04一元函数微分学的应用

合集下载

一元函数微分学及其应用

一元函数微分学及其应用

下面的关键是求出dy=A x ∆中的A.若函数在一点0x 处可微时,则有(x)(x),y dy A x οο∆=+∆=∆+∆(x)(x),y A x A x x x xοο∆∆∆∆=+=+∆∆∆∆000(x )(x )l i m l i m l i m .x x x y A A A x x x οο∆→∆→∆→∆∆∆⎡⎤=+=+=⎢⎥∆∆∆⎣⎦ 即 '0(x ).A f =反之,若()f x 在0x 处可导,有'00l i m (x ),x y f x∆→∆=∆ 由函数极限与无穷小的关系可得:'0(x ),y f xα∆=+∆其中α是当0x ∆→时的无穷小,所以 因为(x),x αο∆=∆而(),0f x 与x ∆无关,由微分定义可知,函数在0x 处可微,且(),0.f x A = 定理 ()y f x =在0x 处可微的充分必要条件是函数()y fx =在0x 处可导,且()f x 在可 导点0x 处的微分为,(x).dy f x =∆ (2)若()y f x =在区间I 内每一点处都可微,称()y f x =在I 内可微,其微分为,(x).dy f dx = 当(x)f x =时,(x)(x),df dx x x ==∆=∆所以.dx x =∆因此,可以定义自变量x 的微分dx 为其增量x ∆,即.dx x =∆这样便有,(x)dy f dx =或,(x),dy f dx= 可见,导数就是函数的微分dy 与自变量的微分dx 之商,因此,导数也成为“微商”. 2.4.2 微分的几何意义如图2—7所示,设点00(x ,y )M 是曲线y (x)f =上一点,当自变量在0x 处有微小增量x ∆时,得到曲线上另一点00(x ,y ),N x y +∆+∆其中MQ ,x =∆QN =过点M 作曲线的切线MT,它的倾角为α,则QP='0tan (x ),MQ f x α=∆即.dy QP =所以,当自变量有改变量x ∆时,y ∆是曲线y=(x)f 上的对应点的纵坐标的增量,dy 则是曲线的切线上对应点的纵坐标的增量.当||x ∆很小的时候,0.y dy x∆-→∆因此在点M 邻近,可以用切线段来近高等数学 62似代替曲线段.2.4.3 微分公式和法则由可导与可微之间的关系'dy (x)dx,f =参照2.2.4中的公式立即可得微分公式和微分 运算法则.下面将函数和、差、商的微分法则和复合函数的微分法则列出来:1) 函数和、差、积、商的求导法则,由函数的和、差、积、商的求导法则,可推得相应的微分法则.设函数u u(x)=、v v(x)=都可导,则:①d(u v)du dv;±=± ②d(Cu)Cdu =(C 是常数);③(uv)udv vdu;d =+ ④2d()(v 0).u vdu udv v v -=≠ 2) 复合函数的微分法则设y (u),f =u (x)ϕ=都是可导函数,则复合函数[(x)]y f ϕ=的微分应为'''dy {f[(x)]}()dx (u)(x)dx,dy du dx f du dxϕϕ=== 因为'(x)dx du ϕ=,上式可写成'dy (u)f du = (2)(3)式说明,无论函数(u)y f =中的u 是自变量还是中间变量,它的微分表达形式都是dy='(u)f du ,这称作微分形式的不变性.例1 求函数ln tan 5x y =的微分.解:方法一: ln tan 'ln tan '(5)5ln5(lntanx)x x dy dx dx ==2ln tan ln tan sec ln 55ln 55.tan sin cos x x x dx dx x x x== 方法二:由微分形式不变性,可得ln tan ln tan 15ln 5(lntanx)5ln 5(tanx)tan x x dy d d x ==ln tan 2ln tan ln 5ln 55sec 5tan sin cos x xxdx dx x x x==2. 4. 4 利用微分进行近似计算对可导函数(x),f 当自变量在x 处产生微小该变量x ∆,对应的y 有改变,y ∆由微分与倒数的关系可知,'(x)x,y dy f ∆≈=∆即'(x)x,y f ∆≈∆第2章 一元函数微分学及其应用 63或 '(x x)(x)(x)x.f f f +∆≈+∆(4)式和(5)式称为微分近似计算公式.特别地,当x=0时,在(5)式中用x 代替x,∆得当x 较小时,利用(6)式可得几个函数的近似计算公式:①sinx ;x ≈ ②tan ;x x ≈ ③arcsin ;x x ≈ ④arctan ;x x ≈⑤1;x e x ≈+ ⑥ln(x 1);x +≈ ⑦ 1.x n≈+ 下面证明⑦.证:设(x)f =则11'1(x)(1),n f x n -=+ (0)1,f ='1(0),f n = 由公式(6)得 (x)1.x f n≈+ 上面七个公式的几何意义是:在点x=0的较小邻域内,等式两边的两个函数的图像是“吻合”的.例2 计算(1)ln 0.98; (2 (3)'sin 2930;的近似值. 解:(1)设(x)ln(1x),f =+相当于求自变量x=0.02时,函数(x)f 的函数值.由前面结论④可得ln 0.98ln(10.02)0.02.=-≈-(2)设(x)f 相当于求自变量x=0.02时,函数(x)f 的函数值.由前面结论⑤可得0.021 1.0067.3=≈+= (3)设(x)sin(x),f ='(x)cosx,f =由微分近似公式(5)式,可知'sin 2930sin()sin cos ()636066360o πππππ=-≈+- 0.50000.00760.4924.≈-=习题2—41. 求下列各函数的微分:(1) 3y x 3;x =+ (2) 1y x=- (3) y =(4) 2cos ;1x y x =- (5) 1arcsin(2x);2y = (6) arctan(e ).x y =2.求函数y tanx =在x 4π=处,对应0.05x ∆=的微分值.3.利用微分近似公式,求(1) 0cos29; (2) .4.若方程1x y xe =+确定函数(x),y y =求在x 0=处函数的微分.5.设函数(x)f 可导,求函数2y (x )f =的函数的微分dy.高等数学 642. 5 中值定理在本节,我们学习一元函数微分学的三个基本定理:Rolle 定理、Lagrange 中值定理、 Cauchy 中值定理,它们是导数应用的理论基础.2.5.1 Rolle 定理定理1 如果函数(x)f 满足:(1) 在闭区间[a,b]上连续;(2) 在开区间(a,b)内可导;(3) (a)(b);f f =则至少存在点(a,b),ξ∈使'()0f ξ=(见图2—8).证:若(x)f 在[a,b]上恒为常数,显然定理成立.假设(x)f 在闭区间[a,b]上的最大值为M,最小值为m,且M>m,则M 、m 中至少有一个不等于(a)f .不妨设(a),M f ≠由于(a)(b),f f =这说明最大值M 是在区间(a,b)内取得,由介值定理知道存在(a,b)ξ∈使()M.f ξ=分析该点的导数:'0(x)()()lim 0,x f f f x ξξξξ+→+-=≤- '0(x )()()l i m 0,x f f f x ξξξξ-→--=≥- 而(x)f 在ξ可导,应有'''()()(),f f f ξξξ+-==故只有'()0.f ξ=注:(1)定理表明函数图像在开区间(a,b)内至少存在一条水平切线;(2)定理说明在定理条件下方程'(x)0f =在(a,b)内至善有一个根,因此定理也叫做导数方程根的存在定理;(3)定理的三个条件中若有一个不满足,结论就不一定成立.图2—9给出了不满足其中一个条件时定理不存在的情况.例1 对函数32(x)x 4710f x x =+--在[-1,2]上验证Rolle 定理的正确性.解:(1)(2)0f f -==且(x)f 在[-1,2]上连续,在(-1,2)内可导,满足Rolle 定理的三 个条件.计算导数: '2(x)3x 87,f x =+-由于'(1)12,f -=-'(2)21,f =从而''(1)(2)0.f f -<由零点定理知存在(1,2)ξ∈-使'()0.f ξ=第2章 一元函数微分学及其应用 65例2 已知(x)(x 1)(x 2)(x 3)(x 4),f =----利用Rolle 定理讨论'(x)0f =根的 情况.解:(x)f 为多项式函数,在(,)-∞+∞内连续、可导.因为(1)(2)(3)(4)0,f f f f ====由Rolle 定理知'(x)0f =有分别位于区间(1,2)、(2,3)、(3,4)内的三个实根.又由于'(x)f 是一个三个多项式,最多有三个实根,所以它只有这三个根.2.5.2 Lagrange 中值定理Rolle 定理中(a)(b)f f =这个条件是比较特殊的,如果取消这个条件,则由下面的 Lagrange 中值定理.定理2 如果函数(x)f 满足:(1) 在闭区间[a,b]上连续;(2) 在开区间(a,b)内可导,则至少存在一点ξ∈(a,b),使'(b)(a)().f f f b aξ-=-先看一下定理2的几何含义(见图2—10),过连续曲线弧段的两端点(a,f(a)),B(b,f(b))A 作弦AB,其斜率(b)(a),f f k b a-=- 则在(a,b)内至少有一点ξ,过点(,f())ξξ的切线与弦AB 平行.证:引进辅助函数(b)(a)F(x)(x)(x),f f f kx f x b a-=-=-- 则(a)af(b)(a)(b),bf F F b a-==-且(x)F 满足Rolle 定理的另外两个条件,所以至少存在一点 ξ∈(a,b),使''(b)(a)()()0,f f F f b aξξ-=-=-即 '(b)(a)().f f f b aξ-=-注:在Lagrange 中值定理中,若(a)(b),f f =则得Rolle 定理的结论,所以Rolle 定理是Lagrange 中值定理的特殊情况.推论1 若(x)f 在区间I 上可导, '(x)0,f ≡则在I 上(x)f C ≡(C 为常数). 证:在区间I 上任取两点12,,x x 且12x x <,在区间12[,x ]x 上应用Lagrange 中值定理得: 存在12[,x ]x ξ∈使'2121(x )f(x )(),f f x x ξ-=-,但'(x)0,f ≡故12(x )(x ).f f =由12(,)x x 的任意性,可知(x)f 在区间I 上式一个常值函数.推论2 若函数(x),g(x)f 在(a,b)内可导,且对任意(a,b),x ∈有''(x)(x),f g =则。

