人教版必修3第二章统计知识点
人教版高中数学必修三第二章第2节用样本的数字特征估计总体的数字特征 课件 (2)

2)从标准差的定义和计算公式都可以得出:S 0。 当 S 0 时,意味着所有的样本数据都等于样本 平均数。
课后作业:
课本 P81 习题2.2 A组 6、7.
P79练习答案
解: 依题意计算可得
x1=900 s1≈23.8
x2=900 s2 ≈42.6
如果你是教练,你应当如何对这次射击情 况作出评价?如果这是一次选拔性考核,你应 当如何作出选择?
x甲7
x乙7
两人射击 的平均成绩是一样的. 那么两个
人的水平就没有什么差异吗?
频率 0.3
0.2
0.1 频率
4
频率
5 67 8 (甲)
9 10
0.4 0.3
0.2 0.1
4 5 6 7 8 9 10 (乙)
于,是 样本 x1,x2 数 , xn到 据 x 的 “平均 ”是 :距离
x1xx2xxnx
S
.
n
1.标准差定义:是样本数据到平均数的一种平 均距离。它用来描述样本数据的分散程度。在 实际应用中,标准差常被理解为稳定性。
假设样本数据是 x1,x2,xn, 平均数是 x
2、标准差算法及其公式为:
1)算出样本数据的平均数 。 2)算出每个样本数据与样本数据平均数的差: 3)算出(2)中 的平方。 4)算出(3)中n个平方数的平均数,即为样本方差。 5)算出(4)中平均数的算术平方根,即为样本标准差。
s1 n[x (1x)2(x2x)2 (xnx)2]
3.关于标准差的说明: 1)标准差较大,数据的离散程度较大;标准差较 小,数据的离散程度较小。
规律:标准差越大, 则a越大,数据的 离散程度越大;反 之,数据的离散程 度越小。
人教版高中数学必修3课件第二章众数、中位数、平均数

∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2 =0.3,
∴前三个小矩形面积的和为 0.3,而第四个小矩形面积 为 0.03×10=0.3,0.3+0.3>0.5,
∴中位数应位于第四个小矩形内. 设其底边为 x,高为 0.03,令 0.03x=0.2 得 x≈6.7,故 中位数约为 70+6.7=76.7.
2.下列说法中,不正确的是( ) A.数据 2,4,6,8 的中位数是 4,6 B.数据 1,2,2,3,4,4 的众数是 2,4 C.一组数据的平均数、众数、中位数有可能是同一个 数据 D.8 个数据的平均数为 5,另 3 个数据的平均数为 7, 则这 11 个数据的平均数是8×5+117×3
解 在 17 个数据中,1.75 出现了 4 次,出现的次数最
多,即这组数据的众数是 1.75.上面表里的 17 个数据可看成
是按从小到大的顺序排列的,其中第 9 个数据 1.70 是最中
间的一个数据,即这组数据的中位数是 1.70;这组数据的平
均数是-x
=117×(1.50×2+
1.60×3
+…+
(1)这 50 名学生成绩的众数与中位数; (2)这 50 名学生的平均成绩.(答案精确到 0.1)
解 (1)由众数的概念可知,众数是出现次数最多的 数.在直方图中高度最高的小长方形框的中间值的横坐标即 为所求,所以由频率分布直方图得众数应为 75.
由于中位数是所有数据中的中间值, 故在频率分布直方图中体现的是中位数的左右两边频 数应相等,即频率也相等,从而就是小矩形的面积和相等. 因此在频率分布直方图中将频率分布直方图中所有小 矩形的面积一分为二的直线所对应的成绩即为所求.
(3) 一 个 样 本 按 从 小 到 大 的 顺 序 排 列 为 10,12,13 , x,17,19,21,24,其中中位数为 16,则 x=____1_5___.
