高一物理追击和相遇问题

合集下载

高一物理相遇及追及问题

高一物理相遇及追及问题
t′=v0/a=15s
显然,甲车停止后乙再追上甲。
甲车刹车的位移
s甲=v02/2a=152/2=112.5m
乙车的总位移
s乙=s甲+32=144.5m t=s乙/v乙=144.5/9=16.06s
第五页,共18页。
例3、甲乙两车同时同向从同一地点出发,
甲车以v1=16m/s的初速度,a1=-2m/s2的 加速度作匀减速直线运动,乙车以v2=4m /s的速度,a2=1m/s2的加速度作匀加 速直线运动,求两车再次相遇前两车相 距最大距离和再次相遇时两车运动的时 间?
at′=6 t′=6s
在这段时间里,人、车的位移分别为: s人=v人t=6×6=36m s车=at′2/2=1×62/2=18m
△s=s0+s车-s人=25+18-36=7m
第三页,共18页。
例2、甲车在前以15m/s的速度匀速行驶, 乙车在后以9m/s的速度行驶。当两车相距 32m时,甲车开始刹车,加速度大小为
第十七页,共18页。
求解追击问题的常用方法
1、通过运动过程的分析,找到隐含条件,从而顺利列方程求解,例 如:
⑴、匀减速物体追赶同向匀速物体时,能追上或恰好追不上的 临界条件: 即将靠近时,追赶者速度等于被追赶者速度(即当追赶者速度大 于被追赶者速度时,能追上;当追赶者速度小于被追赶者速度时, 追不上) ⑵、初速为零的匀加速物体追赶同向匀速物体时,追上前两者具 有最大距离的条件:追赶者的速度等于被追赶者的速度。
当t=-b/2a时,即t=4s时,两车相距最远
△s=12×4-3×42/2=24m
当两车相遇时,△s=0,即12t-3t2/2=0

t=8s 或t=0(舍去)
第八页,共18页。

高一物理追及相遇问题

高一物理追及相遇问题

高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。

解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。

一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。

解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。

定义变量设被追物体为A,追赶物体为B。

设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。

建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。

分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。

二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。

解决相遇问题的关键是找出两个物体之间的位移和速度关系。

定义变量设相遇的两个物体分别为A、B。

设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。

建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。

分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。

如果A、B不能相遇,还可以求出它们之间的距离。

教师高一物理追击与相遇问题

教师高一物理追击与相遇问题

高一物理 追击与相遇问题1.相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

2. 解相遇和追击问题的关键画出物体运动的情景图,理清三大关系(1)时间关系 :0t t t B A ±=(2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。

它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

3. 相遇和追击问题剖析:(一)追及问题1、追及问题中两者速度大小与两者距离变化的关系。

甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离 。

若甲的速度小于乙的速度,则两者之间的距离 。

若开始甲的速度小于乙的速度过一段时间后两者速度相等,则两者之间的距离 (填最大或最小)。

2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴ 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度 ,即v v =乙甲。

⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。

判断方法是:假定速度相等,从位置关系判断。

①当甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。

②当甲乙速度相等时,甲的位置在乙的前方,则追上,此情况还存在乙再次追上甲。

③当甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。

解决问题时要注意二者是否同时出发,是否从同一地点出发。

⑶ 匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。

3、分析追及问题的注意点:⑴ 要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。

两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。

⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

高一物理追及相遇问题

高一物理追及相遇问题
A B
追及及相遇问题
• 3.若两者位移相等时追者的速度仍大于被 3.若两者位移相等时追者的速度仍大于被 追者的速度, 追者的速度,则被追者还有一次追上追者 的机会,这个过程当中速度相等 速度相等时两者间 的机会,这个过程当中速度相等时两者间 距离有一个最大 最大值 距离有一个最大值.
A B
追及及相遇问题
追及及相遇问题解题步骤
• 1.做出物理情境草图,由情境判断类型, 1.做出物理情境草图,由情境判断类型, 做出物理情境草图 确定解题思路. 确定解题思路. • 2.根据题中信息,建立相关的物理量关系, 2.根据题中信息 建立相关的物理量关系, 根据题中信息, 列方程进行求解. 列方程进行求解. • 3.解题过程中,思路要清晰,考虑问题要 3.解题过程中 思路要清晰, 解题过程中, 全面,避免解题的片面性. 全面,避免解题的片面性.
追及及相遇问题
• 1.当两者的速度相等时,若追者位移大小 1.当两者的速度相等时, 当两者的速度相等时 仍小于二者之间的距离时 则追不上, 二者之间的距离时, 仍小于二者之间的距离时,则追不上,此时 两者之间距离有最小值. 两者之间距离有最小值.
A B
• 2.若两者恰好追及且两者速度相等时,也 2.若两者恰好追及且两者速度相等时 若两者恰好追及且两者速度相等 是两者避免碰撞的临界条件
x0 x2
x1
基础练习
• 2.有两辆同样的列车各以72km/h的速度在同 2.有两辆同样的列车各以72km/h的速度在同 有两辆同样的列车各以72km/h 一条铁路是面对面向对方驶去, 一条铁路是面对面向对方驶去,已知这种列 车刹车时能产生的最大加速度为0.4m/s 车刹车时能产生的最大加速度为0.4m/s2,为 避免列车相撞, 避免列车相撞,双方至少要在两列车相距多 远时同时刹车? 远时同时刹车? • 解题思路:两列车各自刹车至停止所走过的 解题思路:两列车各自刹车至停止所走过 刹车至停止所走过的 位移之和即为题中所求. 位移之和即为题中所求.

高一物理专题:追及与相遇问题

高一物理专题:追及与相遇问题

专题追及与相遇问题一、追及问题1、追及与相遇的实质两物体能否在同一时刻到达同一位置。

2、两大关系:时间关系、位移关系。

3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

4、三种常见情形种:⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上。

a、追上前,当两者速度相等时有最大距离;b、当两者位移相等时,即后者追上前者。

⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。

判断方法是:假定速度相等,从位置关系判断。

解决问题时要注意二者是否同时出发,是否从同一地点出发。

a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最小距离;b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件;c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个值都有意义。

即两者位移相等时,追者速度仍大于被追者的速度,被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。

⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。

匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解6、注意:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。

两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。

高一物理追击与相遇问题

高一物理追击与相遇问题

中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三
角形的面积之差最大。
v/ms-1
v-t图像的斜率表示物体的加速度
6 tan 3
t0
t0 2s
当t=2s时两车的距离最大
6
o α t0
汽车
自 行
车 t/s
xm
1 2 6m 6m 2
动态分析随着时间的推移,矩 形面积(自行车的位移)与三角形面
运动。要使两车不相撞,a应满足什么条件?
方法一:公式法 两车恰不相撞的条件是两车速度相同时相遇。
由A、B 速度关系: v1 at v2
由A、B位移关系:v1t
1 2
at 2
v2t
x0
a (v1 v2 )2 (20 10)2 m/s2 0.5m/s2
2x0
2 100
则a 0.5m / s2
第一章 匀变速直线运动
追击和相遇问题
一、几种典型追击问题
v


甲的初速度大于乙的速度 o
t
t0
甲一定能追上乙,v甲=v乙的时刻为甲、乙有
最大距离的时刻。
例1:一辆汽车在十字路口等候绿灯,当绿灯亮时汽 车以3m/s2的加速度开始加速行驶,恰在这时一辆自 行车以6m/s的速度匀速驶来,从后边超过汽车。试 求:汽车从路口开动后,在追上自行车之前经过多长 时间两车相距最远?此时距离是多少?
vt2 v02 2ax0
a vt2 v02 0 102 m / s2 0.5m / s2 2x0 2100
a 0.5m / s2
以B为参照物,公式中的各个量都应是相对于B的物理量. 注意物理量的正负号。
方法四:二次
v2t x0

