氨逃逸解决方案

合集下载

氨法脱硫氨逃逸及气溶胶分析及解决措施

氨法脱硫氨逃逸及气溶胶分析及解决措施

氨法脱硫氨逃逸及气溶胶分析及解决措施氨法脱硫氨逃逸及气溶胶分析及解决措施、水反应成脱硫产物的基本机理而进行烟气氨法脱硫工艺皆是根据氨与SO2的,主要有湿式氨法、电子束氨法、脉冲电晕氨法、简易氨法等。

氨法脱硫技术在化学工业领域应用普遍,用氨吸收硫酸生产尾气中的SO2, 生产亚硫铵和硫铵。

据不完全统计,全世界目前使用氨法脱硫的机组大约在10000MW,氨法是高效、低耗能的湿法。

氨法是气液相反应,反应速率快,吸收剂利用率高,能保持脱硫效率95—99%。

氨在水中的溶解度超过20%。

氨法具有丰富的原料。

氨法以氨为原料,其形式可以是液氨、氨水和碳铵。

目前我国火电厂年排放二氧化硫约1000万吨,即使全部采用氨法脱硫,用氨量不超过500万吨/年,供应完全有保证,氨法的最大特点是 SO2的可资源化,可将污染物SO2回收成为高附加值的商品化产品。

副产品硫铵是一种性能优良的氮肥,在我国具有很好的市场前景,目前主装置是大型合成氨尿素的热电厂基本上都采用此方法脱硫。

但脱 1硫后烟气温度较低,设备的腐蚀较干法严重并易产生氨逃逸和气溶胶即“气拖尾”现象,需要不断完善。

1 .烟气氨法脱硫氨逃逸及气溶胶的形成原因1.1 烟气氨法脱硫氨逃逸的形成原因1.1.1 所谓氨逃逸是氨水温度较高时(一般60℃以上)逐步分解成为气体氨与水的过程,由于气体氨气不参与氨法脱硫反应,所以氨气同脱硫烟气一起从烟囱排出,形成所谓的氨逃逸现象。

1.1.2 氨逃逸是困扰氨法脱硫的一大难题,也是影响脱硫经济性同时影响周边环境的重要因素;有些氨脱硫技术提供商由于技术落后,脱硫率低,为了让二氧化硫排放达标,用氨水过量,在脱硫塔上方形成“白烟”现象,这不但造成2.1.1技术升级改造打破氨法脱硫无法解决的氨逃逸问题,选用最先进的第三代塔外氧化技术或用第三代脱硫技术进行老厂的技术改造。

2.1.2 选用业绩好的脱硫公司进行氨法脱硫项目,以保证施工质量好、售后服务好、装置能耗低,来避免装置腐蚀及减少氨逃逸现象的发生。

如何解决烟气测量中的高湿低硫氨逃逸等问题

如何解决烟气测量中的高湿低硫氨逃逸等问题

如何解决烟气测量中的高湿低硫、氨逃逸现象
采用先气化后直接检测的原位法测量模式,即对抽取的烟气直接在烟道内进行气化,然后高温高湿烟气接着通过紫外气体检测器进行检测,这样既能保证烟气中二氧化硫不被吸收,又能解决烟气气体之间的相互干扰问题,同时我们利用差分算法提高各种气体的检测限,可达1mg/m3,在青钢、莱钢、济钢、海晶化工、青岛石化等现场监测表明,博睿3040紫外吸收烟气监测系统完全解决了高湿、低硫、高CO的烟气中SO
的监
2
测问题。

适用范围
特别适合高CO、高湿度、低SO2烟气成分分析
CEMS验收、标定、校准
各类脱硫脱硝设备效率的测定
有效解决氨逃逸问题
烟道、管道排气参数的测定
烟气含氧量、空气过剩系数的测定
管道、烟道含湿量(专利技术-电容法)的准确测定
各种锅炉、工业炉窑的SO2、NO、NO2、CO、H2S、NH3排放浓度、折算浓度和排放总量的测定。

