方修建四个电视信号中转站,分别记为A、B、C、D.若要使OB与OC夹角为150°,OA与OD夹角为90°(∠AOD与∠BOC不重合且点O、A、B、C、D在同一平面内),则符合题意的四个中转站所围成的四边形面积有无最大值?如果有,求出最大值,如果没有,请说明理由.【考点】三角形综合题;等腰三角形的性质;等边三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】问题探究:(1)根据等腰三角形的性质,求得底边上的高,进而得到△ABC 的面积;(2)过点C作CE⊥OD于E,则CE≤CO,当点E与点O重合时,CE=CO=a,此时∠COD=90°,即△COD是等腰直角三角形,进而得到四边形ABCD是正方形,再根据OA=OB=OC=OD=a,求得四边形ABCD的面积即可;问题解决:将△COD绕着点O按顺时针方向旋转150°,得到△BOE,过A作AG⊥OB 于G,过E作EF⊥OB于F,连接AE交OB于H,则AG≤AH,EF≤EH,当点G、点F 都与点H重合时,AG+EF=AE(最大),而OB长不变,故四边形ABEO的面积最大,此时OB⊥AE,进而得出△AOB和△COD都是等边三角形,最后根据△AOB和△COD 的面积都为:×5×=,△AOD的面积为:×5×5=,△BOC的面积为:×5×=,求得四边形ABCD的面积的最大值.【解答】解:问题探究:(1)如图①,过A作AD⊥BC于D,则Rt△ABD中,AD=AB=a,BD=a,∴BC=a,∴△ABC的面积=BC×AD=×a×a=,故答案为:;(2)如图②,过点C作CE⊥OD于E,则CE≤CO,当点E与点O重合时,CE=CO=a,此时∠COD=90°,即△COD是等腰直角三角形,∴∠AOB=360°﹣3×90°=90°,∴△AOB是等腰直角三角形,∴四边形ABCD是正方形,∵OA=OB=OC=OD=a,∴AB=BC=CD=AD=a,∴四边形ABCD面积最大值为:(a)2=2a2;问题解决:四边形ABCD面积有最大值.如图所示,将△COD绕着点O按顺时针方向旋转150°,得到△BOE,∵OB与OC夹角为150°,OA与OD夹角为90°,∴∠AOB+∠COD=120°,∴∠AOB+∠BOE=120°,即∠AOE=120°,过A作AG⊥OB于G,过E作EF⊥OB于F,连接AE交OB于H,则AG≤AH,EF≤EH,∴当点G、点F都与点H重合时,AG+EF=AE(最大),而OB长不变,故四边形ABEO 的面积最大,此时,OB⊥AE,又∵OA=OE,∴等腰三角形AOE中,OH平分∠AOE,∴∠AOB=60°,∠COD=60°,又∵OA=OB=OC=OD=5,∴△AOB和△COD都是等边三角形,∵△AOB和△COD的面积都为:×5×=,△AOD的面积为:×5×5=,△BOC的面积为:×5×=,∴四边形ABCD的面积=×2++=+.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三年级第八次模拟考试数学(理科)试题
命题人:唐颖鸿 审题人:韦如成
一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。


1.复数321
i i -(i 为虚数单位)的虚部是( )
A .15i
B .
15 C .1
5
i - D .15- 2.已知0>a 且1≠a ,则0log >b a 是0)1)(1(>--b a 的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
3. 已知,sin 3cos R ααα∈+=tan 2α的值是( ) A .3-
4 B .2 C .4
-3
D .43
4.己知某几何体的三视图如图所示,则该几何体的体积
是( )
A π+
B 2π+
C .2π
D .π
5.函数)sin()(ϕω+=x x f )2
,0(π
ϕω<
>的最小正周期为π,若其图象向右平移
3
π个单位后关于y 轴对称,则)(x f y =对应的解析式可为( )
A .)6
2sin(π
-
=x y B .)6
2cos(π
+
=x y
C .)32cos(π-=x y
D .)6
72sin(π
+
=x y
6.设向量(cos ,sin )a αα=,(cos ,sin )b ββ=,
其中0αβπ<<<,若22a b a b +=-,
则βα-等于( )
A .
2π B. 4π C. 2π- D.4
π- 7.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备着舰.如
果甲乙两机必相邻着舰,而丙丁不能相邻着舰,那么不同的着舰方法有( )种 A .12
B .18
C .24
D .48
8.等比数列{n a }的各项均为正数,且564718a a a a +=,则3132
310
l o g l o g l o g
a a a +
+⋅⋅⋅+
= ( ) A .12
B .10
C .8
D .2+log 3 5
9.x ,y 满足约束条件20
220220x y x y x y +-≤⎧⎪
--≤⎨⎪-+≥⎩
,若z y ax =-取得最大值的最优解不唯一,则实
数a 的值为( ) A .
12或1- B .2或1
2
C .2或1
D .2或1- 10.已知A ,B ,C ,D 是同一球面上的四个点,其中△ABC 是正三角形,AD⊥平面ABC ,AD = 2AB = 6,则该球的表面积为( )
A .16π
B .24π
C .
π D .48π
11.己知抛物线2
2(0)y px p =>的焦点F 恰好是双曲线22
221(0,0)x y a b a b
-=>>的右焦
点,且两条曲线的交点的连线过点F ,则该双曲线的离心率为( ) A
B .2
C
D
1
12. 定义域为R 的偶函数)(x f 满足对于任意的x R ∈,有)1()()2(f x f x f -=+,且当
]3,2[∈x 时,18122)(2-+-=x x x f ,若函数)1|(|log )(+-=x x f y a 在),0(+∞上至少有
三个零点,则a 的取值范围是( ) A .)22,
0( B .)33,0( C . )55,0( D .)
66
,0(
二.填空题(本大题共4小题,每小题5分,共20分.将答案填写在题中的横
线上.)
13.己知0
(sin cos )a t t dt π
=
+⎰
,则(1x ax
-
)6
的展开式中的常数项为 .
14.如图所示,按照程序框图运行的结果是 .
15.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为________.
16. 已知
()0,x ∈+∞,观察下列式子:
221442,322x x x x x x x
+
≥+=++≥,类比有()1n a
x n n N x
*+
≥+∈, 则a 的值为 .
三.解答题:(本题共6小题,共70分。