高等数学 第三章 一元函数微积分学及其应用

高等数学 第三章 一元函数微积分学及其应用

x x0
x0
x
xx0
x x0
存在,则称该极限为 y f x 在点 x0 处的导数,记为
dy
df (x)
f x0 , y xx0 , dx xx0 或
dx xx0
10
二、导数的定义
第三章 一元函数微分学及其应用
这时也称函数 y f x 在点 x0 处可导.
如果该极限不存在,称函数 y f x 在点 x0处不可导 .
例1 求函数 y ln x 在点 x e 处的切线斜率.

k lim f (x) f (x0 ) = lim ln x ln e
x x0
x x0
xe x e
ln x = lim e
xe x e
lim
ln 1
xe e
xe
xe
所以
xe lim e 1
xe x e e
第三章 一元函数微分学及其应用
y
此刻切线的斜率即为 k lim y y0 lim f (x) f (x0 )
x x xx0
0
x x0
x x0
y f x
N Δy T
从上面的例子可以看出, 在求切线斜率的过
程中, 需要用到极限
lim f (x) f (x0 )
x x0
x x0
M C
α
Δx
O
x0
xx
7
二、导数的定义
故 y x2
在 x=0处导数为零,即
dy dx
x x0
0.
O
x
图 3-7
12
二、导数的定义
第三章 一元函数微分学及其应用
例3 求函数 y | x |,在点 x 0 处(见图2-8)的导数.

一元函数微分学几何应用(一)--单调性与极值

一元函数微分学几何应用(一)--单调性与极值

⼀元函数微分学⼏何应⽤(⼀)--单调性与极值单调性与极值的判别单调性的判别若 y = f(x)在区间I上有f'(x)>0,则 y=f(x)在I上严格单调增加若 y = f(x)在区间I上有f'(x)<0,则 y=f(x)在I上严格单调增加费马引理(极值点的必要条件)⼀阶可导点是极值点的必要条件(极值导数必为0,导数为0不⼀定是极值,如y=x3)设f(x)在x=x0处可导,且在点x0处取得极值,则必有f'(x0)=0判别极值的第⼀充分条件(左右邻域⼀阶导异号)极值点不⼀定是可导点左邻域内,f'(x)<0,⽽右邻域,f'(x)>0,则f(x)在x=x0处取得极⼩值左邻域内,f'(x)>0,⽽右邻域,f'(x)<0,则f(x)在x=x0处取得极⼤值若f'(x)在左右邻域内不变号,则点x0不是极值点判别极值的第⼆充分条件(⼀阶导数=0,⼆阶导数≠0)设f(x)在x=x0处⼆阶可导,且f'(x0)=0,f''(x0)≠0若f''(x0)<0,则f(x)在x0处取得极⼤值若f''(x0)>0,则f(x)在x0处取得极⼩值可以⽤⼀阶导数定义和保号性证明判别极值的第三充分条件(⾼阶导)f(x)在x0处n阶可导,且 f(m)(x0)=0(m=1,2,...,n-1),f(n)(x)≠0(n≥2)f'(x0)=f''(x0)=...=f(n-1)(x0)=0若n为偶数且f(n)(x0)<0时,f(x)在x0处取得极⼤值若n为偶数且f(n)(x0)>0时,f(x)在x0处取得极⼩值拉格朗⽇中值定理推⼴(联系函数与导函数)f(b) - f(a) = f'(ξ)(b - a)f(x) - f(x0) = f'(ξ)(x - x0)。

一元函数微分学

一元函数微分学

一元函数微分学微积分是数学中一个非常重要的分支,它研究连续与变化。

微分学是微积分中的一部分,它研究一元函数的变化率和切线问题。

在工科、理工科及金融等领域,微分学都是必修的一门学科。

一、导数一个函数的导函数即为该函数的导数。

导数表示函数在某点处的变化率,也可以理解为以该点处斜率为切线的直线方程。

导数的定义如下:$f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$其中,f(x)表示函数在x点处的取值,h表示x的变化量。

导数是对变化量和量的一个测量,它也可以被解释为函数的瞬时变化率。

在求导数时,我们需要注意函数是否连续,导数是否存在,同时还需考虑到函数在自变量为非自然数时的导数。

二、微分微分是在导数的基础上增加了一些附加的概念,它是由函数在一个点处的导数以及该点处的自变量与函数值所组成的。

微分的定义不是很直接,但是我们可以从定义出发进行理解:设函数y=f(x),在x点的微分dy=dx*f'(x)。

其中,dx表示x的增量,dy表示y的增量,f'(x)表示在x处的导数。

可以看出,微分有一个重要的作用,就是可以得到函数在某个点处的极小增量。

即在当前的点位置,函数的变化量以及对应的变量量。

微分还可以解决一些求和问题和变量替换问题的计算。

三、函数图像的切线函数图像的切线是函数图像在某个点的斜率。

在此前提下,我们可以通过导数求出函数图像在任意一个点上的斜率。

通过直线方程就可以求出函数图像在该点的切线。

求解函数图像的切线需要确定该点的横坐标和纵坐标,然后求出导数,最后代入方程即可。

四、一元函数微分学应用微分学的应用非常广泛。

在物理学中,微分学可以用于描述物体的运动,地球的形变和能源泄露等问题。

在金融学中,微分学可以用于计算股市的波动和证券价格的变化等问题。

在自然科学中,微分学可以用于解决生物学的遗传学和数学物理学中的加速和速度问题等。

总之,一元函数微分学是微积分中最基础的内容。

一元函数微分学的基本原理与应用

一元函数微分学的基本原理与应用

一元函数微分学的基本原理与应用微分学是数学中的一个分支,主要研究函数的变化率、极值和曲线的切线等问题。

在微分学中,一元函数是指只有一个自变量的函数。

本文将介绍一元函数微分学的基本原理和其应用。

一、微分的定义和基本原理微分学的基本概念之一是微分的定义。

对于一元函数 f(x),在某一点 x0 处的微分表示为 df(x0) 或简写为 dy,可以定义为 dx 的一个无穷小变化量,即:dy = f'(x0)dx其中,f'(x0) 表示在 x0 处的导数,表示函数在该点的斜率或变化率,dx 表示自变量 x 的无穷小变化量。