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。

高一物理必修1 追击相遇问题

高一物理必修1 追击相遇问题

追及 相遇 问题反应时间:人从发现情况到采取相应行动经过的时间叫反应时间t 反。

反应距离:在反应时间内汽车保持原驾驶速度(相当于匀速)行驶所通过的距离s 1=v 0反刹车距离:制动刹车后开始做匀减速直线运动到汽车完全停止运动所通过的距离 停车距离:从驾驶员发现情况到汽车完全停下来的素所通过的距离.即 s 停=s 1+s 2安全距离:应该大于一定情况下的停车距离.即s 安>s 停两者速度速度大小与距离的关系:在两个物体的追及过程中,当追者的速度小于被追者的速度时,两者的距离_________;在两个物体的追及过程中,当追者的速度大于被追者的速度时,两者的距离_________;由此可知,追和被追的两者的_________常是能追上、追不上、两者之间的距离有极值的临界条,是最大值还是最小值,视实际情况而定。

知识点三:相遇问题相遇的定义:同向运动的两物体追及即相遇。

相向运动的两物体,当各自发生的_______大小之和等于开始时两物体的距离及相遇。

相遇问题的若干关系:相遇问题的主要条件是两物体在相遇处的位置相同。

1:列出两物体的位移方程,注意两个物体运动时间之间的关系。

2:利用两物体相遇时必处在同一位置,寻找两物体位移间的关系。

3:寻找问题中隐含的临界条件。

4:解析法、图像法和相对运动法是常用的方法。

例:1. 在经过某一个红绿灯时,一辆汽车以20m/s 的速度做匀速直线运动,同时停在旁边的一交警立即追赶,以2 m/s 2做匀加速直线运动,问:(1)交警和闯红灯者什么经过多长时候距离最远? (2)交警和闯红灯者的最远距离是多少?2. 在同一直线上同方向运动的A 、B 两辆汽车,相距s=7m ,A 正以v A =4m/s 的速度向右做匀速直线运动,而B此时速度v B =10m/s ,并关闭油门,以2m/s 2的加速度大小做匀减速运动。

在追上之前A 、B 两者之间的最大距离是多少?知识点二:距离问题知识点一:概念辨析022o v s vt t +==⨯3.在经过某一个红绿灯时,一辆汽车以20m/s的速度做匀速直线运动,同时停在旁边的一交警立即追赶,以2 m/s2做匀加速直线运动,问:经过多长时间交警能追上闯红灯者?4.假设一辆轿车以20 m/s的速度行驶,在前50m处有辆客车以速度30 m/s做匀加速直线运动,如果轿车的加速度为1m/s2,则,请问,轿车经过多长时间追上客车?5.甲、乙两车从同一地点出发同向运动,其v-t图像如图所示.试计算:(1)从乙车开始运动多少时间后两车相遇?(2)相遇处距出发点多远?(3)相遇前两车的最大距离是多少?6.甲、乙两车相距10m,同时同向沿同一直线开始运动,甲在前面做初速度为零、加速度为2m/s2的匀加速直线运动,乙在后面做初速度为10m/s、加速度为1m/s2的匀加速直线运动,求甲乙两车可以相遇多少次?7.一个转弯路口,一辆轿车以15m/s行驶,突然发现前面20m远处有一辆卡车抛锚了停在前面,轿车司机立马开始刹车,假设轿车司机的反应时间为0.5s,问,要保证两车不相撞,轿车的加速度大小至少为多少?8.超载和超速是造成交通事故的隐患之一,有一辆执勤的警车停在公路边,突然发现从她旁边以15m/s的速度匀速行驶的汽车严重超载,他决定前去追赶,以防意外发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

