初中数学几何基证明技巧

合集下载

初中数学几何证明题思路方法和技巧

初中数学几何证明题思路方法和技巧

初中数学几何证明题思路方法和技巧
1.利用定义和性质:几何证明题通常需要用到几何图形的定义和性质,因此在做题前需要熟悉相关概念。

2. 运用相似三角形:相似三角形有着相同的角度和比例关系,
因此可以通过相似三角形来证明几何关系。

3. 利用角度和:三角形内角和为180度,四边形内角和为360度,因此可以通过计算角度和来证明几何关系。

4. 利用垂直和平行关系:垂直和平行线有着明显的几何特征,
因此可以通过垂直和平行关系来证明几何关系。

5. 利用勾股定理和正弦定理等定理:勾股定理和正弦定理等定
理是几何证明中常用的工具,可以通过运用这些定理来证明几何关系。

6. 利用反证法:反证法是数学证明中常见的方法,可以通过排
除其他可能性来证明几何关系。

7. 利用矛盾法:矛盾法也是数学证明中常见的方法,可以通过
假设相反的情况来证明几何关系。

在做几何证明题时,还需要注意以下一些技巧:
1. 画图:画图可以帮助我们更好地理解几何关系,同时也可以
在证明中提供一些线索。

2. 标记线段和角度:标记线段和角度可以使证明过程更加清晰,方便读者理解。

3. 步骤清晰:证明过程需要步骤清晰、逻辑性强,不能出现漏
洞或矛盾。

4. 注意细节:几何证明中有时需要注意一些细节问题,例如判
断角度是否是锐角或钝角,判断线段是否相等等。

综上所述,初中数学几何证明题需要掌握一定的思路方法和技巧,并且需要认真、仔细地推导证明。

初中数学的几何证明方法

初中数学的几何证明方法

初中数学的几何证明方法几何证明是初中数学教学的重点和难点之一,对于大部分学生来说,几何证明是一个难以跨越的坎。

究其原因,主要是由于几何证明需要学生具备一定的空间想象能力和逻辑推理能力,而这些能力是学生长期缺乏的。

因此,在初中数学教学中,如何帮助学生掌握几何证明方法,提高他们的几何证明能力,成为了一个值得探讨的问题。

一、熟悉基本图形和定理在初中数学几何证明中,基本图形和定理是证明的基础。

因此,熟悉基本图形和定理是掌握几何证明方法的前提。

基本图形包括三角形、四边形、圆等基本图形,以及由这些基本图形组合而成的各种变形图形。

定理则是几何证明的基础,包括一些基本的证明方法和技巧。

例如,平行线的性质和判定、全等三角形的判定和性质、相似三角形的判定和性质等。

只有熟练掌握这些基本图形和定理,才能为后续的几何证明打下坚实的基础。

二、培养空间想象能力空间想象能力是几何证明的关键之一。

初中数学几何证明中,需要学生根据题目的描述在脑海中形成相应的图形,并观察图形的特点,从而找到证明的思路和方法。

因此,在平时的教学中,教师应该注重培养学生的空间想象能力,让他们能够根据题目的描述在脑海中形成相应的图形。

例如,可以通过实物模型、多媒体演示等形式,让学生了解各种基本图形的特征和变化形式,帮助他们建立正确的空间观念。

三、掌握证明方法和技巧初中数学几何证明中,需要掌握一些基本的证明方法和技巧。

例如,分析法、综合法、反证法、三角法、割补法等。

这些方法和技巧需要学生在平时的学习中不断练习和总结,逐渐形成自己的解题思路和方法。

同时,还需要注意一些证明的技巧,例如辅助线的添加、已知条件的挖掘等。

这些技巧需要学生根据题目特点灵活运用,以达到事半功倍的效果。

四、注重逻辑推理能力的培养逻辑推理能力是几何证明的核心能力之一。

在几何证明中,需要学生根据已知条件进行逻辑推理,逐步推导出结论。

因此,在平时的教学中,应该注重培养学生的逻辑推理能力,让他们能够根据题目特点进行合理的推理和论证。

初中数学几何证明方法整理

初中数学几何证明方法整理

初中数学几何证明方法整理数学几何是初中数学的重要内容之一,通过几何证明方法,可以帮助我们理解和掌握几何概念、定理,培养逻辑思维和推理能力。

本文旨在整理初中数学几何证明方法,帮助学生更好地学习和掌握几何知识。

一、直接证明法直接证明法是最常用的证明方法之一,也是最直接的证明方式。

通过直接给出准确的步骤和推理过程,证明所给命题的正确性。

举例来说,对于一个直角三角形,我们可以使用直接证明法证明勾股定理。

首先,假设三角形的两条直角边长度分别为a和b,斜边长度为c。

然后,利用勾股定理的表达式c²=a²+b²,逐步展开推理过程,最终得到等式两边相等,从而证明了勾股定理的正确性。