人教版(2019)高中化学选择性必修3有机化学基础第二章 第二节 第2课时 炔烃

第二节 烯烃 炔烃 第2课时 炔烃
[素养发展目标] 1.从化学键的不饱和性等微观角度理解炔烃的结构特点,能辨析物质类别 与反应类型之间的关系。 2.认识加成反应的特点和规律,了解有机反应类型与有机化合物的组成及 结构特点的关系。 3.能通过模型假设、证据推理认识常见有机化合物分子的空间结构,会判 断有机化合物分子中原子间的位置关系。
③
溶液紫色褪去
乙炔被酸性高锰酸钾溶液氧化
④
溶液橙色褪去
乙炔与溴发生加成反应
⑤ 火焰明亮,并冒出浓烈黑烟
乙炔含碳量高
返回导航
实验室制取乙炔的注意事项 (1)盛电石的试剂瓶要及时密封并放于干燥处,防止电石吸水而失效。 (2)电石与水反应非常剧烈,为得到平稳的乙炔气流,可用饱和氯化钠溶液 代替水,并用分液漏斗控制滴加饱和氯化钠溶液的速率,让饱和氯化钠溶 液慢慢地滴入。 (3)因反应剧烈且产生气泡,为防止产生的泡沫涌入导管,应在导管口塞入 少许棉花。
D.C 中发生反应:2Br2+CH≡CH―→ 2-四溴乙烷,故 D 正确。
,产物的名称为 1,1,2,
返回导航
02
知识点二
知识点二 炔烃的结构与性质
1.结构特点 炔烃的官能团是_碳__碳__三__键___(—C≡C—)。炔烃分子中只含有一个碳碳三键 时,其通式为一般表示___C_n_H__2n_-_2___。 2.物理性质 炔烃的物理性质的递变与烷烃和烯烃的相似,沸点也随分子中碳原子数的 递增而逐渐升高。
返回导航
3.(2022·湛江二十一中高二阶段练习)实验室常用如图装置制取并验证乙 炔的性质。下列说法错误的是( )
A.饱和食盐水的作用是减缓化学反应速率,从而得到平稳的气流 B.硫酸铜溶液的作用是除去乙炔中硫化氢等杂质气体,防止干扰实验
人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
(完整版)人教版高中英语必修3Unit2知识点详解

Part 1. Warming up1.diet n.日常饮食;食物It is important to have a balanced,healthy diet.均衡、健康的日常饮食很重要。
搭配be on a diet在节食go on a diet节食put sb.on a diet 限制某人的饮食①No sugar in my coffee,please;I’m dieting.请不要给我的咖啡放糖,我在节食。
②(牛津P552)I decided to go_on_a_diet before my holiday.我决定在休假前节食。
③It is important to have_a_balanced,healthy_diet.拥有均衡、健康的饮食很重要。
④The doctor put him on a diet after operation.手术之后,医生规定了他的饮食。
2.What will happen to you if you don’t eat a balanced diet?假如你的饮食不均衡会怎么样?balance n平衡;天平v.平衡;权衡I think it’s important for a college student to have a balance between study and a social life.我认为一个大学生在学习与社会生活之间保持平衡是很重要的。
You have to balance the advantages of living downtown against the disadvantages.你必须权衡住在市中心的利弊。
On balance,the company has had a successful year.总的来说,公司这一年是成功的。
根据提示,完成下列句子。
(1)Seeing a car coming at a crossing,she (失去平衡) and fell down from her bike.(2)The key to learning skating is to (保持平衡).lost her balancekeep the balancePart 2. Pre-reading, reading and comprehending1. Wang Pengwei sat in his empty restaurant feeling very frustrated.feeling这里是用动词的-ing形式做伴随状语。
人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。
2019年最新-人教版高中数学必修三第二章-统计-3.1《变量之间的相关关系》ppt课件

2.相关关系的概念
自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的 关系叫相关关系.
(1)相关关系与函数关系的异同点: 相同点:均是指两个变量的关系 不同点:函数关系是一种确定的关系; 而相关关系是一种非确定关系;
谢谢!
