华东师大版七年级数学上册 2.11《有理数的乘方》讲义设计(无答案)
七年级数学上册 2.11《有理数的乘方》知识点解读素材 (新版)华东师大版

《有理数的乘方》知识点解读知识点1 乘方的意义(重点)(1)乘方的定义:求n 个相同因数a 的积的运算叫做乘方.(2)乘方的形式:....n an a a a a ⨯⨯⨯=个(3)n a 的读法与理解:n a 读作a 的n 次幂(或a 的n 次方),a 、n 与n a 的理解如图.算(相同因数的乘法运算).注意:幂是乘方运算的结果;(2)加减运算是一级运算,乘除是二级运算,乘方、开方(今后将学到)是三级运算;(3)一个数可以看作它本身的一次方;(4)当底数是负数或分数时,要先用括号将底数括上,再写指数,如23的平方为22()3,而不能写成223,-1的平方为2(1)-,而不能写成21-. 【例1】把下列各式写成乘方的形式: 33331(1);(2)3333;55554(3)(3)(3)(3);(4)222 2.⨯⨯⨯⨯⨯⨯⨯-⨯-⨯--⨯⨯⨯ 解析:本题旨在强化对乘方的意义的理解,要分清底数和指数.答案:4333433333(1)(;55555113(2)33333;444(3)(3)(3)(3)(3);(4)22222.⨯⨯⨯=⨯⨯⨯⨯=⨯=-⨯-⨯-=--⨯⨯⨯=- 规律总结:(1)底数是分数和负数时,一定要用括号把底数括起来,指数写在括号的外面.(2)相同的因数为底数,而相同因数的个数为指数.【类型突破】读出下列各数,并指出其中的底数和指数.2 73485(1)(9);(2)8;(3)2;(4)().6-- 答案:(1)读作:-9的7次方,底数是-9,指数是7;(2)读作:8的3次方,底数是8,指数是3;(3)读作:2的4次方的相反数,底数是2,指数是4;(4)读作:56的8次方,底数是56,指数是8. 知识点2 乘方的符号法则(难点)(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数,负数的偶次幂是正数.说明:①任何数的偶次幂都是非负数;②有理数的乘方运算与有理数的加减乘除一样,首先要确定幂的符号,然后再计算幂的绝对值;③由有理数的乘法法则可知:0的任何非零次幂等于0;10的几次幂等于1后面加几个0;1的任何次幂都得1.【例2 】计算:244312(1)(3);(2)3;(3)();(4).23---- 解析:根据乘方的运算的符号法则,确定幂的符号,再用乘法求幂的绝对值. 答案:4432(1)(3)(3333)81;(2)3(3333)81;11111(3)()();222282224(4).333-=+⨯⨯⨯=-=-⨯⨯⨯=--=-⨯⨯=-⨯-=-=-错因分析:乘方中的指数表示相同因数的个数,不能把底数与指数相乘.【类型突破】计算:221(1)(1);(2)(1)(.n n n +--为正整数)答案:(1)1 (2)-1。
华师大版数学七年级上册2.11《有理数的乘方》说课稿

华师大版数学七年级上册2.11《有理数的乘方》说课稿一. 教材分析《有理数的乘方》是华师大版数学七年级上册第2.11节的内容。
本节内容是在学生掌握了有理数的概念和运算法则的基础上进行教学的。
有理数的乘方是数学中一个重要的概念,它不仅在数学本身中有广泛的应用,而且在物理、化学等自然科学领域也有广泛的应用。
因此,本节课的教学对于学生理解和掌握数学知识,提高解决实际问题的能力具有重要意义。
二. 学情分析面对的是一群刚刚接触初中数学的七年级学生,他们对于有理数的概念和运算法则已经有了一定的了解,但是还不是很扎实。
因此,在教学过程中,需要教师耐心引导,让学生在原有知识的基础上,逐步理解和掌握有理数的乘方。
三. 说教学目标1.知识与技能目标:让学生理解和掌握有理数的乘方概念和运算法则,能够熟练地进行有理数的乘方运算。
2.过程与方法目标:通过观察、分析和归纳,培养学生的逻辑思维能力和自主学习能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们克服困难、解决问题的信心和决心。