微分学的基本原理包括导数和微分的性质。

导数的定义如下:f'(x) = lim [f(x+Δx) - f(x)] / Δx (当Δx 趋近于 0 时)导数可以用来描述函数的斜率,即切线的倾斜程度。

在微分学中,常用的导数表示方式有函数的导函数、差商和极限等形式。

微分的基本性质包括线性性质、乘积法则、商法则和链式法则等。

根据这些性质,可以对各种类型的函数进行微分运算,进而得到函数的导数和微分。

二、应用举例:极值问题和曲线的切线微分学的应用非常广泛,以下是两个常见的应用例子:极值问题和曲线的切线。

1. 极值问题:求解一个函数的最大值和最小值。

通过对函数的微分,可以得到导数为零的点或导数不存在的点,并进行求解。

对于一元函数 f(x),当导数 f'(x) 的值为零或不存在时,函数在该点可能取得极值。

举例来说,若给定函数 f(x) = x^2 - 4x + 3,我们可以求解 f'(x) = 2x - 4,令导数等于零得到 2x - 4 = 0,解得 x = 2。

然后,通过二阶导数的符号判断该点是否是极值点。

若 f''(x) > 0,则 x = 2 是函数的极小值点;若 f''(x) < 0,则 x = 2 是函数的极大值点。

一元函数微分学

一元函数微分学

一元函数微分学一元函数微分学教案引言:微分学是高等数学的重要分支,它研究的是函数的变化规律和局部性质。

一元函数微分学是微分学的基础,是学习微分学的第一步。

本教案将从函数的极限、导数的定义和性质、微分中值定理以及应用等方面进行论述,帮助学生全面理解一元函数微分学的基本概念和方法。

一、函数的极限1. 函数的极限的概念函数的极限是指当自变量趋近于某个值时,函数的取值趋近于某个常数。

通过引入极限的概念,可以研究函数在某一点的趋势和变化规律。

2. 函数极限的性质函数极限具有唯一性、局部性和保号性等性质。

唯一性指函数极限只有一个确定的值;局部性指函数在某一点的极限与该点附近的函数值有关;保号性指函数在某一点的左右极限可以确定函数在该点的取值范围。

二、导数的定义和性质1. 导数的定义导数是函数在某一点的变化率,表示函数曲线在该点处的切线斜率。

导数的定义是极限的一种特殊形式,通过求函数在某一点的极限可以得到函数在该点的导数。

2. 导数的性质导数具有线性性、乘积法则、商法则和复合函数法则等性质。

线性性指导数具有加法和乘法的线性性质;乘积法则指导数的乘积等于函数的导数与函数的乘积之和;商法则指导数的商等于函数的导数与函数的商之差;复合函数法则指导数的复合函数等于函数的导数与外函数的导数的乘积。

三、微分中值定理1. 罗尔定理罗尔定理是微分中值定理的一种特殊形式,它表明如果一个函数在闭区间上连续,在开区间上可导,并且在两个端点处的函数值相等,那么在开区间上至少存在一个点,使得该点处的导数等于零。

2. 拉格朗日中值定理拉格朗日中值定理是微分中值定理的一般形式,它表明如果一个函数在闭区间上连续,在开区间上可导,那么在开区间上至少存在一个点,使得该点处的导数等于函数在两个端点处的斜率。