墨子,(约前468~前376)名翟,鲁人 ,一说 宋人, 战国初 期思想 家,政 治家, 教育家 ,先秦 堵子散 文代表 作家。 曾为宋 国大夫 。早年 接受儒 家教育 ,后聚 徒讲学 ,创立 与儒家 相对立 的墨家 学派。 主张•兼 爱”“ 非攻“ 尚贤” “节用 ”,反 映了小 生产者 反对兼 并战争 ,要求 改善经 济地位 和社会 地A 完整地聆听歌曲。
点散布在从左下角 到右上角的区域
称它们成 正相关。
脂肪含量
40
35
如图: 30
25
20
15
10
5
年龄
O
20 25 30 35 40 45 50 55 60 65
下列关系属于负相关关系的是( )
C
A.父母的身高与子女的身高
B.农作物产量与施肥的关系
C.吸烟与健康的关系
D.数学成绩与物理成绩的关系
我们再观察它的图像发现这些点大致分布在一条直线附近,像这样,如果 散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具 有线性相关关系;
2.3 变量间的相关关系
2.3.1 变量之间的相关关系
本课主要学习变量间的相关关系与散点图的相关内容,具体包括相关关系的 定义以及通过散点图如何判断变量间的关系。
2022版优化方案高一数学人教版必修三学案 第二章 统计 2.1.1简单随机抽样

2.1 随机抽样2.1.1 简洁随机抽样1.问题导航(1)什么叫简洁随机抽样?(2)最常用的简洁随机抽样方法有哪两种? (3)抽签法是如何操作的? (4)随机数表法是如何操作的? 2.例题导读通过教材中的“思考”,我们了解抽签法的优、缺点及适用条件.1.简洁随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),假如每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简洁随机抽样.2.简洁随机抽样的分类简洁随机抽样⎩⎪⎨⎪⎧抽签法(抓阄法)随机数法3.随机数法的类型随机数法⎩⎪⎨⎪⎧随机数表法随机数骰子法计算机产生的随机数法1.推断下列各题.(对的打“√”,错的打“×”)(1)在简洁随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最小;( ) (2)有同学说:“随机数表只有一张,并且读数时只能依据从左向右的挨次读取,否则产生的随机样本就不同了,对总体的估量就不精确 了”.( )解析:(1)在简洁随机抽样中,每个个体被抽到的可能性相等,与第几次抽取无关;(2)随机数表的产生是随机的,读数的挨次也是随机的,不同的样本对总体的估量相差并不大. 答案:(1)× (2)×2.某校期末考试后,为了分析该校高一班级 1 000名同学的学习成果,从中随机抽取了100名同学的成果单,就这个问题来说,下面说法中正确的是( )A .1 000名同学是总体B .每名同学是个体C .每名同学的成果是所抽取的一个样本D .样本的容量是100解析:选D.该问题中,1 000名同学的成果是总体,每个同学的成果是个体,抽取的100名同学的成果是样本,样本的容量是100.3.抽签法的优点、缺点各是什么?解:优点:简洁易行,当总体个数不多的时候搅拌均匀很简洁,每个个体有均等的机会被抽中,从而保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.1.简洁随机抽样是一种最简洁、最基本的抽样方法,简洁随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简洁随机抽样方法有抽签法和随机数法.2.随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍旧不是很便利,但是比抽签法公正,因此这两种方法只适合总体容量较少的抽样类型.3.简洁随机抽样中每个个体入样的可能性都相等,均为n/N ,但是这里肯定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种状况区分开来,避开在解题中消灭错误.简洁随机抽样的概念下面的抽样方法是简洁随机抽样吗?为什么?(1)从很多个个体中抽取20个个体作为样本;(2)从50台冰箱中一次性抽取5台冰箱进行质量检查;(3)一彩民选号,从装有36个大小、外形都相同的号签的盒子中无放回地抽取6个号签.[解](1)不是简洁随机抽样.由于总体的个数是无限的,而不是有限的.(2)不是简洁随机抽样.虽然“一次性”抽取和“逐个”抽取不影响个体被抽到的可能性,但简洁随机抽样的定义要求的是“逐个不放回地抽取”.(3)是简洁随机抽样.由于总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能地进行抽样.方法归纳推断一个抽样是否为简洁随机抽样的依据是其四个特征1.下列抽样方式是否是简洁随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,称其质量是否合格;(2)某班有56名同学,指定个子最高的5名同学参与学校组织的篮球赛.解:由简洁随机抽样的特点可知,(1)(2)均不是简洁随机抽样.抽签法的应用2021年,某师范高校为了支援西部训练事业,现从报名的18名免费师范毕业生中选取6人组成志愿小组,请用抽签法确定志愿小组成员,写出抽样步骤.[解]抽样步骤是:第一步,将18名志愿者编号,号码是1,2, (18)其次步,将号码分别写在同样大小的小纸片上,揉成团,制成号签;第三步,将得到的号签放入一个不透亮的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,与所得号码对应的志愿者就是志愿小组的成员.方法归纳(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否便利;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.(2)应用抽签法时应留意以下几点:①编号时,假如已有编号可不必重新编号;②号签要求大小、外形完全相同;③号签要均匀搅拌;④要逐一不放回地抽样.2.