氨法脱硫氨逃逸及气溶胶分析及解决措施

氨法脱硫氨逃逸及气溶胶分析及解决措施

氨法脱硫氨逃逸及气溶胶分析及解决措施氨法脱硫是一种常用的烟气脱硫技术,其原理是利用氨与烟气中的二氧化硫反应生成硫化氢,再与氧气反应生成风险较低的硫磺。

然而,在氨法脱硫过程中,氨的逃逸和气溶胶问题是需要关注和解决的重要问题。

氨逃逸是指在氨法脱硫过程中,氨从各个环节中逸出到大气中,造成空气污染和氨损失。

氨逸出主要有以下几个方面的原因:1.系统运行不稳定:如果脱硫系统的运行不稳定,如操作不当、设备故障等,会导致氨逸出。

2.催化剂活性下降:氨法脱硫使用催化剂对氨和二氧化硫进行反应,如果催化剂的活性下降,会导致氨逸出增加。

3.氨泄漏:脱硫系统中的管道、阀门等设备可能存在泄漏,导致氨气逸出。

针对氨逃逸问题,可以采取以下措施进行解决:1.规范操作:操作人员应严格按照操作规程进行操作,确保系统稳定运行。

2.加强设备维护:定期对脱硫系统的设备进行检查、维护和更换,保证设备的正常运行。

3.泄漏监测和修复:对脱硫系统中的管道、阀门等进行泄漏监测,并及时修复泄漏点,减少氨气逸出。

4.催化剂管理:加强对催化剂的管理,避免催化剂活性下降,及时更换催化剂。

气溶胶是指气体中悬浮颗粒物,氨法脱硫过程中产生的气溶胶主要包括硫酸铵颗粒和硫酸混合胺颗粒。

气溶胶对环境和人体健康都造成一定风险。

对于气溶胶问题,常见的措施包括:1.预处理措施:在氨法脱硫前可采用预先加湿的方式将氨气和二氧化硫充分混合,提高氨气对二氧化硫的吸收效率,减少气溶胶的生成。

2.气溶胶控制技术:可通过增设静电除尘器等气溶胶控制设备,对烟气中的颗粒物进行捕集,减少气溶胶的排放。

3.废气处理措施:对于含有气溶胶的废气,可采用湿式或干式废气处理技术进行处理,将气溶胶捕集和吸收,减少排放。

4.监测和治理:建立相应的监测系统,对气溶胶进行实时监测,及时采取相应的治理措施,确保气溶胶排放符合相关标准和要求。

综上所述,针对氨法脱硫氨逃逸和气溶胶分析及解决措施,可以通过规范操作、加强设备维护、泄漏监测和修复、催化剂管理等措施来解决氨逸出问题;而通过预处理措施、气溶胶控制技术、废气处理措施和监测治理等措施来解决气溶胶问题,从而实现氨法脱硫的高效、稳定和环保运行。