四. 说教学重难点1.教学重点:有理数的乘方概念和运算法则。
2.教学难点:理解有理数乘方的实质,掌握有理数乘方的运算法则。
五. 说教学方法与手段在本节课的教学中,我将采用讲授法、引导发现法、讨论法等多种教学方法。
同时,利用多媒体教学手段,如PPT、网络资源等,为学生提供丰富的学习材料,帮助学生更好地理解和掌握有理数的乘方。
六. 说教学过程1.导入:通过一个实际问题,引出有理数的乘方概念,激发学生的学习兴趣。
2.新课讲解:讲解有理数的乘方概念和运算法则,让学生通过观察、分析和归纳,理解有理数乘方的实质。
3.例题解析:通过典型例题,讲解有理数乘方的运算法则,让学生在实践中掌握有理数乘方的运算方法。
4.巩固练习:让学生进行自主练习,及时巩固所学知识。
5.课堂小结:总结本节课的主要内容,让学生明确有理数的乘方概念和运算法则。
6.课后作业:布置适量作业,让学生进一步巩固所学知识。
华东师大版七年级上册数学:2.11 有理数的乘方(公开课课件)

an的意义:表示n个a相乘。 (结合课本云图理解) 说出各式的意义: (1)(-4)5 (2)67
(3)98
幂 底数 意义不同 读法不同
不同
an
a n个a相乘的积 a的n次方
(幂)
-an
a
n个a相乘的 a的n次方的 积的相反数 (幂)的相
反数
(-a)n -a n个-a相乘的 积
-a的n次幂
你能发现什么规律?
2.当底数是负数或分数时, 底数一定要加括号,才能体现 底数是负数或分数的整体性。
3.一个数可以看作这个数本 身的一次方。
把下列各式写成乘方的形式:
(1)6×6×6 =
(2)2.1×2.1=
(3)(-3)(-3)(-3)(-3)=
(4) 1 × 1× 1×
×1
1
=
2
22
2
2
提示:底数是负数或分数时,必须加上 括号。
其中a代表相乘的因数,n代表 相乘因数的个数即:
n个a
an = a×a×a×···×a
乘方与乘方的异同点
运算 加 减 乘 除 乘方
结果 和 差 积 商 幂
底数
an
指数
读作:a的n次方
幂
a的n次幂
练习:①2 3中底数是,指 Nhomakorabea是,
读作:
。
②(- 1 )2 中底数是
2
,读作:
,指数是 。
特别强调:1.一个数的2次、3 次方有三种读法。
答:正数的任何次幂还是正数; 负数的奇次幂是负数;偶次
幂是正数.
延伸拓展:任何数的偶次幂具有非 负数,即偶次幂具有非负性。
.0、1的任何正整数次幂都是其 本身; .-1的偶次幂是1,奇次幂是-1。
华东师大版七年级数学上册2.11有理数的乘方教案

华东师大版 七年级 数学上册课题2.11有理数的乘方课型新授课型授课教师课时1课时教材内容 《有理数的乘方》这节课选自华东师范版《数学》七年级上册第二章第11节的内容,乘方是有理数的一种基本运算,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后续学习有理数的混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。
教学目标 知识与技能:理解乘方的意义,能进行有理数的乘方运算。
过程与方法:经历探索有理数乘方的过程,培养转化的思想方法。
情感、态度与价值观:通过类比、观察、归纳得出正确的结论,培养探索,猜想的习惯。
学生情况分析七年级共有43人,从知识基础方面来看,学生已经有了两个方面良好的基础,一是在生物学中学习细胞的分裂,使学生能很好的理解乘方的意义和记法,实现知识的正迁移与学科间的联系;二是学生刚学完有理数的乘法不久,具备良好的运算基础,对于准确理解有理数乘方的符号法则具有很重要的作用,缺点是从小养成了重结果、轻过程的习惯,基础知识不够扎实,计算准确性不够。
对于2)5(-与25-这类型运算易混淆。
重点 有理数的乘方的运算 难点 带各种符号的乘方运算教学流程教学内容教师活动学生活动设计意图 创设情景出示目标知识与技能:理解乘方的意义,能进行有理数的乘方运算。
过程与方法:经历探索有理数乘方的过程,培养转化的思想方法。