四、应用1. 函数的单调性和极值通过导数的正负可以判断函数的单调性和极值。

当导数大于零时,函数单调递增;当导数小于零时,函数单调递减;当导数等于零时,函数可能存在极值。

一元函数微分学的应用学习指导

一元函数微分学的应用学习指导

第三章 一元函数微分学的应用学习指导一元函数微分学在经济等领域有着广泛的应用,微分中值定理给出了函数及其导数之间的联系,是微分学的基本定理.本章以导数为工具,以微分中值定理为理论基础,研究函数的单调性、极值、最值,函数的凹向及拐点,并应用导数解决经济中的边际、弹性及最优经济量等问题.一、教学要求1. 了解罗尔中值定理、拉格朗日中值定理,并会应用拉格朗日中值定理证明不等式. 2. 熟练掌握洛必达法则求“00”、“∞∞”、“0⋅∞”、“∞-∞”、“1∞”、“00”、“0∞”七种未定式的极限方法.3.掌握利用导数判定函数的单调性及函数单调区间的方法,会利用函数的增减性证明简单的不等式. 4.理解函数极值的概念,掌握求函数的极值和最值的方法,并会求简单的几何应用问题. 5.会判定曲线的凹向,会求曲线的拐点及渐进线.6.了解常用经济函数,掌握导数在经济分析中的应用(边际分析、弹性分析最优经济量的求法). 重点: 利用洛必达法则求未定式的极限;利用导数判定函数的单调性与极值、凹向及拐点;导数的经济应用.难点: 应用拉格朗日中值定理证明不等式;经济应用中的边际分析、弹性分析.二、学习要求1. 牢记中值定理成立的条件,并恰当引入辅助函数.2.应用洛必达法则求极限时应注意使用的条件,每次运用洛必达法则之前一定要检验是否是未定式的极限,然后转化为00或∞∞型再计算. 3.深刻理解驻点只是可导函数取得极值的必要条件,极值点可能是驻点也可能是导数不存在的点. 4.边际函数即经济函数的导数()f x ',反映的是当x 产生一个单位的改变时,()f x 改变()f x '个单位;弹性函数Ey Ex 表示当x 产生1%的改变时,y 改变Ey Ex%.在解决实际问题时,应注重结合经济实例,理解所求值的正负的含义.三、典型例题分析例1 设523)(2++=x x x f ,求)(x f 在],[b a 上满足拉格朗日中值定理的ξ值. 解 )(x f 为多项式函数,在],[b a 上满足拉格朗日中值定理的条件,故有 ))((')()(a b f a f b f -=-ξ即 ))(26()523()523(22a b a a b b -+=++-++ξ 由此解得2ab +=ξ, 即此时ξ为区间],[b a 的中点. 例2 应用拉格朗日中值定理证明下列不等式 (1) 当0a b <<时,ln b a b b ab a a--<<; (2) 当1x >时,xe e x >⋅证明 (1)设()ln f x x =,则()f x 在[],a b 上满足拉格朗日中值定理的条件, 故至少存在一点ξ(),a b ∈,使得()()()f b f a f b aξ-'=-即ln ln 1b a b a ξ-=-,因为111b a ξ<<,所以1ln ln 1b a b b a a-<<-,整理得ln b a b b ab a a--<<,得证. (2)证法一 设()uf u e =,[]1,u x ∈,容易验证()f u 在[]1,x 上满足拉格朗日中值定理的条件. 故存在ξ()1,x ∈,使得()()()11f x f f x ξ-'=-左端()()111x f x f e e x x --=--,右端()f e e ξξ'=>,即1x e e e x ->- 整理得 当1x >时,xe e x >⋅,得证. 证法二 设()lnf u u =, []1,u x ∈容易验证()f u 在[]1,x 上满足拉格朗日中值定理的条件. 故存在ξ()1,x ∈,使得()()()11f x f f x ξ-'=-左端()()1ln 11f x f x x x -=--,右端()11f ξξ'=<,即ln 11x x <-,11ln 1,x x x x x e e e-<-<=, 整理得 当1x >时,xe e x >⋅,得证. 例3 计算下列极限:(1)xe e x x x sin lim 0-→-; (2))1ln(arctan lim 30x xx x +-→;(3)2ln limx x x →+∞; (4)xx xx x sin tan lim0--→. 解 (1) =--→x e e xx x sin lim02cos lim 0=+-→x e e x x x ; (2) =+-→)1ln(arctan lim30x x x x =⋅++-→2320311111lim x x x x 203221lim 13x x x x x →+⋅=+31)1131(lim 230=++⋅→x x x ;(3) 2ln lim x x x →+∞=1lim 2x x x→+∞=21lim 02x x →+∞=; (4) =--→x x x x x sin tan lim 0=--→x x x cos 11sec lim 20=→22021tan lim x x x 2)tan (lim 220=→xx x .说明: 洛必达法则主要解决00,∞∞型不定式极限,在应用洛必达法则时应注意以下几点: (1) 在使用洛必达法则前,先要判断所求极限是否满足洛必达法则条件,即判断所求极限是否为0,∞∞型未定式,是这两种类型方可使用. (2) 当应用一次洛必达法则之后仍为00,∞∞型未定式时,可以继续使用洛必达法则,直到求出极限值或得出不符合法则条件时为止,使用后所得极限不存在(不包括极限为∞)时,不能肯定原极限不存在,此时洛必达法则失效,应改用其他方法求极限.(3) 使用洛必达法则求极限时,应及时对所求极限进行简化,表达式中有极限存在的因式可以暂时用极限运算法则将其分离出来,只要最终极限存在,这种处理方法就是可行的.(4) 洛必达法则应尽量和其他求极限的方法(四则运算、无穷小性质、重要极限、连续性等)结合使用,才能更好的发挥其作用.例4 计算下列极限 (1)axnx ex -+∞→lim ),0(为自然数n a >; (2))tan (sec lim 2x x x -→π;(3)xx xsin 0lim +→; (4)x x x )arctan 2(lim π+∞→; (5)xxx x 1)2(lim ++∞→.解 (1) =-+∞→axn x ex lim =+∞→ax n x e x lim =-+∞→ax n x ae nx 1lim 22(1)lim n ax x n n x a e-→+∞-=!1li 0m n axx n a e →+∞== ),0(为自然数n a >.(2) 0sin cos lim cos sin 1lim )cos sin cos 1(lim )tan (sec lim 2222=--=-=-=-→→→→x xx x x x x x x x x x x ππππ.(3) 因为xxxe xsin ln sin =,而12sin 00000ln sin lim ln lim sin ln lim lim lim csc csc cot cos xx x x x x x x xx x x x x x x x+++++-→→→→→=⋅===-- 00sin sin lim lim cos x x x x x x++→→=-⋅001=⨯-= 所以=+→xx xsin 0lim sin lim ln 001xx x ee +→==.(4) 因为2ln(arctan )2(arctan )xx xx eππ=,而πππ21arctan 1lim 111arctan 1lim 1arctan ln 2lnlim)arctan 2ln(lim 2222-=+-⋅=-+⋅=+=+∞→+∞→+∞→+∞→x x x xx x xx x x x x x x 所以 )arctan 2ln(lim )arctan 2(lim x x xx x e x ππ+∞→=+∞→=2eπ-.(5)因为xx x xxex 1)2ln(1)2(+=+,而11ln(2)1lim ln(2)lim ln(2)lim lim (12ln 2)2x x x xxx x x x x x x x x x x →+∞→+∞→+∞→+∞++=+==⋅++ 2ln 2ln 2lim 12ln 2x x x →+∞⋅⋅=+⋅2ln )2(ln 2)2(ln 2ln 2lim 22=⋅⋅⋅=+∞→x x x 所以 ()11lim ln 2ln 2lim (2)2xxx x x xx x ee →∞+→+∞+===.