某校高一(1)班有同学48人,为了调查某种状况,打算抽取一个样本容量为10的样本,问若接受抽签法抽样将如何进行?解:首先把该校同学都编上号,号码是1,2,3,4,…,48.并制成48个外形、大小相同的号签,然后将这些号签放在一个不透亮的容器内,搅拌均匀后,逐个无放回地抽取10个号签,这样就可以得到一个容量为10的样本.随机数表法的应用(2021·衡阳模拟)已知某总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表中第1行的第5列和第6列的数字开头由左到右依次选取两个数字,则选出来的第4个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481 A.08 B.07C.02 D.01[解析]从随机数表第1行的第5列和第6列的数字开头由左到右依次选取两个数字,依次为65,72,08,02,63,14,07,…,其中08,02,14,07,…符合条件,故选B.[答案] B[互动探究]如将本例中的“从随机数表中第1行的第5列和第6列的数字开头由左到右依次选取两个数字”改为“从随机数表中第1行的倒数第2列和第3列的数字开头由右到左依次选取两个数字”,其他条件不变,则选出来的第4个个体的编号为多少?解:从随机数表中第1行的倒数第2列和第3列的数字开头由右到左依次选取两个数字,依次为91,08,27,99,63,42,07,04,13,…,其中08,07,04,13,…符合条件,故选出来的第4个个体的编号为13.方法归纳利用随机数表法抽样时应留意的问题:(1)编号要求位数相同,若不相同,需先调整到全都后再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开头编号,那么全部个体的号码都用两位数字表示即可,从00~99号.假如选择从1开头编号,那么全部个体的号码都必需用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开头读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.3.有一批机器编号为1,2,3,…,112,请用随机数表法抽取10台入样,写出抽样过程(随机数表见教材P103附表).解:第一步,将原来的编号调整为001,002, (112)其次步,在随机数表中任选一数作为开头,任选一方向作为读数方向.比如,选第9行第7个数“3”向右读.第三步,从“3”开头向右读,每次取三位,凡不在001~112中的数跳过去不读.前面已经读过的数不读,依次可得到074,100,094,052,080,003,105,107,083,092.第四步,对应原来编号为074,100,094,052,080,003,105,107,083,092的机器便是要抽取的对象.易错警示因基本概念不明致误为了了解参与第27届世界高校生冬运会的2 015名运动员的身高状况,从中抽取100名运动员进行调查,就这个问题,下面说法中正确的是()①2 015名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的可能性相等.A.④⑤B.①②③C.①②④⑤D.①②③④⑤[解析]抽样的目的是了解参与冬运会的2 015名运动员的身高状况,故总体应当是2 015名运动员的身高,而不是这2 015名运动员,同理,个体应当是每个运动员的身高,样本应当是所抽取的100名运动员的身高.故①②③都不正确,④⑤正确.[答案] A[错因与防范](1)解决本题易搞错考察的对象,误认为考察对象为运动员,从而误认为①②③也正确.(2)解决此类问题时,关键是明确考察的对象,依据有关的概念可得总体、个体与样本的考察对象是相同的.4.(2022·高考四川卷)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本解析:选A.调查的目的是“了解某地5 000名居民某天的阅读时间”,所以“5 000名居民的阅读时间的全体”是调查的总体.1.一个总体共有15个个体,用简洁随机抽样的方法从中抽取一个容量为5的样本,每个个体被抽到的可能性是( )A.13B.15C.110D.115解析:选A.简洁随机抽样具有等可能性,每个个体被抽到的可能性是515=13.2.下面的抽样方法是简洁随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B .从20个零件中一次性抽出3个进行质量检查C .某学校分别从行政人员、老师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验解析:选D.依据简洁随机抽样的定义及特点可推断D 为简洁随机抽样.3.在某年的高考中,A 省有20万名考生,为了估量他们的数学平均成果,从中逐个抽取2 015名同学的数学成果作为样本进行统计分析,请回答以下问题:本题中,总体、个体、样本、样本容量各指什么?解:总体是指在该年的高考中,A 省20万名考生的数学成果;个体是指在该年的高考中,A 省20万名考生中每一名考生的数学成果;样本是指被抽取的2 015人的数学成果;样本容量是2 015.[A.基础达标]1.用随机数表法从100名同学(男生25人)中抽选20人进行评教,某男同学被抽到的机率是( ) A.1100 B.125 C.15D.14解析:选C.简洁随机抽样是等可能性抽样,每个个体被抽到的机率都是20100=15.故选C.2.(2021·昌乐二中检测)用随机数法进行抽样有以下几个步骤:①将总体中的个体编号;②猎取样本号码;③选定开头的数字;④选定读数的方向. 这些步骤的先后挨次应为( ) A .①②③④ B .①③④② C .③②①④ D .④③①② 解析:选B.先编号,再选数.3.下列抽样试验中,适合用抽签法的是( )A .从某厂生产的3 000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B.A 、D 中个体总数较大,不适合用抽签法;C 中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B 中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看成是搅拌均匀了.4.