情感、态度与价值观:通过类比、观察、归纳得出正确的结论,培养探索,猜想的习惯。
利用幻灯片出示目标 明确本节所要达到的目标让学生对本节要学习的内容有大体的认识,并且带着目的走进课堂提出问题某种细胞每过30分钟便由1个分裂成2个,如图2-11-1所示.经过5小时,这种细胞由1个能分裂成多少个?5小时分裂10次,分裂成 个,该式子是10个2的积,有没有一种简便记法来表示这个结果呢?通过本节课的学习,你将会得到问题的答案! 教师提出问题,安排学生思考。
七年级数学上册 2.11《有理数的乘方》世界上最大的数拓展资源素材 (新版)华东师大版

一个具有实际意义的最大的数13310你知道世界上哪一个数最大吗?要回答这个问题可真不容易,因为自然数列是无限的,任何人也无法说出一个最大而又不能再加一的自然数.可是,现在有人发现了一个奇怪的大数,它可以用来表示人类现今的知识领域中所能想象出来的一切事物而绰绰有余.这个数既有物理意义,也是目前所能知道的最大的大数,它就是133 10.为什么说它是目前人们所能知道的最大的数呢?为了说明这个问题,让我们先介绍一下在此以前,由美国数学家卡斯纳发现的——“古怪尔”数吧!地球上到处都充满了砂子,如果把所有的砂粒加起来,总该是一个大得惊人的数了吧?并不!如果假定在每立方毫米里装10粒砂子,那么当全地球都充满砂子时,总数也不过是3110粒,这比“古怪尔”数小多了.那么,用宇宙间的数值来比,是否会使数更大些呢?光年是计算星际间距离的一个单位.一光年约等于95万亿公里,即9.5×1210公里.如果我们不用光年,而用微米来度量宇宙间的距离,那该是一个多么大的数值啊!但这个数还是比“古怪尔”数小.因为从地球到银河系最远的星球,也只有3710微米.地球、月球、太阳以至宇宙的年龄,都是用“亿年”来计算的,如果我们把这个时间单位再缩小,改用比秒还短得多的时间单位来计算宇宙星球的年龄,那这个数又有多大呢?目前最短的时间单位叫光核,就是光线穿过原子核所需的时间.这样计算下来,宇宙的年龄也不过才4010光核.那么,把宇宙间所有的质子加起来该有多少呢?经计算其总数为8810,还是比“古怪尔”数小得多!于是,卡斯纳推断说:“古怪尔”数——10010是世界上最大最大的数.但是随着人们对宏观世界和微观世界观测的日趋深入,数的领域也在不断扩大.六十年代以来,天文学家观测到了一种离我们极其遥远的似星非星的天体——类星体.它以极快的速度远离我们而去.其中一种代号为OQ172的类星体离我们足足有160亿光年,即1.5×2810厘米远.最近,澳大利亚和英国天文学家又发现了一颗距离更远的类星体,离我们有200亿光年,即1.9×2810厘米.这是目前我们所能观测到的最远的天体了.如果我们用这个最远的距离1.9×2810厘米和在微观世界中最小的电子半径1610 厘米相比,可以得出一个比值:13310──这是迄今为止我们通过测量所得的具有意义的最大数,它比“古怪尔”数10010,还要大10亿亿亿亿倍呢!2。
巴南区九中七年级数学上册 第二章 有理数 2.11 有理数的乘方教案4 华东师大版

有理数的乘方教学目标1.使学生理解有理数乘方的概念,掌握有理数乘方的运算。
2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神。
3.渗透分类讨论思想。
教学重点和难点重点:有理数乘方的运算。
难点:有理数乘方运算的符号法则。
教学过程一、创设情境,揭示目标: 1.计算: (1) 3439÷⎪⎭⎫ ⎝⎛-; (2) ()()⎪⎭⎫ ⎝⎛-÷-÷-51146 2. 在小学我们已经学习过a ·a ,记作a2,读作a 的平方(或a 的二次方);a ·a ·a 作a3,读作a 的立方(或a 的三次方);那么,a ·a ·a ·a 可以记作什么?读作什么?a ·a ·a ·a ·a 呢?个n a a a a ⋅⋅ (n 是正整数)呢?学习目标:1、理解有理数乘方的概念;2、掌握有理数乘方的运算。
二、自学指导(课件出示)认真阅读教科书第57—58页1、掌握几个概念:乘方、幂、底数、指数等;2、阅读课本例题会进行乘方运算。