说明: 对于∞-∞,0⋅∞型未定式,经过对极限表达式的适当变形可以化为00或∞∞型未定式,对于由)()(x g x f 产生的00,1∞,0∞型未定式,可以通过对)()(x g x f 取对数化为0⋅∞型未定式,然后再转化为00或∞∞型未定式计算. 例5 计算下列极限:(1) x x x x 2220sin cos 1lim -→; (2)xe x x 210lim -→; (3)3sin lim cos 2x x x x x →∞++. 解 (1) 此题用洛必达法则求解,比较繁琐.利用等价无穷小量代换x x ~sin .再用洛必达法则更为简便.=-→x x x x 2220sin cos 1lim =-→420cos 1lim x x x =→3204sin 2lim xx x x 21sin lim 21220=→x x x . (2) 此题若按照00型未定式,用洛必达法则计算会越算越复杂,不能解决问题.如果令11,t x x t==即,代入后将分式化为∞∞型,再用洛必达法则计算就简便得多. =-→x ex x 210lim 2t lim 1t e t -→∞=2t lim t t e →∞=2t 1lim 02t te→∞=. (3)此题虽为∞∞型,但不能用洛必达法则3sin lim cos 2x x x x x →∞++ 1x t = 0113sin l m co 2i 1s t t t t t →++013sin 1cos 21lim t t t t t→+=+12= 若用洛必达法则3sin lim cos 2x x x x x →∞++3cos 1limsin 2x x x →∞+=-+,极限不存在. 例6 设xxx f sin 1sin 1)(-+=,问(1))(lim 0x f x →是否存在?(2)能否由洛必达法则求上述极限,为什么?解 (1) =→)(lim 0x f x 10101)sin 1(lim )sin 1(lim sin 1sin 1lim 00=-+=-+=-+→→→x x x x x x x .(2) 不能.因为此极限非00,∞∞型未定式,,不能满足洛必达法则条件. 例7 判别函数32)(x x f =的增减性. 解 函数)(x f 的定义域为),(+∞-∞,()1323f x x -'==当0=x 时,)('x f 不存在.点0=x 将定义域),(+∞-∞分成两个区间.列表如下:所以函数)(x f 在]0,(-∞内单调减少,在),0[+∞单调增加.说明: 使导数不存在的点往往也是增减区间的分界点. 例8 当0>x 时,证明)1ln(1x xx+<+. 证明 令)1ln(1)(x xxx f +-+=)0(>x 显然)(x f 在),0(+∞内连续,且22)1(11)1(1)('x xx x x f +-=+-+=当0>x 时,0)('<x f ,即)(x f 在),0(+∞内单调减少, 此时,0)0()(=<f x f ,即0)1ln(1<+-+x x x ,故)1ln(1x xx +<+. 说明: 单调性证明不等式的方法是:(1) 构造辅助函数)(x f ,即将不等式的右端(或左端)全部移到一端,再令左端(或右端)为函数)(x f ; (2) 在区间内讨论)(x f 的连续性及)('x f 符号,得到)(x f 的单调性;(3) 利用单调性定义,将)(x f 与区间内一特定点函数值(通常为区间的端点)进行比较构成所要证明的不等式.例9 证明方程1sin 21=-x x 只有一个正根. 证明 令1sin 21)(--=x x x f ,则)(x f 在),(+∞-∞内连续,且,01)(,01)0(>-=<-=ππf f根据零点存在定理知,至少存在一个),0(πξ∈,使得0)(=ξf , 即 方程0)(=x f 在区间),0(π内至少存在一个正根. 又因为0cos 211)('>-=x x f ,所以)(x f 在区间),(+∞-∞上是单调递增的,于是断定)(x f 在区间),0(π内的根是唯一的.从而得证,方程1sin 21=-x x 只有一个正根. 例10 求函数33)(23+-=x x x f 的极值.解法一 函数)(x f 的定义域为),(+∞-∞,)3)(1(3963)('2-+=--=x x x x x f ,令0)('=x f ,解得驻点3,121=-=x x ,用驻点21,x x 将函数的定义域划分为3个部分区间,列表讨论由上表可知,当1-=x 时,函数取得极大值()1f -=-1; 当3=x 时,函数取得极小值(3)3f =. 解法二 由题设可得)3)(1(3963)('2-+=--=x x x x x f ,66)("-=x x f 令0)('=x f ,解得驻点3,121=-=x x ,又因为 012)1("<-=-f ,012)3(">=f所以,当1-=x 时,函数取得极大值()1f -=1-;当3=x 时,函数取得极小值(3)3f =. 例11 当a 为何值时,x x a x f 3sin 31sin )(+=在3π=x 处取得极值,并求此极值. 解 函数)(x f 在定义域内处处可导,且x x a x f 3cos cos )('+=, 由于)(x f 在3π=x 处取得极值,所以有0)3('=πf ,即0121)33cos(3cos)3('=-=⋅+=a a f πππ,得2=a ,且3)33sin(313sin 2)3(=⋅+=πππf .例12 求32)5()(x x x f ⋅-=在区间]3,2[-上的最值.解 函数)(x f 在闭区间]3,2[-上连续,因而)(x f 在]3,2[-上必有最大值和最小值.33323)2(51)5(32)('xx x x x x f ⋅-=-+=,令0)('=x f ,得驻点2=x ,)('x f 不存在点为0=x ,比较函数值(2)(0)0,(2)(3)f f f f -=-==-=-知函数]3,2[)(-在x f 上最大值为0)0(=f ,最小值为347)2(-=-f . 例13 求曲线21xxy -=的凹凸区间与拐点. 解 函数21xxy -=的定义域为(,1)(1,1)(1,)-∞--+∞,222222)1(1)1()2()1('x x x x x x y -+=--⋅--= 322422222)1()3(2)1()1)(2()1(2)1(2"x x x x x x x x x y -+=-+-⋅---= 令0"=y ,得0=x ,用点1,0,1x =-将函数的定义域划分为4个部分区间,列表讨论由表可见,在区间)1,(--∞,)1,0(内曲线为凹的,在区间)0,1(-,),1(+∞内曲线为凸的,点)0,0(为拐点.例14 已知曲线cx bx ax y ++=23上点)2,1(处有水平切线,且原点为该曲线的拐点,求出该曲线方程.解 由cx bx ax y ++=23,得c bx ax y ++=23'2,b ax y 26"+= 根据题意得 2|1=++==c b a y x 023|'1=++==c b a y x 02|"0===b y x 解得3,0,1==-=c b a所以,该曲线方程为x x y 33+-=. 例15 求下列曲线的渐近线(1)2312+--=x x x y ; (2)2x y e -=; (3)34)1(x x y +=.解 (1) 因为0231lim2=+--∞→x x x x ,所以,0=y 为水平渐近线,又因 ∞=+--→231lim 22x x x x ,所以,曲线有垂直渐近线2=x . (2) 因为2lim 0x x e →∞=,所以,0y =为曲线的水平渐近线.(3) 因为∞=+-→341)1(lim x x x ,所以,曲线有垂直渐近线1-=x ;又因为 1)1(lim 34=⋅+∞→xx x x=-+∞→])1([lim 34x x x x =++-∞→334)1()1(lim x x x x x 2324)1()331(lim x x x x x x x ++++-∞→ 3)1(33lim 323-=+---=∞→x x x x x 所以,3-=x y 为曲线的斜渐近线. 说明: 曲线)(x f y =渐近线的确定:(1) 水平渐近线 若c x f x =∞→)(lim ,则直线c y =是曲线)(x f y =的水平渐近线.(2) 垂直渐近线 若∞=→)(lim 0x f x x ,则直线0x x =是曲线)(x f y =的垂直渐近线.(3) 斜渐近线 若a xx f x =∞→)(lim ,b ax x f x =-∞→])([lim 存在,则直线b ax y +=是直线)(x f y =的斜渐近线.例16 描绘函数2211)(xxx f -+=的图形. 解 依据描绘函数图形的六个步骤进行. 