二、间接证明法间接证明法是通过反证法来证明所给命题的正确性。

假设所给命题不成立,然后找出与之矛盾的其他命题,通过推理来推导出矛盾,从而证明所给命题是正确的。

例如,对于平行线的性质,我们可以使用间接证明法来证明同位角相等的定理。

首先,假设两条平行线上的同位角不相等,然后通过推理和几何定理,得出两组角的和不等于180度的结论,与平行线的性质相矛盾,因此可以得出同位角相等的结论,证明了该定理的正确性。

三、全等三角形的证明全等三角形的证明是几何证明中常见且重要的一种方法。

当两个三角形的对应的边和角都相等时,可以得出两个三角形全等的结论。

以证明两条直线平行为例,我们可以使用全等三角形的证明方法。

首先,选择直线上的两个点和一个与直线上一点不共线的点,通过构造与直线平行的辅助线段,形成两个共有一点的全等三角形。

然后,通过全等三角形的性质和相等的边、角,可以得出所给直线平行的结论。

四、相似三角形的证明相似三角形的证明也是几何证明中常用的一种方法。

当两个三角形的对应角相等,对应边成比例时,可以得出两个三角形相似的结论。

以证明等腰三角形的性质为例,我们可以使用相似三角形的证明方法。

假设等腰三角形的两个底角相等,通过构造等腰三角形的辅助线段,形成两个共有一个顶点的相似三角形。

初中几何证明题的解题思路

初中几何证明题的解题思路

初中几何证明题的解题思路初中几何证明题是初中几何中很重要的一部分,加强知识储备和运用技能也必须掌握几何证明题的解题思路和方法。

解决几何证明题,除了要掌握基础的定理、定义、规则和基本的计算技巧外,还应注意以下几点:一、熟练掌握几何证明的基本方法1.逆否命题法:当一个命题成立时,其逆命题不成立,反之亦然,因此,可用该法证明:先把命题的否定形式表达出来,然后用简单的数学推导证明它是有悖常理的,从而由“逆否律”证明原命题的正确性。

2.抽象法:有时可通过抽象的方法,让问题变得更容易解决。

比如,将几何问题抽象成代数问题,或者将几何图形抽象成抽象的风范,可以使得问题变得更加容易理解。

3.反证法:即依据一定的前提,证明假设不符合要求,即可以知识前提及充分条件,利用反证法,证明假设是错误的。

反证法按逻辑关系可分为“反证正确”和“反证错误”两类。

通过反证法,我们可以得到几何定理证明的结论,从而解决几何证明题。

4.归纳法:归纳法也称归绕法,是几何证明题的解决方法之一,是依据一个事实、一个特性或一个定理,从而推出其他一些事实或定理的过程。

它的解法具有一般性,可以应用在各种形式的几何证明题中。

二、逐步解决几何证明题1.第一步:识别几何图形:首先要明确几何图形的形状、大小、位置等特征,然后把图形上的角、弧、线段和点等标出来,注明它们的名称和特点,以及它们之间的关系。

2.第二步:分析题意:要弄清题目所提出的问题,明确要证明的是什么,并对问题和其它已知条件进行分析,总结出题目的本质,找出和解决问题的重点。

3.第三步:确定证明步骤:根据题目的条件和要证明的内容,结合定义、定理和基本性质,确定出证明步骤,并画出证明图形,默写证明式。

4.第四步:设立并证明中间结论:根据证明步骤,依次针对每一步进行证明,首先得出一个中间结论,然后按定义、定理及基本性质等,写出证明式,再根据前一步得出的中间结论,将其作为充分条件,以此推出下一步的中间结论,依次重复反复证明,最终推出原结论。

初中数学几何证明方法

初中数学几何证明方法

初中数学几何证明方法数学几何是初中数学的一个重要分支,它主要研究空间中的点、线、面及其相互关系。

在数学几何中,证明是一项关键的技能,它可以帮助我们深入理解几何定理和性质。

本文将介绍初中数学几何证明的一些常用方法和技巧。

1. 直接证明法直接证明法是最常用的证明方法之一,它通过逻辑推理和定理运用来证明一个几何命题。

这种证明方法通常包括两个步骤:首先,利用已知条件和几何定理推导出待证命题的前提条件;其次,利用已知条件和几何定理推导出待证命题的结论。

最后,结合前提条件和结论,通过逻辑推理来证明待证命题成立。

2. 反证法反证法是一种常用的证明方法,它通过假设待证命题不成立,然后推导出与已知条件矛盾的结论,从而证明待证命题是正确的。

这种证明方法通常包括三个步骤:首先,假设待证命题不成立;其次,根据这一假设推导出与已知条件矛盾的结论;最后,由于这个结论与已知条件矛盾,所以假设是错误的,待证命题是正确的。