三、学生自学,教师巡视。
学生看书,教师巡视,确保人人独立认真看书。
四、引导更正,指导运用1.概念:一般地,我们有:n 个相同的因数a 相乘,即个n a a a a ⋅⋅,记作na 。
例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4。
这种求几个相同因数的积的运算,叫做乘方(involution),乘方的结果叫做幂(power)。
在an 中,a 叫作底数,n 叫做指数,很重an 读作a 的n 次方,an 看作是a 的n 次方的结果时,也可读作a 的n 次幂。
例如,23中,底数是2,指数是3,23读作2的3次方,或2的3次幂。
一个数可以看作这个数本身的一次方,例如8就是81,通常指数为1时省略不写。
2.例题:例1:计算:(1) ()32-; (2) ()42-; (3) ()52-。
河南省南阳市十三中七年级数学上册2.11有理数的乘方说课稿新版华东师大版

有理数的乘方尊重的列位评委、列位教师:你们好!今天我说课的题目是《有理数的乘方》。
《有理数的乘方》是华师大版《义务教育课程标准实验教科书·数学·七年级(上)》第二章第十一节的内容。
依照新课标的理念,关于本节课,我将从教材分析、教学目标、教学方式、教学进程、板书设计这五个方面加以说明。
一、教材分析:乘方是有理数的一种大体运算,在此之前学生已经学习过了有理数的加、减、乘、除,乘方既是有理数乘法的推行和延续,又为后续学习有理数的混合运算、科学记数法、开方和整式的幂的运算做了铺垫,起到继往开来的作用。
基于对教材的明白得和分析,结合新课标对本节课的要求,我将本节课的教学重点确信为:有理数的乘方、幂、底数、指数的概念及意义;有理数乘方的运算;乘方的符号法那么。
教学难点确信为:乘方的符号法那么及其探讨进程。
二、教学目标:依照新课标的要求,教学目标应包括知识技术、数学试探、问题解决,情感态度这四个方面,而这四维目标又应是紧密联系的一个有机整体,因此,我将四维目标进行整合,确信本节课的教学目标为:知识技术:让学生明白得并把握有理数的乘方、幂、底数、指数的概念及意义,能够正确进行有理数的乘方运算。
数学试探与问题解决:在熟悉的问题中让学生取得有理数乘方的初步体会,培养学生观看、分析、归纳、归纳的能力;经历从乘法到乘方的推行进程和乘方的符号法那么探讨进程,从中感受类比,从特殊到一样,转化和分类讨论的数学思想方式。
情感与态度目标:让学生通过主动探讨,合作交流,归纳归纳出有理数乘方的符号法那么,感受探讨的乐趣,体验成功的喜悦,增进学生学好数学的自信心,体会数学的合理性和严谨性。
三、教学方式:依照初一学生好动、好问、好奇的心理特点,结合本节课的内容特点,课堂上采纳启发诱导、实践探讨的教学方式,以问题的提出、问题的解决为主线,提倡学生主动参与教学实践活动,在合作交流中培育学生学习的踊跃性和主动性,使学习方式由“学会”变成“会学”。
华师大版数学七年级上册《2.11有理数的乘方》说课稿

华师大版数学七年级上册《2.11 有理数的乘方》说课稿一. 教材分析华师大版数学七年级上册《2.11 有理数的乘方》这一节主要介绍了有理数的乘方概念、性质和运算法则。
通过本节课的学习,学生能够掌握有理数乘方的基本概念,理解有理数乘方的性质,掌握有理数乘方的运算法则,并能够运用这些知识解决一些实际问题。
在教材中,首先介绍了有理数乘方的概念,即一个数自乘若干次的运算。
接着介绍了有理数乘方的性质,包括乘方的定义、乘方的零次幂、乘方的负次幂等。
然后介绍了有理数乘方的运算法则,包括同底数乘法、幂的乘法、幂的除法等。
最后通过一些巩固练习,帮助学生加深对有理数乘方的理解和运用。
二. 学情分析在教学前,我通过观察和了解,发现学生在学习这一节内容时,存在以下几个问题:1.对有理数乘方的概念理解不清晰,容易与幂的乘法混淆。
2.对有理数乘方的性质和运算法则理解不深刻,容易在实际运算中出错。
3.缺乏实际应用有理数乘方知识解决问题的能力。
三. 说教学目标根据教材和学情分析,我制定了以下教学目标:1.让学生掌握有理数乘方的基本概念,理解有理数乘方的性质。