第一步 函数2211)(xxx f -+=的定义域为),0()0,(+∞⋃-∞, 经验证不具备奇偶性与周期性.第二步 求出一阶导数3)1(2)('x x x f -=,令0)('=x f 得驻点,11=x 求出二阶导数4)23(2)("xx x f -=,令0)("=x f 得,232=x 第三步 用点,11=x ,232=x 将函数的定义域划分为4个部分区间,列表分析函数)(x f 的单调性、极值、凹凸性和拐点.第四步 因+∞==→∞→)(lim ,1)(lim 0x f x f x x ,所以该曲线有水平渐近线1=y 和垂直渐近线0=x .第五步 点)0,1()91,23(121==,4|1=-=x y ,4|2=-=x y ,以利图形描绘.第六步 根据以上信息做出函数的图形.说明: 作函数图形的基本步骤:(1) (2) 求)('x f ,)("x f ,讨论函数单调性、凹凸性及极值点、拐点; (3) 确定曲线的渐近线;(4) 补充适当点(与坐标轴相交的点)的坐标,描点画图.例17 有一块宽为a 2的长方形铁皮,将宽的两个边缘向上折起相同的高度,做成一个开口水槽,其横截面为矩形,高为x ,问高x 取何值时水槽的流量最大(流量与横截面积成正比).解 根据题意得该水槽的横截面积为 )(2)(x a x x s -= (a x <<0),由于,42)('x a x s -=所以令,0)('=x s 得)(x s 的唯一驻点2a x =. 又因为铁皮的两边折得过大或过小,都会使横截面积变小,这说明该问题一定存在着最大值,所以,2ax =就是我们要求得使流量最大的高. 例18 已知某商品的成本函数为4100)(2q q C +=,求出产量10=q 时的总成本、平均成本、边际成本并解释其经济意义.解 4100)(2q q C +=总成本 125410100)10(2=+=C 平均成本函数 4100)()(qq q q C q C +== 平均成本 5.1241010100)10(=+=C边际成本 2)'4100()('2q q q C MC =+== 当10=q 时,边际成本5210)10(==MC 即当产量为10个单位时,每多生产1个单位产品需要增加5个单位成本.因为)10()10(MC C >,应继续提高产量.例19 某商品需求函数为122Q p=-)240(<<p ,求 (1) 需求弹性函数;(2) p 为何值时,需求为高弹性或低弹性? (3) 当6=p 时的需求弹性,并解释其经济意义. (4) 当6=p 时,价格上涨1%,总收益如何变化?解 (1) 因为122Q p=-,所以12d Q dp =-, 1()1212224P p d p pE Q Q dp p p =⋅=-⋅-=- (2) 令1P E <,即241pp -<,即12<p ,故 当120<<p 时,为低弹性.令1P E >,即241pp ->,即12>p , 故 当2412<<p 时,为高弹性.(3) 当6=p 时的需求弹性为 666||0.338241P p p p p E =====--- 说明: 当6=p 时,需求变动幅度小于价格变动的幅度,即6=p 时,价格上涨1%, 需求减少0.33%,或者说当价格下降1%时,需求将增加0.33%.(4) 当6=p 时,由于1183|6<==p P E ,故当价格上涨1%,其总收益会增加. 另外,由于总收益22112p p pD R T -==,于是总收益的弹性函数是pp p p p p R pdp dR E TT P R T --=-⋅-=⋅=24)12(22112)12(2从而当6=p 时,总收益的弹性是 67.032|24)12(2|66≈=--===p p P R p p E T ,说明当6=p 时,价格上涨1%,总收益将增加0.67%.例20 某个体户以每条10元的进价购一批牛仔裤,假设此牛仔裤的需求函数为P Q 240-=,问该个体户获得最大利润的销售价是多少?解 将总利润函数L 表示为p 的函数400602)240(10)240(10)()()(2-+-=---=-=-=p p p p p q pq p C p R p L604)('+-=p p L 令 0)('=p L ,得15=p 驻点唯一,且 04)("<-=p L , 故 15=p 为唯一极大值点. 因此当销售价为15元/条时获得最大利润.例21 某厂生产摄影机,年产量1000台,每台成本800元,每一季度每台摄影机的库存费是成本的5%,工厂分批生产,每次生产准备费为5000元,市场对产品一致需求,不许缺货,试确定一年最小费用开支时的生产批量及最小费用.分析: 此问题是经济批量及存货总费用最小问题,属于“成批到货,一致需求,不许缺货”的库存模型.所谓“成批到货”就是工厂生产的每批产品,先整批存入仓库;“一致需求”,就是市场对这种产品的需求在单位时间内数量相同,因而产品由仓库均匀提取投放市场;“不许缺货”就是当前一批产品由仓库提取完后,下一批产品立刻进入仓库.在这种假设下,规定仓库的平均库存量为每批产量的一半.设在一个计划期内 (1) 工厂生产总量为D ;(2) 分批投产,每次投产数量,即批量为Q ; (3) 每批生产准备费为1C ;(4) 每批产品的库存费为2C ,且按批量的一半即2Q收取库存费; (5) 存货总费用是生产准备费与库存费之和,记为E .依题设,库存费=每件产品的库存费×批量的一半=22QC ⋅生产准备费=每批生产准备费×生产批数=QD C ⋅1 于是,总费用函数为212)(C Q C Q D Q E E +== 02)('212=+-=C C Q DQ E 变形221QC QD C = (使库存费与生产准备费相等的批量是经济批量)解得 经济批量2102C DC Q =02)("31>=Q D C Q E 故此时总费用最小,其值为210201022C DC Q C Q D C E =+=. 解 由题设知台1000=D ,元50001=C ,每年每台库存费用 1604%58002=⋅⋅=C (元)库存总费用E 与每批生产台数Q 的关系 Q Q E E E 21605000100021+⋅=+=一年最小费用开支时的生产批量是经济批量2501605000100022210=⋅⋅==C DC Q (台)一年最小库存总费用40000250500010002250160202010=⋅+⋅=+=Q C Q D C E (元) 或400001605000100022210=⋅⋅⋅==C DC E (元)四、复习题三1. 函数)1ln(x y +=在)1,0(上是否满足拉格朗日中值定理的条件,若满足试求出定理中的ξ值. 2. 求出下列极限(1)8421612lim 2332+--+-→x x x x x x ; (2)xx x 1arctan 2lim -+∞→π; (3)xx ex 201lim -+→;(4)x x x )11(lim 0++→; (5))111(lim 0--→x x e x ; (6)xx xx x sin tan lim 20-→;(7)3sin 0lim x e e x x x -→; (8))tan (sec lim 2x x x -→π; (9)21lim (1)x xx e x-→+∞+; (10))1(sin lim20--→xx e x xx . 3. 证明:当0x >时,有不等式(ln x +>4. 证明:方程x x -=1tan 在)1,0(内的根是唯一的.5. 要造一个容积为V 的圆柱形密闭容器,问底半径r 和高h 为何值时,使表面积最小. 6. 求下列函数的单调区间及极值:(1)32)1()(x x x f -=; (2)2156)(23+--=x x x x f .7. 求下列函数的凹凸区间及拐点:(1)23)1(-=x x y ; (2)xxe y -=. 8. 设曲线123+++=cx bx ax y 在1=x 处有极小值-1,且有拐点)1,0(,试确定常数c b a ,,的值. 9. 一房地产公司有50套公寓要出租,当月租金每套定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会有一套公寓租不出去,而租出去的公寓每套每月需花费200元的维修费,试问租金定为多少时可获最大利润,最大利润是多少?10. 某公司生产成本的一个合理而实际的模型由短期库柏—道格拉斯成本曲线252)(21+-=q q C 给出.假设当平均成本等于边际成本时,平均成本取极小值,求q 取何值时,平均成本取得极小值?11. 设某商品的需求函数为p e Q 43-= ,求(1)需求弹性函数. (2)当4,34,1=p 时的需求弹性,并解释其经济意义. 