速度小 的加速 追速度 大 的
当两者速度相等时有最大距离 若两者位移相等,则追上。
例1.甲车以10米/秒,乙车以4米/秒的速率在同一 直车道中同向前进,若甲车驾驶员在乙车后方距 离d处发现乙车,立即踩刹车使其车获得-2米/秒2 的加速度,为使两车不致相撞,d的值至少应为多 少?
例2、甲、乙两汽车沿同一平直公路同向匀速行驶,甲车 在前,乙车在后,它们行驶的速度均为16m/s。已知甲车 紧急刹车时加速度a1=3m/s2,乙车紧急刹车时加速度 a2=4m/s2,乙车司机的反应时间为0.5s(即乙车司机看到甲 车刹车后0.5s才开始刹车),求为保证两车在紧急刹车过程 中不相撞,甲、乙两车行驶过程中至少应保持多大距离? (为保证两车不相撞,行驶时两车前后间距至少为1.5m。)
①若甲在乙前,则追上,并相遇两次 ②若甲乙在同一处,则甲恰能追上乙
③若甲在乙后面,则甲追不上乙,此 时是相距最近的时候
情况同上 若涉及刹车问题,要先 求停车时间,以作判别!
(2)相遇 ①同向运动的两物体的追击即相遇 ②相向运动的物体,当各自位移大小之和等于开 始时两物体的距离,即相遇 (3)相撞 两物体“恰相撞”或“恰不相撞”的临界条件: 两物体在同一位置时,速度恰相同 若后面的速度大于前面的速度,则相撞。 3、解题方法
例3.羚羊从静止开始奔跑,经过50m的距离能加速到 最大速度25m/s,并能维持一段较长的时间。猎豹从静 止开始奔跑,经过60m的距离能加速到最大速度30m/s, 以后只能维持这个速度4.0s。设猎豹距离羚羊x m开始发 起攻击,羚羊则在猎豹开始攻击后1.0s才开始奔跑,假定 羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一 直线运动。求: (1)猎豹要在最大速度减小前追到羚羊,x值应在什 么范围内? (2)猎豹要在其加速阶段追上羚羊,x值应在什么 范围内?
一、解题思路 讨论追击、相遇的问题,其实质就是分析讨论两物体在 相同时间内能否到达相同的空间位置的问题。 1、两个关系:时间关系和位移关系 2、一个条件:两者速度相等 两者速度相等,往往是物体间能否追上,或两者距离最 大、最小的临界条件,是分析判断的切入点。
(1)追击
甲一定能追上乙,v甲=v乙的 时刻为甲、乙有最大距离的时刻 判断v甲=v乙的时刻甲乙的位 置情况
(1)画清行程草图,找出两物体间的位移关系 (2)仔细审题,挖掘临界条件,联立方程 (3)利用二次函数求极值、图像法、相对运动知识求解
二、例题分析
例1:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以 3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的 速度匀速驶来,从后边超过汽车。试求:汽车从路口开动后, 在追上自行车之前经过多长时间两车相距最远?此时距离是 多少?
2
则a 0.5m / s 2
方法四:相对运动法 以B车为参照物, A车的初速度为v0=10m/s,以加 速度大小a减速,行驶x=100m后“停下”,末速度为 vt=0 2 2
vt v0 2ax0
2 t 2 0 2
v v 0 10 2 2 a m / s 0.5m / s 2 x0 2 100
设经过时间t汽车和自 行车之间的距离Δx,则
x汽
△x
1 2 3 2 x v自t at 6t t 2 2
当t 6 3 2 ( ) 2 2s时
x自
xm
62 3 4 ( ) 2
6m
那么,汽车经过多少时间能追上自行车?此时汽车的速度是多 大?汽车运动的位移又是多大?
at 10t 100 0 2 1 4 a 100 (10) 2 其图像(抛物线)的顶点纵坐 2 0 标必为正值,故有 1 4 a 2
代入数据得
则a 0.5m / s 2
1 2 1 2 at 10t 100 0 或列方程 v1t at v2t x0 代入数据得 2 2 1 100 4 a 100 0 ∵不相撞 ∴△<0
则a 0.5m / s
2
以B为参照物,公式中的各个量都应是相对于B的 物理量.注意物理量的正负号.
例3:某人骑自行车,v1=4m/s,某时刻在他前面7m 处有一辆以v2=10m/s行驶的汽车开始关闭发动机, a=2m/s2,问此人多长时间追上汽车 ( C ) A、6s B、7s C、8s D、9s 注意“刹车”运动的单向性!
x汽
△x
x自
方法一:公式法