解答应写出文字说明、证明过程或演
(1)求)(x f 的最小正周期与单调递减区间;
(2)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知2)(=A f ,1=b ,
△ABC 的面积为
2
3
,求C B c b sin sin ++的值.
18.(本小题满分12分)
为培养学生良好的学习习惯,学校对高一年级中的110名学生进行了有关作业量的调查,统计数据如下表:
(1)请补充完成22⨯列联表,并根据此表判断:喜欢玩游戏与作业量是否有关? (2)若从喜欢玩游戏的60名学生中利用分层抽样的方法抽取6名,再从这6名学生中任
取4名,求这4名学生中“认为作业多”的人数X 的分布列与数学期望。

附:2
2
()n ad bc K -=
19.(本题满分12分)
如图,三角形ABC 和梯形ACEF 所在的平面互相垂直,
AB BC ⊥,G 是线段BF 上一点,
2AB AF BC ===.
(1)当GB GF =时,求证:EG ‖ABC 平面; (2)求二面角E BF A --的正弦值;
(3)是否存在点G ,满足BF AEG ⊥平面?并说明理由. 20.(本小题满分12分)
已知椭圆C 的方程为22
221(0),x y a b a b
+=>>左、右焦点分别为F 1、F 2,焦距为4,
点M 是椭圆C 上一点,满足1
1260,F MF F MF S ∆∠=︒=且 (1)求椭圆C 的方程;
(2)过点P (0,2)分别作直线PA ,PB 交椭圆C 于A ,B 两点,设直线PA ,PB 的斜
率分别为1k 、2k ,124k k +=且,求证:直线AB 过定点,并求出直线AB 的斜率k 的取值范围。

21.(本小题满分12分)
设函数2
()ln f x x m x =-, 2
()h x x x a =-+.
(1)当0a =时,()()f x h x ≥在(1,)+∞上恒成立,求实数m 的取值范围;
(2)当2m =时,若函数()()()k x f x h x =-在[]1,3上恰有两个不同零点,求实数a 的
取值范围;
(3)是否存在实数m ,使函数()f x 和函数()h x 在公共定义域上具有相同的单调性?
若存在,求出m 的值,若不存在,说明理由.
22.(本小题满分10分)选修4—1:几何证明选讲
如图, 圆o
和圆o '相交于A ,B 两点,过A 作两圆的切
线分别交两圆于,C D 两点,连结DB 并延长交圆o
于点E .
证明:(1)AC BD AD AB ⋅=⋅;
(2)=AC AE .
23.(本小题满分10分)选修4—4:坐标系与参数方程
在平面直角坐标系xOy 中,椭圆C 方程为5cos (3sin x y ϕ
ϕϕ
=⎧⎨
=⎩为参数)。

(1)求过椭圆的右焦点,且与直线42(3x t
t y t
=-⎧⎨
=-⎩为参数)平行的直线l 的普通方程。

(2)求椭圆C 的内接矩形ABCD 面积的最大值。

24.(本小题满分10分)选修4—5:不等式选讲 (1)已知函数()|2||5|f x x x =---,求()f x 的值域;
(2)已知,,a b c R +
∈,1a b c ++=.求2
2
2
(149a b c +++)的最小值。

相关文档
最新文档