2.让学生掌握有理数乘方的运算法则,并能够运用这些知识解决一些实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 说教学重难点根据教材和学情分析,我确定了以下教学重难点:1.有理数乘方的基本概念和性质的理解。
2.有理数乘方的运算法则的掌握和运用。
3.解决实际问题中运用有理数乘方知识的能力。
五. 说教学方法与手段在教学过程中,我将采用以下教学方法和手段:1.采用讲授法,系统地讲解有理数乘方的概念、性质和运算法则。
2.采用案例分析法,通过具体的例子让学生理解和掌握有理数乘方的运算法则。
3.采用练习法,让学生通过大量的练习来巩固和运用有理数乘方的知识。
4.利用多媒体教学手段,如PPT等,帮助学生直观地理解和记忆有理数乘方的知识。
六. 说教学过程1.导入:通过一个实际问题,引出有理数乘方的概念,激发学生的兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新维度七年级数学上册《有理数的乘方》
乘方【知识导读】
1. 叫乘方,叫做幂,在式子an中 ,a叫做,n叫做
2.式子an表示的意义是
3.从运算上看式子an,可以读作,从结果上看式子an,可以读作;
4.负数的奇次幂是数,负数的偶次幂是数,正数的任何次幂都是数,0的任何正整次幂都是;
知识点一:有理数的乘方
1.(-3)2表示()
A.2个-3相乘的积
B.3个-2相乘的积
C.2乘以-3的积
D.2个-3相加
2.计算:
(1)(-4)3;(2)-43; (3)(-3)4; (4)-34; (5); (6);
知识点二:有理数的混合运算
3.计算:-14-(1-0.5)×-[2-(-3)2].
拓展点一:乘方的综合运用
1.若|a-2|+(b+1)2=0,求a+b的值.
拓展点二:乘方的应用
2.28 cm接近于()
A.珠穆朗玛峰的高度
B.三层楼的高度
C.姚明的身高
D.一张纸的厚度
链接中考
1.(2016·广西百色中考)计算:23=()
A.5
B.6
C.8
D.9
2.(2016·山东滨州中考)-12等于()
A.1
B.-1
C.2
D.-2
3.(2016·浙江舟山中考)13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()
A.42
B.49
C.76
D.77
4.(2016·江苏南京期中)把一张厚度为0.1 mm的纸对折8次后厚度接近于()
A.0.8 mm
B.2.6 cm
C.2.6 mm
D.0.18 mm
5.(2016·山东寿光市模拟)下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的有()
A.4个
B.3个
C.2个
D.1个
6.(2016·江苏镇江中考)计算:(-2)3=.
7.(2015·湖北罗田县期中)计算:22-5×+|-2|=.
8.(2016·安徽阜阳二模)定义a★b=a2-b,则(0★1)★2 016=.
9.(2015.广东茂名中考)为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)
因此,3M-M=3101-1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算1+5+52+53+…+52 015的值是.
10.(2015·广东东莞市校级期中)(1)填空:22= ,(-2)2= ;52= ,(-5)2
= .
(2)结合(1)猜想:对于任何有理数a ,a 2 (-a )2(填“>”“<”或“=”).
(3)根据(2)的猜想填空:如果一个数的平方等于16,那么这个数是 .
11.(2016·江苏太仓市期末)计算: (1)-32+(-2)3-1÷; (2)×24+(-1)2 011.
【思考题】2++b a 与4
)12(-ab 互为相反数,求代数式++-+b a ab ab b a 33)(21的值.
选择题答案ACCBCBB。