常用逻辑用语PPT学习课件下载

合集下载

常用逻辑用语课件PPT

常用逻辑用语课件PPT
解析答案
12345
5.若“x<m”是“(x-1)(x-2)>0”的充分不必要条件,求m的取值范围. 解 由(x-1)(x-2)>0可得x>2或x<1, 由已知条件,知{x|x<m} {x|x>2或x<1}. ∴m≤1.
解析答案
课堂小结
1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进行判断. (2)等价法:利用逆否命题的等价性判断,即要证p⇒q,只需证它的逆否 命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可. (3)利用集合间的包含关系进行判断. 2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、 必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系, 然后建立关于参数的不等式(组)进行求解.
答案
思考 (1)数学中的判定定理给出了结论成立的什么条件? 答案 充分条件. (2)性质定理给出了结论成立的什么条件? 答案 必要条件.
答案
返回
题型探究
题型一 充分条件、必要条件 例1 给出下列四组命题: (1)p:两个三角形相似,q:两个三角形全等; 解 ∵两个三角形相似⇏两个三角形全等, 但两个三角形全等⇒两个三角形相似, ∴p是q的必要不充分条件. (2)p:一个四边形是矩形,q:四边形的对角线相等; 解 ∵矩形的对角线相等,∴p⇒q, 而对角线相等的四边形不一定是矩形,∴q⇏p. ∴p是q的充分不必要条件.
知识梳理
自主学习
知识点 充分条件与必要条件 一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们 就说,由p可推出q,记作p⇒q,并且说p是q的 充分条件,q是p的 必要条件 . (1)p是q的充分条件与q是p的必要条件表述的是同一个逻辑关系,只是说法 不同.p是q的充分条件只反映了p⇒q,与q能否推出p没有任何关系. (2)注意以下等价的表述形式:①p⇒q;②p是q的充分条件;③q的充分条 件是p;④q是p的必要条件;⑤p的必要条件是q. (3)“若p,则q”为假命题时,记作“p⇏q”,则p不是q的充分条件,q不 是p的必要条件.

常用逻辑用语课件

常用逻辑用语课件

模态逻辑的应用
哲学领域
模态逻辑被广泛应用于哲学推理和论证,特别是关于必然性和可 能性的问题。
人工智能领域
模态逻辑在人工智能领域也有广泛的应用,用于表示和推理不确定 性,例如在专家系统和决策支持系统中。
法律领域
模态逻辑在法律领域的应用主要涉及法律论证和法律解释,例如在 法律推理和法律解释中需要考虑必然性和可能性等问题。
危害
导致思维混乱、判断失误、决策失误 等。
如何避免逻辑错误
01
02
03
04
明确概念
准确理解概念的含义,避免混 淆和偷换概念。
全面分析
对问题进行分析时,要全面考 虑各种可能性,避免以偏概全

充分论证
在进行推断时要充分论证,避 免基于不充分的信息做出错误
判断。
客观分析
对信息进行客观分析,不带有 个人偏见和情感色彩。
模态推理规则
必然推理规则
如果p是必然的,那么¬p是不可能的。例如:如果明天必然下雨,那么明天不可能不下雨 。
可能推理规则
如果p是可能的,那么¬p是不确定的。例如:如果明天可能下雨,那么明天不确定不下雨 。
互为对偶的模态命题推理规则
如果p是必然的,那么¬p是不可能的;如果p是不可能的,那么¬p是必然的。例如:如果 明天必然下雨,那么明天不可能不下雨;如果明天不可能不下雨,那么明天必然下雨。
归纳方法及其应用
01
02
归纳方法:包括简单枚 举归纳、排除归纳、概 率归纳等。
归纳方法的应用
03
04
05
科学发现:科学家通过 观察实验数据,运用归 纳方法得出科学规律。
数据分析:在商业、社 会科学等领域,归纳方 法用于分析数据,发现 潜在规律。

第1单元-集合与常用逻辑用语(130张PPT)-

第1单元-集合与常用逻辑用语(130张PPT)-

表示法 _N___ N*_或___N+ __Z__
__Q__
__R__
返回目录
第1讲 集合及其运算


4. 集合有三种表示法:_列__举__法___,_描__述__法___,
固 基
_图__示__法___.