氨法脱硫中气溶胶及氨逃逸的处理措施

氨法脱硫中气溶胶及氨逃逸的处理措施

氨法脱硫中气溶胶及氨逃逸的处理措施随着环保意识的增强,氨法脱硫技术在燃煤发电等行业中得到了广泛应用。

然而,在氨法脱硫过程中,会产生大量气溶胶和氨逃逸,对环境和人体健康造成一定的影响。

因此,在氨法脱硫过程中,必须采取一系列有效的处理措施,从而有效地控制气溶胶和氨逃逸。

气溶胶处理措施氨法脱硫中产生的气溶胶对周围环境和人体健康造成了一定的污染。

为了减少气溶胶的产生,首先应该采取有效的脱硝措施,以降低脱硫系统中的氮氧化物含量。

其次,还可以采用袋式除尘器、电除尘器等装置,对气溶胶进行捕集和去除。

脱硝措施减少氮氧化物的生成是控制气溶胶产生的关键措施。

在氨法脱硫中,脱硝一般采用选择性催化还原(SCR)和选择性非催化还原(SNCR)两种方法。

•SCR技术:通过催化剂将NH3与NOx化合,生成N2和水。

SCR技术可使NOx排放量降低90%以上,可有效减少气溶胶的产生。

•SNCR技术:利用高温下的反应让NH3直接还原NOx,生成N2和H2O。

SNCR技术可使NOx排放量降低50%以上。

捕集除尘氨法脱硫产生的气溶胶通过捕集除尘的方法可有效降低气溶胶的排放量,最常用的除尘方法包括袋式除尘器和电除尘器。

•袋式除尘器:袋式除尘器是一种常用的气体净化器,可有效去除1微米以上的颗粒物,且适用性广泛,操作方便。

袋式除尘器通过吸附、拦截和惯性作用来除尘,是氨法脱硫中最受欢迎的除尘装置之一。

•电除尘器:电除尘器是一种运用电场力和电荷作用原理的气体净化设备,可以有效地去除气体中的粉尘微粒。

电除尘板是由平行排列的金属极板及活动挂板组成,局部形成强电场,将气体中的微粒子束捕集附着到电极上,达到除尘效果。

氨逃逸处理措施氨逃逸是氨法脱硫中一个重要的问题。

氨逃逸影响大气纯净度、土壤肥力,对人体健康和生态造成影响。

为了控制氨逃逸,应采取以下措施:加强氨水过滤在氨法脱硫过程中,加强氨水过滤是减少氨逃逸的重要手段。

首先,氨水必须主动过滤才能进入反应器中。

氨逃逸的处理工艺

氨逃逸的处理工艺

氨逃逸的处理工艺全文共四篇示例,供读者参考第一篇示例:氨是一种无色气体,常用于工业生产中的各种用途,但如果氨气从工厂中逃逸,可能会对环境和工人的健康造成严重危害。

必须采取适当的处理工艺来控制和处理氨气的逃逸。

需要正确识别氨气的来源和逃逸路径。

氨气主要来自于化肥、农药、合成纤维、皮革、食品和医药等工业生产过程中的废气排放。

逃逸的途径主要包括气体泄漏、废气排放口未经处理和设备密封不严等。

针对不同的逃逸来源和途径,可采取多种处理工艺来控制和处理氨气的逃逸。

常见的氨气处理工艺包括氨气回收、氨气吸附、氨气催化氧化和氨气冷凝等。

氨气回收是一种有效的处理工艺,通过使用吸附剂或膜分离等技术,将氨气从废气中分离出来,并将其重新利用于生产过程中。

这样不仅可以减少氨气的排放量,还可以减少生产成本,提高资源利用率。

氨气吸附是一种通过吸附剂吸附氨气的技术,常用的吸附剂包括活性碳、分子筛等。

吸附后的氨气可以通过再生处理,将其提取出来或转化成其他有用的化合物。

这种处理工艺可以有效去除废气中的氨气,减少对环境的污染。

氨气催化氧化是利用氧化剂(如过氧化氢、臭氧等)将氨气氧化成无害的气体(如氮氧化物和水蒸气)的技术。

这种处理工艺具有高效、环保、节能的优点,可以有效减少氨气的排放量。

氨气冷凝是一种通过降低废气温度,使氨气在废气中凝结成液态,然后进行收集和处理的技术。

这种处理工艺适用于高温高浓度的氨气废气,可以有效减少氨气的排放量,同时也可以回收氨气以降低成本。

针对氨气的逃逸问题,我们可以采取适当的处理工艺来控制和处理。

通过氨气回收、氨气吸附、氨气催化氧化和氨气冷凝等处理工艺的结合应用,可以有效减少氨气的排放量,保护环境,确保工人健康,并且提高资源利用效率。

希望各生产企业重视氨气排放问题,积极采取相应的处理措施,共同建设清洁美丽的环境。

【字数:443】第二篇示例:氨气是一种常见的气体,在工业生产、化工加工、农业施肥等过程中会不可避免地产生。

pncr 脱硝 工艺原理 氨逃逸 控制

pncr 脱硝 工艺原理 氨逃逸 控制

pncr 脱硝工艺原理氨逃逸控制PNCR(Partial Nitritation and Anammox)脱硝工艺是一种高效、经济、环保的氨氮去除方法,其原理是通过细菌的作用将废水中的氨氮转化为氮气,从而实现脱硝。