某工厂的质检人员对生产的100件产品接受随机数表法抽取10件检查,对100件产品接受下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02,…,99.其中正确的序号是 ( ) A .①② B .①③ C .②③ D .③解析:选C.依据随机数表法的要求,只有编号数字位数相同,才能达到随机等可能抽样.5.(2021·青岛检测)对于简洁随机抽样,下列说法中正确的为( )①它要求总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种抽样方法的公正性.A .①②③B .①②④C .①③④D .①②③④解析:选D.这四点全是简洁随机抽样的特点. 6.下列调查的样本合理的是________.①在校内发出一千张印有全校各班级的选票,要求被调查同学在其中一个班级旁画“√”,以了解最受欢迎的老师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任状况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名同学进行调查.解析:①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.答案:②④7.某中学高一班级有400人,高二班级有320人,高三班级有280人,以每人被抽取的可能性均为0.2,从该中学抽取一个容量为n 的样本,则n =________.解析:∵n400+320+280=0.2,∴n =200.答案:2008.一个总体数为60的个体编号为00,01,02,…,59,现需从中抽取一个容量为7的样本,请从随机数表的倒数第5行(下表为随机数表的最终5行)第11~12列的18开头,依次向下,到最终一行后向右,直到取足样本,则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60解析:先选取18,向下81、90、82不符合要求,下面选取05,向右读数,07、35、59、26、39,因此抽取的样本的号码为:18、05、07、35、59、26、39.答案:18、05、07、35、59、26、399.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何接受简洁随机抽样的方法抽取样本?解:法一:(抽签法)将100件轴编号为1,2,…,100,并做好大小、外形相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着逐个不放回地抽取10个号签,然后测量这10个号签对应的轴的直径.法二:(随机数表法)将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开头(见教材P103附表),向右选取10个为68,34,30,13,70,55,74,77,40,44,这10个号码对应的轴即为所要抽取的对象.10.要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,并写出抽样过程.解:应使用抽签法,步骤如下:①将30辆汽车进行编号,号码是1,2,3, (30)②将1~30这30个编号写到大小、外形都相同的号签上;③将写好的号签放入一个不透亮的容器中,并搅拌均匀;④从容器中每次抽取一个号签,连续抽取3次,并记录下上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.[B.力量提升]1.接受简洁随机抽样从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,则第三次被抽到的机会是()A.12 B.13C.16 D.15解析:选A.从含有6个个体的总体中,抽取容量为3的样本,则每个个体在每次被抽到的机会都是12,这与第几次抽取无关.2.为了了解全校240名高一同学的体重状况,从中抽取40名同学进行测量.下列说法正确的是() A.总体是240B.个体是每一名同学C.样本是40名同学D.样本容量是40解析:选D.本题中的争辩对象是同学的体重,而不是同学自身.总体是240名同学的体重,个体是每一名同学的体重,样本是抽取的40名同学的体重,总体容量是240,样本容量是40.3.齐鲁风彩“七乐彩”的中奖号码是从1~30个号码中选出7个号码来按规章确定中奖状况,这种从30个号码中选7个号码的抽样方法是________.解析:当总体的个数不多时,宜接受抽签法.由于它简便易行,可用不同的方式制签,抽签也便利.答案:抽签法4.2022年10月10日,袁隆平“超级稻”亩产创1 026.7公斤新纪录.要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行试验,利用随机数表法抽取种子,先将850颗种子按001,002, (850)行编号,假如从随机数表第3行第6列的数开头向右读,请依次写出最先检验的4颗种子的编号:________.(随机数表见教材P103附表)解析:从随机数表第3行第6列的数2开头向右读第一个小于850的数字是227,其次个数字是665,第三个数字是650,第四个数字是267,符合题意.答案:227,665,650,2675.某电视台进行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选择10人,从18名香港艺人中随机选择6人,从10名台湾艺人中随机选择4人.试用抽签法确定选中的艺人,并确定他们的表演挨次.解:第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透亮小筒中摇匀,从中抽出10个号签,则相应编号的艺人参与演出;(2)运用相同的方法分别从18名香港艺人中抽取6人,从10名台湾艺人中抽取4人.