3. 数学归纳法数学归纳法是一种常用的证明方法,它适用于证明一类命题的正确性。

这种证明方法通常包括两个步骤:首先,证明命题对于某个特定的数值成立;其次,假设命题对于某个数值成立,然后证明命题对于下一个数值也成立。

通过数学归纳法可以证明一类命题的所有情况。

4. 分类讨论法分类讨论法是一种常用的证明方法,它适用于待证命题有多种情况的情况。

这种证明方法通常包括两个步骤:首先,将待证命题分成几种情况讨论;其次,对每种情况分别进行证明。

通过分类讨论法可以全面地证明待证命题的所有情况。

5. 双重否定法双重否定法是一种常用的证明方法,它通过排除其他可能性来证明待证命题的正确性。

这种证明方法通常包括两个步骤:首先,假设待证命题不成立;其次,通过排除其他可能性,得出待证命题是正确的结论。

通过双重否定法可以证明待证命题的唯一性。

6. 反证法的变形反证法的变形是一种常用的证明方法,它通过转化待证命题,然后利用已知条件和几何定理推导出与转化后命题矛盾的结论,从而证明待证命题是正确的。

初中数学竞赛第二轮专题复习(2)几何

初中数学竞赛第二轮专题复习(2)几何

初中数学竞赛第二轮专题复习(2)几何证明的基本方法(1)一、常用定理梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。

塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。

角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD,当且仅当A,B ,C ,D 四点共圆时取等号.斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有AP 2=AB 2•BC PC +AC 2•BCBP -BP •PC 。

初中数学几何常用十大解题方法

初中数学几何常用十大解题方法

初中数学几何常用十大解题方法
初中数学几何是一门非常重要且广泛运用的学科,掌握一些常用的
解题方法能够加深对这门学科的理解,也有助于我们在考试中更为得
心应手。

下面是我总结的初中数学几何常用的十大解题方法。

1. 引理法:在证明一个重要的结论时,我们可以先引入一个类似的但
容易证明的结论,然后再运用这个结论推导得出所要证明的结论。

2. 分类讨论法:将不同情况按照不同性质分为若干个类别,然后分别
进行讨论,最后再根据各个情况得出所要求的答案。

3. 反证法:这种证明方法常用于证明命题的否定。

先假设结论不成立,然后推导得到一个矛盾的结论,说明原命题是成立的。

4. 相似性质法:找出几何图形之间的相似性质,利用这些性质建立几
何方程来求解未知量。

5. 对称性法:通过图形的对称性质,将几何问题转化为已知问题来解决。

6. 等角定理法:利用三角形等角定理推导问题,解决几何题。

7. 重心法:通过计算三角形各顶点的坐标,进而求出三角形的重心坐标,从而解决几何问题。

8. 勾股定理法:利用勾股定理解决几何题,是一种非常常见的解题方法。

9. 同位角反向法:通过同位角的反向推导,建立几何方程求解未知量。

10. 线性规划法:用代数的方法求解对于一些线性方程的优化问题,对
于一些几何问题也可以通过线性规划进行求解。

以上就是初中数学几何常用的十大解题方法,这些方法都有着广泛的
运用场景,希望大家在学习中能够加以应用,并且能够掌握更多的解
题方法。

初中数学几何证明题思路方法和技巧

初中数学几何证明题思路方法和技巧

初中数学几何证明题思路方法和技巧
初中数学几何证明题是数学中比较重要的一部分。

下面介绍一些
思路方法和技巧,帮助初中生更好地解决几何证明问题。

1. 审题:认真读题,弄清楚题目要求证明的内容以及条件,不
能漏读或误读任何一项条件。

2. 破题:尝试找到问题的主要解法,通常需要运用几何定理、
定律、知识点等来解题。

3. 推理:通过有条理的推理和推导,把证明过程清晰地表述出来,尽可能详细地说明每一步的根据,确保推理过程的严谨性。

4. 创新:尝试寻找不同的解法,从不同的角度去证明,发现定
理背后的本质,进而探究更深刻的数学知识。

5. 练习:多做几道几何证明题,积累经验,训练思维能力,提
高解题效率和准确性。

需要注意的是,几何证明题需要注意构图、寻找线索,考虑使用
反证法、归纳法、逆推法等不同的证明方法。

同时,应注意逻辑严密、语言表述准确、步骤清晰,确保证明过程的正确性和可信度。

以上是初中数学几何证明题的思路方法和技巧。

希望对初中生解
决几何证明问题有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学几何基证明技巧
黄文杰
一.总论:
1.研究几何图形要把我们生活中的折叠,平移,旋转等操作运用到几何学习和探究中来,充分运用生活的观察视角去研究问题和解决问题;
2.要熟练掌握几何图形够成的基本元素是边和角,运用分类思想对组成图形的各要素进行研究和探索,得出合理的结论;
3.充分灵活运用“边清,角清,已知条件清,等量关系清,问题清”和“合情推理”。