然而,在PNCR脱硝过程中,氨逃逸是一个需要重点关注和控制的问题。

氨逃逸是指在废水处理过程中,氨氮未能被完全转化为氮气,而以氨的形式逸出废水。

氨逃逸不仅会导致废水中的氮气去除效果下降,还可能对环境造成污染和对人体健康造成影响。

因此,控制氨逃逸是PNCR脱硝工艺中一个非常重要的环节。

为了控制氨逃逸,首先需要了解氨逃逸的原因。

氨逃逸主要是由于废水中的氨氮在脱硝过程中未能完全转化为氮气,而是以氨的形式释放出来。

这可能是因为脱硝反应条件不理想,细菌活性不高,或者废水中存在抑制细菌活性的物质等原因所致。

针对氨逃逸问题,可以采取以下措施进行控制。

首先,优化脱硝反应条件,包括控制pH值、温度、氧气含量等参数,以提高细菌活性和脱硝效率。

其次,加强对细菌群落的管理,选择适合的细菌菌株,提高其活性和抗干扰能力。

此外,还可以加入一些辅助剂,如生物聚合物、氧化剂等,来增强脱硝反应的效果。

除了上述措施,还需加强废水处理过程的监测和控制。

通过定期对废水样品进行采集和分析,了解废水中氨氮的浓度和转化率,并根据监测结果及时调整工艺参数,以达到最佳的脱硝效果。

PNCR脱硝工艺中的氨逃逸是一个需要重点关注和控制的问题。

通过优化脱硝反应条件、管理细菌群落、加入辅助剂等措施,可以有效地控制氨逃逸,提高脱硝效率,保护环境和人体健康。

在实际应用中,需要根据具体情况灵活采取措施,并定期监测和调整工艺,以确保废水处理的效果和可持续发展。

脱硝氨逃逸的原因、危害、解决措施

脱硝氨逃逸的原因、危害、解决措施

脱硝氨逃逸的原因、危害、解决措施1.脱硝氨逃逸的原因妖逃逸是影响SCR系统运行的一项选要参数,实际生产过程中通常是多于理论量的氨到达反应器,反应后在烟气下游多余的氨称为氨逃逸,氨逃逸是通过单位体积内获含出来表示的.为了达到环保要求,往往需要一定过量的红,所以也对应着会有一个合适的氨逃逸值,该值设计为不大于5ppM,但是往往实际运行中偏大,主要有以卜.因素:(1)每只宏喷枪喷翅流量分布不均,烟气中存在斌水局部分布不均,烟气流速不均匀,各喷枪出口的喷氨量差异较大,浓度高的地方氮逃逸相时高一些。

(2)烟气温度,反应温度过低,NOX与氨的反应速率降低,会造成NM的大被逃逸,但是,反应温度过高,熨又会额外生成N0.如果温度过高过低达不到反应效果,势必增加氨逃逸。

(3)催化剂堵塞,脱硝效率下降,为了保持环保参数不超标,会喷更多的氨,这将引起恶性循环,催化剂同部堵塞、性能老化,导致催化剂各处傕化效率不同,为了控制出口参数,只能增加喷氨量,从而导致局部氨逃逸升高。

(4)雾化风量偏小,喷抢雾化不好,氨水与烟气不能充分混合,将产生大量的氨逃逸.(5)宏水浓度,宏水浓度配置,浓度∣⅞低无法受控,凭着感觉配置,就目前锅炉而言,基本上氨水浓度高,氨水调同开度过小,雾化不好易自关,导致氨逃逸高,操作难度大。

(6)燃烧波动时,SNCR入口烟气中的NoX浓度大幅波动,往往会加大喷纸量,机械地实现“达标排放”,过量的羽水,可导致氨逃逸增加I,直接危及炉后设备和系统安全运行.2.氨逃逸的危害脱除NoX的控制技术中,不论是选择性催化还原法(SCR)还是选择性非催化还原法(SNCR)在燃煤型发电厂,水泥厂等都得到了越来越多的广泛使用。