其次步:确定演出挨次:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的挨次,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出挨次,再汇总即可.6.(选做题)(2021·洛阳高一检测)现在有一种够级玩耍,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人,并围成一圈.够级开头时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,依据这张牌上的数字来确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简洁随机抽样?解:简洁随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简洁随机抽样.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学必修三第二章统计知识点总结2.1随机抽样2.1.1简单随机抽样教学目标:1.结合实际问题情景,理解随机抽样的必要性和重要性2.学会用简单随机抽样的方法从总体中抽取样本教学重点:学会用简单随机抽样的方法从总体中抽取样本1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样一般地,设总体中有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体中的各个个体被抽到的机会都相等就把这种抽样方法叫做简单随机抽样.特点:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
简单随机抽样常用的方法:(1)抽签法;例:请调查你所在的学校的学生做喜欢的体育活动情况。
(2)随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
例题例1 为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有;①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等。
例2 下面抽取样本的方式是简单随机抽样吗?为什么?(1)从无限多个个体中抽取50个个体作为样本;(2)箱子里共有100个零件,从中选取10个零件进行检验,从中任取一个零件进行检验后,再把它放回箱子里;(3)从50个个体中,一次性抽取5个个体作为样本;(4)从某班45名同学中指定个子最高的5名同学参加学校组织的某项活动;1.从60个产品中抽取6个进行检查,则总体个数为______,样本容量为______.2.要检查一个工厂产品的合格率,从1000件产品中抽出50件进行检查,检查者在其中随意取了50件,这种抽法为____________________.3.福利彩票的中奖号码是由1~36个号码中,选出7个号码来按规则确定中奖情况,这种从36个选7个号的抽样方法是__________.4.对于简单随机抽样,个体被抽到的机会 ( )A.相等B.不相等C.不确定D.与抽样次数有关5. 抽签中确保样本代表性的关键是 ( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回6.用随机数法从100名学生(男生25人)中抽取20人进行某项活动,某男生被抽到的几率是A.1100B.125C.15D.14( )7.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为 ( )A.36﹪B. 72﹪C.90﹪D.25﹪8.某校有40个班,每班50人,每班选项派3人参加学代会,在这个问题中样本容量是.A. 40B.50C. 120D. 150 ( )9.在简单随机抽样中,某一个个体被抽中的可能性是()A.与第几次抽样有关,第1次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样10.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是﹙﹚A.1000名学生是总体B.每个学生是个体C.100名学生的成绩是一个个体D.样本的容量是10011. 对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N 为 ﹙ ﹚A. 150B.200C.100D.12012.已知总容量为160,若用随机数表法抽取一个容量为10的样本.下面对总体的编号正确的是 ( )A. 1,2,…,106B. 0,1,…,105C.00,01,…,105D. 000,001,…,10513.某地有2000人参加自学考试,为了了解他们的成绩,从中抽取一个样本,若每个考生被抽到的概率都是0.04,则这个样本的容量是_______________.14.从含有500个个体的总体中一次性地抽取25个个体,假定其中每个个体被抽到的概率相等,那么总体中的每个个体被抽取的概率等于_________.15. 要从某汽车厂生产的100辆汽车中随机抽取10 辆进行测试,请选择合适的抽样方法,写出抽样过程。
16.从个体总数N=500的总体中,抽取一个容量为n=20的样本,使用随机数表法进行抽选,要取三位数,写出你抽取的样本,并写出抽取过程.(起点在第几行,第几列,具体方法)2.1.2 系统抽样教学目标:1.结合实际问题情景,理解系统抽样的必要性和重要性2.学会用系统抽样的方法从总体中抽取样本教学重点:学会用系统抽样的方法从总体中抽取样本1.系统抽样当总体中的个体数较多时,将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这样的抽样叫做系统抽样.步骤:(1)先将总体中的N 个体编号.有时可直接利用个体自身所带的号码.(2)确定分段间隔K 。
对编号均衡地分段,Nn 是整数时,N n K ;Nn 不是整数时,从N 中剔除一些个体,使得其为整数为止。
(3)第一段用简单随机抽样确定起始号码l 。
(4)按照规则抽取样本:l ;l +k ;l +2k ;……;l +nk前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