五、复习题三答案1. 11ln 2ξ=- 2.(1)23; (2)1; (3)12-; (4) 1; (5)21;(6)31(提示 利用无穷小量代换x x ~sin ); (7)61(提示 =-+-→3sin sin sin 0lim x e e x x x x x =--→3sin sin 0)1(lim x e e x x x x 2sin 03)cos 1(lim x e x x x x -→-); (8)0;(9)21-e (提示 =⋅+-+∞→x x x e x2)11(lim −−→−=-++∞→xt x x x x e1)11ln(lim 2令20)1ln(lim t t t t e -+→);(10)61 (提示 利用无穷小量代换x e x~1-, 原式==-→203cos 1limx x x 616sin lim 0=→x x x ).3.提示: 方法一利用拉格朗日中值定理证明.设()(ln f x x =,()f x 在()0,+∞上连续可导,任取0x >,()f x 在()0,x 上满足拉格朗日中值定理的条件,()()00,f f x '==+=,存在()0,,x ξ∈使()ln 00x x -=-,由0x ξ<<,得(ln x +>方法二利用函数单调性证明.作辅助函数()(ln F x x =+,在[0,)+∞上连续可导,()()32221F x x x -⎡⎤'=-+⎥⎦=()232201x x >+为单调增加函数,当0x >时,()()0F x F >=0,即(ln x >4.提示:由零点定理证得x x -=1tan 在)1,0(内有根,01sec )'1(tan )('2>+=+-=x x x x F ,故)(x F 在)1,0(内严格单调增加,故方程x x -=1tan 在)1,0(内的根是唯一的.5.设表面积为A,则222,A r rh ππ=+又2V r h π=,即2V h r π=,222V A r rπ=+ ()0,r ∈+∞ ,因为3222424V r VA r r rππ-'=-=令0A '=,得唯一驻点r =所以当r =2V h r π==,表面积最小. 6.(1)单调增加区间),52[]0,(+∞⋃-∞;单调递减区间]52,0[;极大值0)0(=f ; 极小值325453)52(-=f .(2)单调增加区间),5[]1,(+∞⋃--∞;单调递减区间]5,1[-;极大值10)1(=-f ;极小值98)5(-=f .7.(1)凹区间),1()1,0(+∞⋃;凸区间)0,(-∞;拐点)0,0( (2)凹区间),2(+∞;凸区间)2,(-∞;拐点)2,2(2-e8.3,0,1-===c b a ;9.提示:设每套租金为x ,总利润为y总利润)14000007200(1001)200)(100200050(2-+-=---=x x x x y )72002(1001'+-=x y 令0'=y ,得3500=x 且0501"<-=y即 3500=x 是y 达到最大值的点,最大利润112000=y 元.10.提示:平均成本12()252C q q q q-=-+; 边际成本21)('--=q q C 由)(')(q C qq C = 得625=q 11.34p EQ E P Ep P Q =-=当1=p 时,314p E =<,需求为低弹性; 当34=p 时,1p E =,需求为单位弹性; 当4=p 时,31p E =>,需求为高弹性.六、自测题三(一)填空题(每小题2分,共20分)1.32)(2--=x x x f 在]23,1[-上满足罗尔中值定理的=ξ ; 2.函数)1ln()(+=x x f 在]1,0[上满足拉格朗日中值定理的=ξ ; 3. 函数x x x f cos 2)(-=在区间 内是单调增加的; 4.曲线35)2(-=x y 的凸区间为__________________________________; 5.曲线3352x x y -+=的拐点是______________________________________;6. 曲线122-=x x y 有水平渐近线 ,垂直渐近线___________________;7. 函数)(x f =12+x 在[0,4]上的最大值是 ,最小值是______________; 8. 当4=x 时,函数q px x y ++=2取得极值,则p = ; 9. 若点(1,3)是曲线23bx ax y +=的拐点,则a = ,b = ; 10.总成本函数,10001001.0)(2++=x x x C 则边际成本为 ______.(二)单选题(每小题3分,共15分)1.函数)(x f 有连续二阶导数且2)0(",1)0(',0)0(-===f f f ,则2)(limx xx f x -→= ( ) A .不存在; B .0 ; C .-1 ; D .-2.2. 设函数)(x f 在),(b a 内连续,),(0b a x ∈,0)(")('00==x f x f ,则)(x f 在0=x 处 ( )A .取得极大值;B .取得极小值 ;C .一定有拐点))(,(00x f x ;D .可能取得极值,也可能有拐点. 3. 函数)(x f 在0x 处取得极值,则必有 ( ) A . 0)('=x f ; B . 0)("<x f ;C . 0)('=x f ,0)("<x f ;D . 0)('=x f 或)('x f 不存在.4.曲线32)2(2-+=x x y 的渐近线有 ( )A .一条;B .2条 ;C .3条 ;D .0条. 5.方程0133=+-x x 在区间),(+∞-∞内有 ( ) A .无实根; B .有唯一实根; C .有两个实根; D .有三个实根.(三)求下列极限(每小题6分,共24分) 1.)1ln(arctan lim31x x x x +-→; 2. x x x ln lim 50+→; 3. )]1ln(11[lim 20x xx x -+→; 4. x x x ln 10)(cot lim +→.(四)证明题(11分)1.证明不等式)0(1>+>x x e x;(5分) 2.证明方程015=-+x x 只有一个正根.(6分) (五)应用题(每小题10分,共30分)1.求函数123+--=x x x y 的单调区间、极值及凹凸区间、拐点. 2.在周长为定值l 的所有扇形中,当扇形的半径取何值时所得扇形面积最大? 3.某商品的需求函数为275)(p p Q -=(p 为价格) (1) 求4=p 的边际需求.(2) 求4=p 时需求价格的弹性,并说明经济意义. (3) 当p 为多少时,总收益最大?最大值时多少?七、自测题三答案(一)1.41; 2.12ln 1-; 3.),(+∞-∞; 4. )2,(-∞ 5.)2,0(; 6.1,1±==x y ; 7.3,1; 8.-8; 9.29,23-; 10.1002.0)('+=x x C . (二)1.C ; 2.D ; 3.D ; 4.B ; 5.D .(三)1.14ln 2π-2.0; 3.21-; 4. e 1.(四)1.证:设x e x f x--=1)(,在),0(+∞内连续,且01)('>-=xe xf ,)(x f 在),0(+∞内单调增加,0)0()(=>f x f ,即01>--x e x ,得证.2.提示:设()51f x x x =+-由零点定理证得()f x 在)1,0(内至少存在一点ξ,使得()510f ξξξ=+-=,再由4()510f x x '=+>,()f x 在()0,+∞内严格单调增加,故方程015=-+x x 只有一个正根.(五)1.单调递增区间为),1()31,(+∞⋃--∞;单调递减区间为)1,31(-; 极大值1332|27x y =-=;极小值0|1==x y ;凹区间为),31(+∞;凸区间为)31,(-∞;拐点)2716,31(. 2.设扇形半径为x ,弧长为x l 2-,扇形面积1(2)2y x l x =-,1'22y x l =-+, 令0'=y ,得驻点4l x =,唯一驻点 ,且"20y =-<,故4lx =为极大值点,所以,当4lx =时,扇形面积最大,最大面积为216l y =.3.(1)8|2|44-=-===p p p dpdQ(2)75222-=⋅=p p dp dQ Q p Ep EQ , 54.0|4-≈=p Ep EQ 说明若价格由4=p 上涨1%,则需求量减少0.54%.(3)375R pQ p p ==-,2375'p R -= ,令0'=R ,得5=p ,030|6"5<-=-==p p R ,所以 5=p 时总收益最大,最大值为250|5==p R .。