当汽车的速度与自行车的速度 相等时,两车之间的距离最大。设 经时间t两车之间的距离最大。则
x汽
△x
v汽 at v自
v自
1 xm x自 x汽 v自t at 6 2m 3 22 m 6m 2 2
2
6 t s 2s a 3 1
方法一:公式法 两车恰不相撞的条件是两车速度相同时相遇。 由A、B 速度关系: v1
1 2 由A、B位移关系: v1t at v2t x0 2
2 2
at v2
(v1 v2 ) (20 10) a m/s 2 0.5m/s 2 2 x0 2 100
则a 0.5m / s
2
方法二:图象法 v/ms-1
1 (20 10)t0 100 2
20 10
A
t0 20 s
B
t0
o
t/s
20 10 a 0.5 20
则a 0.5m / s
2
方法三:二次函数极值法
1 2 若两车不相撞,其位移关系应为 v1t at v2t x0 2 1 2
3 2 T 4s v汽 aT 12 m / s x 6t t 0 2 1 2 s汽 aT =24 m 2
方法四:相对运动法
选自行车为参照物,则从开始运动到两车相距最远这段过程中, 以汽车相对地面的运动方向为正方向,汽车相对此参照物的各个 物理量的分别为:v0=-6m/s,a=3m/s2,vt=0
v/ms
V-t图像的斜率表示物体的加速度
汽车
6 tan 3 t0
t0 2s
6
当t=2s时两车的距离最大
o
α
自 行 车
t0
t/s
1 xm 2 6m 6m 2
动态分析随着时间的推移,矩 形面积(自行车的位移)与三角形面 积(汽车的位移)的差的变化规律
方法三:二次函数极值法
问:xm=-6m中负号表示什么意思?
表示汽车相对于自行车是向后运动的,其相对于自行车 的位移为向后6m.
例2:A火车以v1=20m/s速度匀速行驶,司机发现前方 同轨道上相距100m处有另一列火车B正以v2=10m/s速 度匀速行驶,A车立即做加速度大小为a的匀减速直线 运动。要使两车不相撞,a应满足什么条件?
一、问题的提出: 两个物体在同一直线上运动,往往涉及追击、 相遇或避免碰撞问题。
解答此类问题的关键条件是: 两物体能否同时到达空间某位置。 二、基本思路: 1、分别对两物体研究; 2、画出运动过程的示意图; 3、列出方程; 4、找出时间关系、速度关系、位移关系。 5、解出结果,必要时进行讨论。
三、追击问题: 追和被追的两物体的速度相等是关键。
x自
那么,汽车经过多少时间能追上自行车?此时汽车的速度 是多大?汽车运动的位移又是多大?
v汽 aT 12 m / s 2v自 1 2 v自T aT t 4s 1 2 2 a s汽 aT =24 m
2
方法二:图象法
解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于 其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其 图线与时间轴围成的三角形的面积。两车之间的距离则等于图 中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三 角形的面积之差最大。 -1
例4:两辆完全相同的汽车,沿水平直路一前一后 匀速行驶,速度相同,若前车突然以恒定加速度刹 车,在它刚停止时,后车以前车刹车时的加速度开 始刹车,已知前车在刹车过程中行驶距离S,在上 述过程中要使两车不相撞,则两车在匀速运动时, 保持的距离至少应为: B A. S B. 2S C. 3S D. 4S
大于31.875m小于等于55m、小于等于31.875m
例4.甲、乙两车同时从同一地点出发,向同一 方向沿直线运动中,甲以10m/s的速度匀速行驶, 乙以2m/s2的加速度由静止启动,求: (1)经多长时间乙车追上甲车?此时甲、乙两车 速度有何关系? (2)追上前经多长时间两者相距最远?此时二者 的速度有何关系?
对汽车由公式
vt v0 0 (6) t s 2s a 3
vt v0 at
v v 2as
2 t 2 0
2 vt2 v0 0 (6) 2 s m 6m 2a 23
以自行车为 参照物,公式中号.
速度大 当速度相等时,若追者位移仍小于被追击者位 的减速 移,则永远追不上,此时两者间有最小距离。 追速度 当两者位移相等时,且两者速度相等时,则恰 小 的 能追上,也是两者避免碰撞的临界条件。 若两者位移相等时,追者速度仍大于被追者的 速度,则被追击者还有一次追上的机会,其间 速度相等时两者距离有一个较大值。
相关文档
最新文档