然而,无论是选择使用SCR法或是SNCR法,掌握好注射到NoX上的氨总量和对「注射分布的控制情况是达到小的圆逃逸率和.大的除NOX效率的关键所在。

过量的氨注射到整个管道或是管道的部分区域都会导致NH3的逃逸。

aems100氨逃逸说明书

aems100氨逃逸说明书

aems100氨逃逸说明书摘要:1.氨逃逸说明书概述2.氨逃逸的危害3.氨逃逸的检测方法4.氨逃逸的预防和处理措施5.氨逃逸说明书的适用范围和使用方法正文:氨逃逸说明书旨在提供氨逃逸的相关知识和处理方法,帮助用户了解氨逃逸的危害,掌握检测方法,并采取有效的预防和处理措施。

以下是详细内容:一、氨逃逸说明书概述氨逃逸是指氨从储存、使用、加工等环节逸出到大气中,对环境和人体健康造成危害。

氨逃逸说明书主要包括氨的特性、危害、检测方法、预防和处理措施等内容。

二、氨逃逸的危害氨具有强烈的刺激性和腐蚀性,对人体眼、呼吸道、皮肤等造成刺激和损伤。

长时间接触氨气还可能导致呼吸系统疾病、肝脏损害等。

此外,氨逃逸还会对大气环境造成污染,影响生态平衡。

三、氨逃逸的检测方法检测氨逃逸的方法有多种,常用的有以下几种:1.嗅觉检测:通过闻气味判断氨气是否泄漏。

但此方法受限于氨气浓度和操作者嗅觉敏感度,不够准确。

2.泵吸式检测:利用氨气比空气轻的特点,用泵将空气抽入检测管,通过检测管内的传感器检测氨气浓度。

3.扩散式检测:通过扩散器将氨气扩散到检测区域,再通过传感器检测氨气浓度。

四、氨逃逸的预防和处理措施1.储存和使用氨时,应选择密闭式设备,避免氨气泄漏。

2.定期检查设备密封性能,及时维修或更换损坏的密封件。

3.工作场所应保持良好的通风,降低氨气浓度。

4.操作人员应佩戴防护设备,如口罩、护目镜、防护手套等。

5.发生氨逃逸时,应立即采取紧急处理措施,如关闭阀门、加强通风、喷洒吸收液等,并及时报告相关部门。

五、氨逃逸说明书的适用范围和使用方法本说明书适用于氨的生产、储存、运输、使用等环节,可供企业、个人及相关部门参考。

使用时,请仔细阅读说明书内容,按照要求进行操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DFB( Distributed Feedback) Laser 分布式反馈激光器 近红外:700nm—2000nm
激光器自身谱线宽度窄 待测气体典型单吸收线,谱宽 0.05nm UV/IR 光源光谱线宽>1nm
其他扰
激光器扫描宽度, 一般 0.2-0.3nm
朗伯—比尔定律(Lambert-Beer law)
由于气体分子结构具有互异性,不同气体的吸收谱因 其分子结构的不同而互不相同,因此,当检测到某种特定 波长的光被吸收,就表明某种特定的气体存在。
具体的对应关系如式:
I (v) I o (v) exp[ (v)CL]
式中,Io(v)为入射光强;I(v)为被待测气体分子吸收后的透射光 强; (v) 为气体吸收系数;L为吸收路径长度;C为气体的浓度
逃逸氨检测系统的现场案例
现场应用(火力发电)
现场应用(陶瓷厂、玻璃厂)
陶瓷厂脱硝 玻璃厂脱硝
现场应用(垃圾焚烧)
焚烧烟气中的NH3和HCL
现场维护
SK6500的操作界面
现场维护
维护及标定调整
感 谢 !
TDLAS分析仪
热湿法的取样损失问题
热湿取样高温条件下仪表的稳定性问题
工艺气体 取样和控制系统
逃逸氨检测在脱硝中的应用
烟气脱硝技术
烟气脱硝是为了控制烟气中的氮氧化物排放。 脱硝技术主要分为SCR(选择性催化还原法)和 SNCR (选择性非催化还原法)两种。其原理就是 往烟道中喷入还原剂(通常使用氨水、尿素等), 将氮氧化物还原成氮气,达到减排的目的。
解决了微小信号的检测难题
逃逸氨检测系统的结构特点
激光气体分析仪的结构框图
TDLAS分析仪
接收单元
发射单元
工艺气体
激光束 工艺气体 取样和控制系统
In-Suit
Extracted