5. 集合的分类:按集合中元素个数划分,集合可以分
为__有__限__集__、__无__限__集__、__空__集____.
2012年湖南T1(A)
说明:A表示简单题,B表示中等题,C表示难题,考频
分析2012年课标地区真题情况.
返回目录
第1讲 集合及其运算
► 探究点一 集合的基本概念的理解
例 1 (1)已知 A={a+2,(a+1)2,a2+3a+3},若 1∈A,
点 则实数 a 构成的集合 B 的元素个数是( )
面 讲
={0,1}=N.
返回目录
第1讲 集合及其运算
考点统计
题型(考频)
题型示例(难度)

1.集合的基本概念
填空(1) 解答(1)
2009年天津T9(A)
面 讲 考
2.集合间基本关系
选择(3)
2012年课标T1(A), 2012年福建T2(A)

2012年广东T2(A),
3.集合的基本运算
选择(9)
2012年北京T1(A), 2012年浙江T1(A),
返回目录
第1讲 集合及其运算


—— 知 识 梳 理 ——
固 基
一、元素与集合

1.集合中的元素有三个性质:确定性 , 互异性 ,
无序性.
2.集合中元素与集合的关系分为属__于__和 不属于 两

常用逻辑用语课件ppt

常用逻辑用语课件ppt

解析答案
课堂小结
1.判断命题是全称命题还是特称命题,主要是看命题中是否含有全称 量词或存在量词,有些全称命题虽然不含全称量词,可以根据命题涉 及的意义去判断. 2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立; 若能举出一个反例说明命题不成立,则该全称命题是假命题. 3.要确定一个特称命题是真命题,举出一个例子说明该命题成立即可; 若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假 命题.
知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
自主学习
知识点一 全称量词和全称命题 (1)全称量词:短语“对所有的”“对任意一个”在逻辑中通常叫做_全__称_ 量词 ,并用符号“ ∀”表示. (2)全称命题:含有全称量词的命题叫做全称命题.全称命题“对M中任意 一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M, 有p(x)成立”.
答案
思考 (1)在全称命题和特称命题中,量词是否可以省略? 答案 在特称命题中,量词不可以省略;在有些全称命题中,量词可以 省略. (2)全称命题中的“x,M与p(x)”表达的含义分别是什么? 答案 元素x可以表示实数、方程、函数、不等式,也可以表示几何图形, 相应的集合M是这些元素的某一特定的范围.p(x)表示集合M的所有元素 满足的性质.如“任意一个自然数都不小于0”,可以表示为“∀x∈N, x≥0”.
返回
第一章 § 1.4 全称量词与存在量词
1.4.1 全称量词 1.4.2 存在量词
学习 目标
1.通过生活和数学中的丰富实例理解全称量词与存在量词的含义, 熟悉常见的全称量词和存在量词. 2.了解含有量词的全称命题和特称命题的含义,并能用数学符号表示 含有量词的命题及判断其命题的真假性.

高二数学课件:常用逻辑用语复习PPT共42页

高二数学课件:常用逻辑用语复习PPT共42页
高二数学课件:常用逻辑用语复习
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——乌申斯基
谢谢!
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚

常用逻辑用语ppt课件

常用逻辑用语ppt课件

最新课件
28
变式训练 3 (2010·辽宁)为了比较注射 A,B 两种 药物后产生的皮肤疱疹的面积,选 200 只家兔做 试验,将这 200 只家兔随机地分成两组,每组 100 只,其中一组注射药物 A,另一组注射药物 B.表 1 和表 2 分别是注射药物 A 和药物 B 后的试验结 果.(疱疹面积单位:mm2)
所以 p⇒q 但 q⇒p,故 p 是 q 的充分不必要条件.
最新课件
11
题型分类 深度剖析
题型一 含有逻辑联结词命题的真假判断 例 1 写出由下列各组命题构成的“p∨q”、“p∧q”、
“綈 p”形式的复合命题,并判断真假. (1)p:1 是质数;q:1 是方程 x2+2x-3=0 的根; (2)p:平行四边形的对角线相等;q:平行四边形的对 角线互相垂直; (3)p:5≤5;q:27 不是质数.
解析 若 r>0,表示两个相关变量正相关,x 增大时,y
也相应增大,故①正确;r<0,表示两个变量负相关,
x 增大时,y 相应减小,故②错误;|r|越接近 1,表示
两个变量相关性越高,|r|=1 表示两个变量有确定的关
系(即函数关系),故③正确.
最新课件
24
题型分类 深度剖析
题型一 线性回归分析 例 1 假设关于某种设备的使用年限 x(年)与所支出的维修
➢ 难点
(1)2的意义及推导;
(2)相关系数r的意义。
最新课件
15
§10.4 统计案例
基础知识 自主学习
要点梳理
1.回归分析 (1)定义:对具有 相关关系 的两个变量进行统计分析
的一种常用方法.
(2)样本点的中心
对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn),其回归直线 y=bx+a 的斜率和截距的最小