一元函数微分学内容概要总结

一元函数微分学内容概要总结

一元函数微分学内容概要总结
一元函数微分学是微积分的重要内容之一,主要研究函数的变化率、斜率、极值、凹凸性等性质。

以下是一元函数微分学的内容概要总结:
1. 导数与微分,导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率,常用符号表示为f'(x)或者dy/dx。

微分是函数在某一点附近的线性近似,常用符号表示为dy。

2. 函数的求导,通过求导可以得到函数在某一点的导数,可以通过极限的定义或者导数的运算法则进行求导。

3. 导数的应用,导数可以用来求函数的极值,判断函数的增减性和凹凸性,求曲线的渐近线,解决最优化问题等。

4. 微分方程,微分方程是关于未知函数及其导数的方程,是自然科学和工程技术中描述变化规律的重要数学工具。

5. 泰勒公式,泰勒公式是函数在某点附近的多项式逼近公式,可以用来近似计算函数的值。

6. 函数的高阶导数,除了一阶导数外,函数还可以有二阶导数、三阶导数等高阶导数,可以描述函数的曲率、加速度等性质。

7. 微分学与积分学的关系,微分学和积分学是微积分的两大分支,它们之间通过微积分基本定理建立了联系,即导数与原函数的
关系。

以上是一元函数微分学的内容概要总结,涵盖了导数与微分、
函数的求导、导数的应用、微分方程、泰勒公式、高阶导数以及微
分学与积分学的关系等内容。

希望能对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 微分学的应用一、本章学习要求与内容提要(一)学习要求1.了解罗尔中值定理、拉格朗日中值定理与柯西中值定理.2.会用洛必达法则求未定式的极限.3.掌握利用一阶导数判断函数的单调性的方法.4.理解函数的极值概念,掌握利用导数求函数的极值的方法,会解简单一元函数的最大值与最小值的应用题.5.会用二阶导数判断函数图形的凹性及拐点,能描绘简单函数的图形.重点 用洛必达法则求未定式的极限,利用导数判断函数的单调性与图形凹性及拐点,利用导数求函数的极值的方法以及求简单一元函数的最大值与最小值的应用题.(二)内容提要1. 三个微分中值定理 ⑴ 罗尔(Rolle )定理如果函数)(x f y =满足下列三个条件: ①在闭区间],[b a 上连续; ②在开区间),(b a 内可导; ③)()(b f a f =,则至少存在一点),,(b a ∈ξ使0)(='ξf .⑵ 拉格朗日(Lagrange )中值定理 如果函数)(x f y =满足下列两个条件: ①在闭区间],[b a 上连续; ②在开区间),(b a 内可导,则至少存在一点),(b a ∈ξ,使得,)()()(ab a f b f f --='ξ或))(()()(a b f a f b f -'=-ξ.⑶ 柯西(Cauchy )中值定理如果函数)(x f 与)(x g 满足下列两个条件: ①在闭区间],[b a 上连续;②在开区间),(b a 内可导,且),(,0)(b a x x g ∈≠', 则在),(b a 内至少存在一点ξ,使得)()()()()()(ξξg f a g b g a f b f ''=--. 2.洛必达法则 如果①,0)(lim 0=→x f x x 0)(lim 0=→x g x x ;② 函数)(x f 与)(x g 在0x 某个邻域内(点0x 可除外)可导,且0)(≠'x g ; ③ ),,()()(lim 0∞-+∞∞=''→或也可为为有限数A A x g x f x x ,则A x g x f x g x f x x x x =''=→→)()(lim )()(lim00. 注意 上述定理对于∞→x 时的00型未定式同样适用,对于0x x →或∞→x 时的∞∞型未定式也有相应的法则.3. 函数的单调性定理设函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,则有 ①若在),(b a 内0)(>'x f ,则函数)(x f 在],[b a 上单调增加; ②若在),(b a 内0)(<'x f ,则函数)(x f 在],[b a 上单调减少. 4 . 函数的极值、极值点与驻点⑴ 极值的定义 设函数)(x f 在点0x 的某邻域内有定义,如果对于该邻域内任一点)(0x x x ≠,都有)()(0x f x f <,则称)(0x f 是函数)(x f 的极大值;如果对于该邻域内任一点)(0x x x ≠,都有)()(0x f x f >,则称)(0x f 是函数)(x f 的极小值.函数的极大值与极小值统称为函数的极值,使函数取得极值的点0x 称为函数)(x f 的极值点.⑵ 驻点 使0)(='x f 的点x 称为函数)(x f 的驻点.⑶ 极值的必要条件 设函数)(x f 在0x 处可导,且在点0x 处取得极值,那么0)(0='x f .⑷ 极值第一充分条件设函数)(x f 在点0x 连续,在点0x 的某一去心邻域内的任一点x 处可导,当x 在该邻域内由小增大经过0x 时,如果①)(x f '由正变负,那么0x 是)(x f 的极大值点,)(0x f 是)(x f 的极大值; ②)(x f '由负变正,那么0x 是)(x f 的极小值点,)(0x f 是)(x f 的极小值; ③)(x f '不改变符号,那么0x 不是)(x f 的极值点. ⑸ 极值的第二充分条件设函数)(x f 在点0x 处有二阶导数,且()00='x f ,()00≠''x f ,则0x 是函数)(x f 的极值点,)(0x f 为函数)(x f 的极值,且有①如果0)(0<''x f ,则)(x f 在点0x 处取得极大值; ②如果0)(0>''x f ,则)(x f 在点0x 处取得极小值.5.函数的最大值与最小值在闭区间上连续函数一定存在着最大值和最小值.连续函数在闭区间上的最大值和最小值只可能在区间内的驻点、不可导点或闭区间的端点处取得.6. 函数图形的凹、凸与拐点⑴曲线凹向定义 若在区间),(b a 内曲线)(x f y =各点的切线都位于该曲线的下方,则称此曲线在),(b a 内是向上凹的(简称上凹,或称下凸);若曲线)(x f y =各点的切线都位于曲线的上方,则称此曲线在),(b a 内是向下凹的(简称下凹,或称上凸).⑵曲线凹向判定定理 设函数在区间),(b a 内具有二阶导数,① 如果在区间),(b a 内0)(>''x f ,则曲线)(x f y =在),(b a 内是上凹的. ② 如果在区间),(b a 内0)(<''x f ,则曲线)(x f y =在),(b a 内是下凹的.⑶拐点 若连续曲线)(x f y =上的点),(00y x P 是曲线凹、凸部分的分界点,则称点P 是曲线)(x f y =的拐点.7. 曲线的渐近线⑴水平渐近线 若当∞→x (或+∞→x 或-∞→x )时,有b x f →)((b 为常数),则称曲线)(x f y =有水平渐近线b y =.⑵垂直渐近线 若当a x →(或-→a x 或+→a x )(a 为常数)时,有∞→)(x f ,则称曲线)(x f y =有垂直渐近线a x =.⑶斜渐近线 若函数)(x f y =满足xx f a x )(lim ∞→=, ])([lim ax x f b x-=∞→(其中自变量的变化过程∞→x 可同时换成+∞→x 或-∞→x ),则称曲线)(x f y =有斜渐近线b ax y +=.二 、主要解题方法1 . 用洛必达法则求未定式的极限的方法例1 求下列极限 (1)201cot limx x x x -→ (2))e e ln()3ln(cos lim33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim ++∞→解 (1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→ 30sin cos lim x xx x x -=→ (分母等价无穷小代换)01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x x x e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型. )]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型)=1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nx n xnxx nx (5)此极限为∞∞型,用洛必达法则,得 1sin 1lim cos lim x x x x x x -=++∞→+∞→不存在, 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x . 小结 使用洛必达法则时,应注意以下几点:(1)洛必达法则可以连续使用,但每次使用法则前,必须检验是否属于00或∞∞未定型,若不是未定型,就不能使用法则;(2)如果有可约因子,或有非零极限的乘积因子,则可先约去或提出,以简化演算步骤;(3)当)()(limx g x f ''不存在时,并不能断定)()(lim x g x f 也不存在,此时应使用其他方法求极限.2 . 单调性的判别与极限的求法例2 试证当1≠x 时,x xe e >.证 令x x f x e e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f . 当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即 当1>x 时,e e )(-='xx f 0>,可知()f x 为),1[+∞上的严格单调增加函数,即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x xx xe e >.例 3 求函数344x x y -=的单调性与极值. 解 函数的定义域为),(+∞-∞. )3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值, ,093>=''=x y 得427)3(-=y 是极小值. 小结 用单调性来证明不等式,其方法是将不等式两边的解析式移到不等式的一边,再令此不等式的左边为函数)(x f ;利用导数判定)(x f 的单调性;最后利用已知条件与单调性,得到不等式。

由例3知,用二阶导数讨论函数在某点的极值不需列表也很方便,但它的使用范围有限,对0)(=''x f 、)(x f '及)(x f ''同时不存在的点不能使用.3. 求函数的凹向及拐点的方法例4 求函数)1ln(2x y +=的凹向及拐点. 解 函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表由此可知,上凹区间(1,1)-,下凹区间(,1-∞-+∞,曲线的拐点是)2ln ,1(±.小结 求函数的凹向与拐点只需用拐点的定义及凹向的判别定理即可,注意拐点也可在使y ''不存在的点取得.4. 求函数的最大值与最小值的方法例5 求函数 32)52(x x y -=在区间]2,1[-上的最大值与最小值 . 解 函数在]2,1[-上连续, 由于313)1(10xx y -=',令 0='y , 则 1=x ,y '在0=x 处不存在. 故7}3,0,2,7min{32min -=---=y .小结 函数的最大(小)值是整个区间上的最大(小)值,求最大(小)值的一般步骤为(1)求出)(x f 在),(b a 内的所有驻点及不可导点;(2)求出函数在驻点、不可导点、区间端点处的函数值;(3)比较这些值的大小,其中最大者即为函数的最大值,最小者即为函数的最小值.5 . 求曲线渐近线的的方法. 例6 求下列曲线的渐近线(1)x x y ln = (2)1222-+-=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim0, 可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim 2,[]b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.6 . 函数图形的描绘例 7 作出函数 22)1(+=x x y 的图形. 解 函数的定义域),1()1,(+∞-⋃--∞,()()()()34221211212+=++⋅-+='x xx x x x x y ,4623)1(42)1()1(32)1(2+-=++⋅-+=''x xx x x x y , 令 ,0='y 0=''y , 解得 21,021==x x .由上表可知: 极小值1)0(=f , 拐点 )91,21(.(3)渐近线1)1(lim lim 22=+=∞→∞→x x y x x , 所以 1=y 是水平渐近线,+∞=+=-→-→2211)1(lim lim x x y x x , 所以 1-=x 是铅直渐近线. (4)作图如图所示.7 . 求实际问题的最大值,最小值的方法例 8 一条边长为a 的正方形薄片,从四角各截去一个小方块,然后折成一个无盖的方盒子,问截取的小方块的边长等于多少时,方盒子的容量最大?解 设截取的小方块的边长为 )20(ax x <<,则方盒子的容积为令 0)(='x v , 得驻点 2,621ax a x ==(不合题意,舍去) 由于在)2,0(a内只有一个驻点,由实际意义可知,无盖方盒子的容积一定有最大值.因此, 当6ax =时 )(x v 取得最大值.故当正方形薄片四角各截去一个边长是6a的小方块后,折成一个无盖方盒子的容积最大 .小结 求最优化问题,关键是在某个范围内建立目标函数)(x f ,若根据实际问题本身可以断定可导函数)(x f 一定存在最大值或最小值,而在所讨论的区间内部)(x f 有惟一的极值点,则该极值点一定是最值点.三 、学法建议1.本章重点是用洛必达法则求未定式的极限,利用导数判定函数的单调性与凹向及拐点,利用导数求函数的极限的方法以及求简单函数的最大值与最小值问题.2.中值定理是导数应用的理论基础,一定要弄清楚它们的条件与结论.尽管定理中并没有 指明ξ的确切位置,但它们在利用导数解决实际问题与研究函数的性态方面所起的作用仍十分重要.建议在学习过程中借助几何图形,知道几个中值定理的几何解释.3.洛必达法则求极限时,建议参照本章例1 中的几点注意,并且和教科书第二章求极 限的方法结合起来使用.4. 函数的图形是函数的性态的几何直观表示,它有助于我们对函数性态的了解,准确做出函数图形的前提是正确讨论函数的单调性,极值,凹向与拐点以及渐近线等,这就要求读者按教材中指出的步骤完成.。

相关文档
最新文档