无需复杂的采样系统,人工维护极大减少 非接触测量,可适应极端的测量条件 单线光谱吸收,无交叉干扰的影响 响应速度快,实现真正意义的实时测量
接收单元
实际测量光程受烟道直径限制 发射 单元 激光束 粉尘过大时影响激光透射率 工艺气体 烟道的振动影响测量稳定性 无法现场标定验证 安装和维护对技术人员要求较高
可适应绝大多数现场应用的要求 测量对象对光程有特殊要求的场合 粉尘和焦油含量过高的应用场合 安装维护简单,和CEMS系统一致
调制光谱技术
波长调制 WMS 频率调制 FMS 调制宽度大于吸收线宽 没有光源干扰
抑制干扰
锁相放大技术
信号的相关和放大
提高灵敏度 提高信噪比
谐波检测技术
二次谐波在吸收峰出现最大值
1 0.8 (b) 0.6 0.4 0.2 0 -0.2 Time Second harm. Transm.
Signal
逃逸氨监测系统的应用特点
锅炉 卸料压缩 机
蒸汽
稀释空气
省煤器
液氨槽车
液氨储罐
氨蒸发槽
液氨泵
SCR反 应器
空预器
氨稀释槽
废水泵
废水池
逃逸氨检测系统的取样
NH3的特性:易吸附、易溶解、有腐蚀性 取样点条件:高温、高湿、高粉尘 解决方案:热湿法取样 全程高温伴热:探头、伴热管>190℃;分析气室>210℃ 和气体接触的材料:滤芯采用不锈钢烧结;取样管和气 路采用PTFE或不锈钢(316L) 取样距离小于5米 分析气室内壁采用特氟龙涂覆,防腐防吸附
火电厂烟气脱硝工程技术规范——选择性催化还原法 (HJ 562-2010) 火电厂烟气脱硝工程技术规范——选择性非催化还原法 (HJ 563-2010)
逃逸氨检测的目的和意义
喷氨量小,达不到减排目的;喷氨量大,增加了脱硝成本 过多的喷氨造成环境空气的二次污染 氨盐的凝结和沉积会缩短催化剂使用寿命 氨盐凝结和沉积会腐蚀和堵塞烟道 飞灰和烟尘上的氨吸附不利于其回收利用 SCR 工 艺: 氨逃逸浓度宜小于2.5mg/m3(折算合3.29ppm) SNCR工艺:脱硝系统氨逃逸浓度应控制在8mg/m3以下(折算合10.54ppm)
取样损失控制在1ppm以内
激光逃逸氨仪表的分析技术
常用方法有电化学、紫外和激光三种原理。 电化学传感器不能耐受高温条件,采用冷干法取样不能解 决取样损失问题; 紫外传感器存在背景干扰问题,当SO2浓度较高时,无法分 辨有效的逃逸氨浓度; 激光分析仪必须解决高温气室技术。 eLAS-100采用了优化的单次反射的光路设计,相比较于多次 反射气室,提高了气室的热稳定性和抗干扰性,可减少维护次数。 实际量程0-10ppm,分辨率0.2ppm,可满足逃逸氨检测要求。
基于 TDLAS 技术的 逃逸氨检测和应用
1
逃逸氨检测的关键核心技术 逃逸氨检测系统的结构特点 逃逸氨检测在脱硝中的应用 逃逸氨检测系统的现场案例
2
3
4
逃逸氨检测的关键核心技术
TDLAS Tunable Diode Laser Absorption Spectroscopy 可调谐半导体激光吸收光谱
相关文档
最新文档