常用逻辑用语章末归纳总结46页PPT

常用逻辑用语章末归纳总结46页PPT
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
常用逻辑用语章末归纳总结 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END

《常用逻辑用语》集合与常用逻辑用语PPT-完美版

《常用逻辑用语》集合与常用逻辑用语PPT-完美版
栏目 导引
第一章 集合与常用逻辑用语
1.以下四个命题既是存在量词命题又是真命题的是( ) A.锐角三角形的内角是锐角或钝角 B.至少有一个实数 x,使 x2≤0 C.两个无理数的和必是无理数 D.存在一个负数 x,使1x>2 答案:B
栏目 导引
第一章 集合与常用逻辑用语
2.下列命题是“∀x∈R,x2>3”的另一种表述方式的是( ) A.有一个 x∈R,使得 x2>3 B.对有些 x∈R,使得 x2>3 C.任选一个 x∈R,使得 x2>3 D.至少有一个 x∈R,使得 x2>3 答案:C
栏目 导引
第一章 集合与常用逻辑用语
于 D,∃x,y∈R,x2+y2<0 是存在量词命题,是假命题,不合
题意.故选 B.
栏目 导引
第一章 集合与常用逻辑用语
全称量词命题与存在量词命题的否定 写出下列命题的否定,并判断其真假. (1)p:所有的方程都有实数解; (2)q:∀x∈R,4x2-4x+1≥0; (3)r:∃x∈R,x2+2x+2≤0; (4)s:某些平行四边形是菱形.
栏目 导引
第一章 集合与常用逻辑用语
写全称量词命题与存在量词命题的否定的思路 在书写全称量词命题与存在量词命题的否定时,一定要抓住决 定命题性质的量词,从量词入手,书写命题的否定.全称量词 命题的否定是存在量词命题,存在量词命题的否定是全称量词 命题.
栏目 导引
第一章 集合与常用逻辑用语
1.命题“存在一个无理数,它的平方是有理数”的否定是 () A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数 解析:选 B.量词“存在 ”否定后为“任意”,结论“它的平 方是有理数”否定后为“它的平方不是有理数”.故选 B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假→复合命题的构成
判断正误: (1)逻辑联结词“且”“或”只能出现在命题的结论中.( (2)“p∨q 为假命题”是“p 为假命题”的充要条件.( (3)命题“p∨(綈 p)”是真命题.( ) ) ) )
(4)梯形的对角线相等且平分是“p∨q”的形式命题.(
【解析】 (1)×.逻辑联结词“且”“或”也可以出现在命题的条件中. (2)×.“p∨q 为假命题”是“p 为假命题”的充分不必要条件. (3)√.命题 p 与綈 p 必有一个是真命题,另一个是假命题,故 p∨(綈 p)是真命 题. (4)×.梯形的对角线相等且平分是“p∧q”的形式命题.
2.命题的构成形式 (1)用联结词“或”把命题 p 和命题 q 联结起来,就得到一个新命题, 记作“ p∨q ”,读作 p或q . (2)用联结词“且”把命题 p 和命题 q 联结起来,就得到一个新命题, 记作“ p∧q ”,读作 p且q . (3)对一个命题 p 进行否定,就得到一个新命题,记作“ 綈p ”,读作 “ 非p ”或 p的否定 .
含逻辑联结词的命题的真 假判断
分别指出下列各组命题构成的“p∧q”“p∨q”“綈 p”形式的命 题的真假. (1)p:6<6,q:6=6; (2)p:梯形的对角线相等,q:梯形的对角线互相平分; (3)p:函数 y=x2+x+2 的图象与 x 轴没有公共点,q:不等式 x2+x+2<0 无 解; (4)p:函数 y=cos x 是周期函数,q:函数 y=cos x 是奇函数.
阶 段 一
阶 段 三
2018 年数学常用逻辑用语 1.2 简单的逻辑联结词
学 业 分 层 测 评
阶 段 二
1.了解“或”“且”作为逻辑联结词的含义,掌握“p∨q”、“p∧q”命题的 真假规律.(重点、难点) 2.了解逻辑联结词“非”的含义,能写出简单命题的“綈 p”命题.(易混点)