系统抽样时,将总体中的个体均分后的每一段进行抽样时,采用简单随机抽样;系统抽样每次抽样时,总体中各个个体被抽取的概率也是相等的;如总体的个体数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行。
需要说明的是整个抽样过程中每个个体被抽到的概率仍然相等。
2.例子:(1)某工厂平均每天生产某种机器零件大约10000件,要求产品检验员每天抽取50件零件,检查其质量情况。
假设一天的生产时间中生产的机器零件数是均匀的,请你设计一个调查方案(2)某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量状况,请你设计一个调查方案.(3)调查某班学生的身高情况,利用系统抽样的方法样本容量为40,这个班共分5个组,每个组都是8名同学,他们的座次是按身高进行编排的。
李莉是这样做的,抽样距是8,按照每个小组的座次进行编号。
你觉得这样做有代表性么?(4)在(3)中,抽样距是8,按身全班身高进行编号,然后进行抽样,你觉得这样做有代表性么?例1 下列抽样中不是系统抽样的是( )A. 从号码为1~15的15个球中任选3个作为样本,现在1~5号球中用抽签法抽出0i 号,再将号码为50+i ,100+i 的球也抽出B. 工厂生产的产品,用传送带将产品送入包装车间的过程中,检查人员从传送带上每5min 抽取意见产品进行检验C. 搞某项市场调查,规定在商场门口随机地抽取一个人进行询问,知道调查到事先规定的调查人数为止D. 某电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈例2 某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,最适合抽取样本的方法是()A. 简单随机抽样B. 系统抽样C. 分层抽样D. 先从老年人中剔除1人,再用分层抽样3.1.3 分层抽样教学目标:1.结合实际问题情景,理解分层抽样的必要性和重要性2.学会用分层抽样的方法从总体中抽取样本教学重点:学会用分层抽样的方法从总体中抽取样本通常,当总体是由个体差异明显的几个部分组成时,往往选用分层抽样的方法。
1.分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。
步骤:先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系统抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
2. 两种方法:1)先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2)先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
例题例1 某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有多少学生?1.一般地,在抽样时,将总体分成________的层,然后按一定的比例,从各层独立地_______,将各层取出的个体合在一起作为样本,这种抽样的方法叫做___________.2.为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为 ( )A.40B.30C.20D.123.从N个编号中要抽取n个号码入样,若采用系统抽样方法抽取,则分段间隔应为( )A.NnB. nC.Nn⎡⎤⎢⎥⎣⎦D.1Nn⎡⎤+⎢⎥⎣⎦4.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况,若用系统抽样法,则抽样间隔和随机剔除的个体数分别为( )A . 3,2 B. 2,3 C. 2,30 D. 30,25.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是( ).A.简单随机抽样B.系统抽样C.分层抽样D.其它抽样方法6.一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是 ( ).A. 分层抽样B.抽签法C.随机数表法D.系统抽样法7.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是 ( ).A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法8.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为A.45,75,15B. 45,45,45C.30,90,15D. 45,60,30 ( )9.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人、中年人、青年人分别各抽取的人数是A. 6,12,18B. 7,11,19C. 6,13,17D. 7,12,17 ( )10.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是 ( ).A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法11.一单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采用分层抽样的方法抽取一个容量为10的样本,每个管理人员被抽到的频率为( ).A. 1/80B. 1/24C. 1/10D. 1/812.一个年级共有20个班,每个班学生的学号都是1~50,为了交流学习的经验,要求每个班学号为22的学生留下,这里运用的是. ﹙ ﹚.A 分层抽样法 .B 抽签法 .C 随机抽样法 .D 系统抽样法13.为了保证分层抽样时每个个体等可能的被抽取,必须要求. ﹙ ﹚.A .不同层次以不同的抽样比抽样.B 每层等可能的抽样.C 每层等可能的抽取一样多个个体,即若有K 层,每层抽样0n 个,0n n k =。