4.图形计算问题一般运用公式,等量关系,勾股定理,相似比建立方程解决。

5.辅助线的添加要以基本公理,定理模型图为根据,完善模型;计算题一般是构造直角三角形和相似三角形;面积问题一般是根据面积的和与差建立等量关系。

二.几何证明的分析和书写:
(一)几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:
一是平面图形的数量关系;
二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

(二)掌握分析、证明几何问题的常用方法:
(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;
例:如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.
1
2
A
B C
D
E
(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;
例、如图,在△ABC 中,AD 平分∠BAC 交BC 于
D ,EF 垂直平分AD ,交AC 于
E ,交AC 于F.求证:四边形AED
F 是菱形.
(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

例;已知:如图,在四边形ABCD 中,∠ABC =90°,CD ⊥AD ,AD 2+
CD 2=2AB 2.
(1)求证:AB =BC ;
(2)当BE ⊥AD 于E 时,试证明:BE =AE +CD .
(4)分析法与综合法的特点:
分析法的特点是从要证明的结论开始一步步地寻求其成立的条件,直至寻求到已知条件上。

综合法的特点是从已知条件开始推演,一步步地推导结果,最后推出要证明的结果。

(5)分析法与综合法的优缺点:
①证几何题时,在思索上,分析法优于综合法,在表达上分析法不如综合法。

②分析法利于思考,综合法宜于表述,在解决问题中,最好合并使用。

③对于一个新问题,我们一般先用分析法寻求解决,然后用综合法有条理地表(三).掌握构造基本图形的方法:
复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

(1)一般是以定理的模型图完善图形;
(2)根据轴对称和中心对称,旋转中心构造全等;
(3)记住梯形和圆中常添的辅助线;
(4)运用割补法进行图形平移;
(5)熟息相似的重要模型图。

(如:A型和X型等)
(6)几何图形的计算经常用方程的思想去解决,一般运用勾股定理和相似比为等量关系建立方程。

(7)折叠图形是中考热点,也是轴对称,直角三角形和相似三角形。

注:养成良好的审题习惯,标注一直和问题;做到“边清,角清,图清,已知条
件清,数量关系清,位置关系清,问题清”和“合情推理”。

【分类解析】
1、证明线段相等或角相等
两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

这时应注意:
(1)制造的全等三角形应分别包括求证中一量;
(2)添辅助线能够直接得到的两个全等三角形。

(3)审题时要以轴对称,中心对称,旋转的眼光看图,找出添加辅助线的可能性。

2、证明直线平行或垂直
在两条直线的位置关系中,平行与垂直是两种特殊的位置。

证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。

证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。

例3. 如图3所示,设BP、CQ是∆ABC的内角平分线,AH、AK分别为A
线段。

(截长法)
例5. 已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。

例6. 已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,
∠=︒EAF 45。

求证:EF =
【实战模拟】
1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE ⊥CD 于D ,交BC 于E ,且有AC AD CE ==。

求证:DE CD =
12
3. 已知:如图13所示,过∆ABC的顶点A,在∠A内任引一射线,过B、C 作此射线的垂线BP和CQ。

设M为BC的中点。

求证:MP=MQ
都是
求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.
5、已知:如图,矩形ABCD,DF平分∠ADC,交AC于F,∠BDF=150.求∠BOC、∠DGC的度数.
A
C
B
D
P
Q
7、已知:如图,在△ABC 中,AB=AC ,中线BD 、CE 相交于点M ,EG ∥BD ,DF ∥CE ,EG 、DF 相交于点N .
(1)猜想MN 与DE 间的关系是:___________;
(2)试证明你的猜想.
4、 (2009年湖州)如图:已知在ABC △中,AB AC =,D 为BC 边的中点,过点D 作DE AB DF AC ⊥,⊥,垂足分别为E F ,. (1) 求证:BED CFD △≌△;
(2)若90A ∠=°,求证:四边形DFAE 是正方形.
18如图,在Rt△ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连接BE 、EC .
试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.
G
O
A
B
D
C B
E A
F。

相关文档
最新文档