[基础· 初探] 教材整理 1 逻辑联结词及命题的构成形式 阅读教材 P9 例 1 以上部分,完成下列问题. 1.逻辑联结词 命题中的 “或”、“且”、“非” 叫做逻辑联结词.
【答案】 (1)× (2)× (3)√ (4)×
教材整理 2 含逻辑联结词的命题的真假判断 阅读教材 P10 例 2 以上部分,完成下列问题. 含逻辑联结词的命题的真假判断
p q p∨q p∧q 綈p
真 真
假 假
真 假
真 假
真 真
真 假
真 假
假 假
假 假
真 真
命题“35 是 7 的倍数或 15 是 7 的倍数”是________命题(填“真”或“假”).
【解】 (1)这个命题是“p 且 q”的形式,其中,p:小李是老师;q:小赵是 老师. (2)这个命题是“p 或 q”的形式,其中,p:1 是合数;q:1 是质数. (3)这个命题是“p 且 q”的形式,其中,p:他是运动员;q:他是教练员. (4)这个命题是“p 且 q”的形式,其中,p:这些文学作品艺术上有缺点;q: 这些文学作品政治上有错误.
1. 利 用 逻 辑 联 结 词 “ 或 ”“ 且 ”“ 非 ” 构 造 新 命 题 , 关 键 是 要 理 解 “或”“且”“非”的含义. 2.构造新命题时,在不引起歧义的前提下,可把命题适当地简化.
[再练一题] 1.分别指出下列命题的构成形式. (1)小李是老师,小赵也是老师; (2)1 是合数或质数; (3)他是运动员兼教练员; (4)这些文学作品不仅艺术上有缺点,而且政治上有错误. 【导学号:24830009】
[小组合作型]
含逻辑联结词命题的构成
分别写出由下列命题构成的“p∨q”“p∧q”“綈 p”形式的命题: (1)p:π 是无理数,q:e 不是无理数; (2)p:方程 x2+2x+1=0 有两个相等的实数根,q:方程 x2+2x+1=0 的两根 的绝对值相等; (3)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于 与它不相邻的任何一个内角.
【精彩点拨】 明确“p∨q”“p∧q”“綈 p”→明确每组命题→分别用逻辑 联结词构造命题
【自主解答】 (1)“p∨q”:π 是无理数或 e 不是无理数;“p∧q”:π 是无 理数且 e 不是无理数; “綈 p”:π 不是无理数.
(2)“p∨q”:方程 x2+2x+1=0 有两个相等的实数根或两根的绝对值相等; “p∧q”:方程 x2+2x+1=0 有两个相等的实数根且两根的绝对值相等; “綈 p”:方程 x2+2x+1=0 没有两个相等的实数根. (3)“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相 邻的任何一个内角; “p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻 的任何一个内角; “綈 p”:三角形的外角不等于与它不相邻的两个内角的和.
【解析】 “35 是 7 的倍数”是真命题,“15 是 7 的倍数”是假命题. ∴命题“35 是 7 的倍数或 15 是 7 的倍数”是真命题.
【答案】 真
[质疑· 手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1:________________________________________________________________ 解惑:_________________________________________________________________ 疑问 2:________________________________________________________________ 解惑:_________________________________________________________________ 疑问 3:________________________________________________________________ 解惑:_________________________________________________________________
相关文档
最新文档